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Finite volume schemes for the approximation via characteristics

of linear convection equations with irregular data

F. Bouchut, R. Eymard and A. Prignet∗

November 18, 2010

Abstract

We consider the approximation by multidimensional finite volume schemes of the transport of an
initial measure by a Lipschitz flow. We first consider a scheme defined via characteristics, and we
prove the convergence to the continuous solution, as the time-step and the ratio of the space step
to the time-step tend to zero. We then consider a second finite volume scheme, obtained from the
first one by addition of some uniform numerical viscosity. We prove that this scheme converges to
the continuous solution, as the space step tends to zero whereas the ratio of the space step to the
time-step remains bounded by below and by above, and under assumption of uniform regularity of the
mesh. This is obtained via an improved discrete Sobolev inequality and a sharp weak BV estimate,
under some additional assumptions on the transport flow. Examples show the optimality of these
assumptions.

Keywords: Approximation of the transport of measures, Lipschitz flows, compression estimates,
finite volume schemes, discrete Sobolev inequalities, weak BV estimates.

1 Introduction

We consider the problem of transport of non-negative Radon measures by a flow in R
N . The family of

transported non-negative Radon measures (µt)t∈R+ is defined as

∫
f(x)dµs(x) =

∫
f(X(s, 0, x))dµ0(x), f ∈ Cc(R

N ), s ∈ R+, (1)

where Cc(R
N ) denotes the space of continuous functions on R

N with compact support. We make the
following natural assumptions.

Hypothesis 1. We assume that

1. N ∈ N with N ≥ 1,

2. defining D = {(s, t) ∈ R
2, 0 ≤ t ≤ s}, the flow X : D×R

N → R
N is a globally Lipschitz continuous

function with Lipschitz constant ξ, such that the flow property holds, i.e.

X(s3, s2, X(s2, s1, x)) = X(s3, s1, x), for all 0 ≤ s1 ≤ s2 ≤ s3, x ∈ R
N , (2)

X(s, s, x) = x, for all s ∈ R+, x ∈ R
N , (3)

3. µ0 ∈ R+(RN ), where R+(RN ) is the set of non-negative Radon measures on R
N ,

4. µ0 is finite, and
∫

RN dµ0(x) = M0 ≥ 0.
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Note that (1) and (2) imply

∫
f(x)dµs(x) =

∫
f(X(s, t, x))dµt(x), f ∈ Cc(R

N ), (s, t) ∈ D. (4)

Such a family (µt)t≥0 arises for example in probabilistic studies involved by dynamic reliability problems,
or population dynamics. In these situations, µ0 and µt are probability measures related to the marginal
distribution of Markov processes, transported for each state of a given system according to deterministic
laws, describing the evolution of the state of the system x ∈ R

N with respect to the time variable.
In full problems, the system can change of state at probabilistic times, and then a system of such
equations, coupled by the right-hand side, must be solved: this problem is then modeled by the Chapman-
Kolmogorov equation (see [10] for a complete description of piecewise deterministic Markov processes).
The approximation of this problem is then useful in the framework of engineering studies (see e.g. [1, 2,
9, 11]). In some regular cases, one can assume that the deterministic evolution of the system is prescribed
by a regular ODE under the following form

∂sX(s, t, x) = a(s,X(s, t, x)), ∀s ≥ t, (5)

with the initial condition (3), assuming that a is bounded and Lipschitz continuous. In such a case,
according to the Cauchy-Lipschitz framework, the function X, which necessarily satisfies (2), has more
regularity properties than that assumed in Hypothesis 1, and the measure µt is the solution to the
transport equation

∂tµt + div(µta) = 0, (6)

with initial condition µ0. Note that many recent studies have been performed on the resolution of equation
(6), exploring in particular the existence and uniqueness of a solution, depending on the regularity of a

[3, 4]. Works that are related to the framework of measures are [7, 8, 6, 14, 5]. In [9], the approximation
of (6) has been done by an explicit finite volume scheme, in the case where the functions X are C1

solutions to (5); this scheme is identical, in the simplified case of a pure transport (1), to that presented
in Section 2. The convergence proof of this scheme is provided in [9], under the condition that the space
step tends to zero faster than the time step (this convergence result is again provided here under more
general hypotheses made on X, in Section 2.2).

Besides, in [11], the problem (6) is approximated by an implicit finite volume method. The convergence
proof is provided letting both discretization steps tend to zero independently. This proof is based on the
numerical viscosity introduced in the scheme, in addition to the one coming from upstream weighting,
and on discrete Sobolev inequalities (a similar idea is used in the modified scheme with viscosity presented
in Section 3). The results obtained in [11] again rely on the regularity of the function a.

In this paper, we only assume that, considering a system at the state x at time t, its state for times
s ≥ t is given by X(s, t, x), where the function X satisfies (2) and (3). The typical situation we would
like to consider is the following. Assume that x ∈ R is the level of water in a reservoir, and that the
outward rate of the water is equal to 1, as long as x > 0, but that this rate becomes equal to 0 if x = 0.
Then the function X(s, t, x) is given by X(s, t, x) = max(x − (s − t), 0) for x ≥ 0 and X(s, t, x) = x for
x < 0, which is only Lipschitz continuous. It corresponds to the coefficient a(t, x) = −1Ix>0 in (5).

The aim of this paper is to study the convergence of an approximation of (µt)t≥0 defined by (1).
The numerical schemes used here only involve the function X, and the minimal regularity hypotheses
are made on X. Indeed, we do not use the vector field a in the definition of the schemes, nor in the
proofs. This point of view comes from the probabilistic interpretation, where the set of trajectories is
the natural object to consider, rather than the vector field of point velocities. The only assumption that
X is Lipschitz continuous enables to cover many situations where mass concentration occurs in finite
time. Then, the difficulty of uniqueness of solutions to (6) is somehow avoided. Indeed we shall see in
our assumptions and in the counterexamples that the difficulty comes back in stability properties of the
flow X, that were handled by the notion of reversibility in [7, 8]. The stability issue is here solved via an
assumption of some bound on the compression of the flow.
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The paper is organized as follows. As written above, we study in Section 2 a simple finite volume
scheme, based on the transport by the flow of a piecewise constant function. We show that this method
provides a convergent approximation to (µt)t≥0 defined by (1), provided that the time step and the ratio
between the space step and the time step together tend to zero; examples show that this condition is
necessary in the context of this scheme. In Section 3, we study a proof based on the numerical viscosity
introduced in the scheme. A convergence result is then proved without the latter condition on the ratio
between the discretization steps, but only under further restrictions:

- on the data (some boundedness assumption on the compression, i.e. on the determinant of ∂X/∂x,
is necessary, as well as the assumption that µ0 has a bounded support),

- on the mesh (uniform regularity),
- on the scheme (the natural viscous part introduced by the scheme given in Section 2 is not sufficient

for the proof using discrete Sobolev inequalities, and additional viscosity has to be introduced, as in [11]).
In Section 4, some technical results are given, that are used in Section 3. A conclusion is finally given in
Section 5.

2 A finite volume scheme defined by characteristics

2.1 Definition of the scheme

Let us first give the definition of admissible meshes of R
N , N ≥ 1.

Definition 1. An admissible mesh of R
N is a locally finite partition M of R

N such that:

1. for all K ∈ M, K is bounded, the interior of K is an open convex subset of R
N and the N

dimensional measure of K, denoted by |K|, is strictly positive,

2. for all K ∈ M, denoting by ∂K the boundary of K, and, for all L ∈ M, denoting by σKL = ∂K∩∂L,
there exists NK ⊂ M such that K /∈ NK and ∂K =

⋃
L∈NK

σKL, and, for all L ∈ NK , σKL, called

an edge of K, is included in a hyperplane of R
N , with a strictly positive N −1 dimensional measure

equal to |σKL|; we then denote by nKL the unit normal vector to σKL oriented from K to L,

3. the size of the mesh, defined by hM = supK∈M diam(K), is finite.

Note that all classical regular meshes of R
N are admissible in the sense of the previous definition.

Now, let M be an admissible mesh of R
N in the above sense. For such a mesh, we set:

u0
K =

1

|K|

∫

K

dµ0(x), ∀K ∈ M. (7)

For a given τ > 0, defining tn = nτ , we set

V n
L,K = {x ∈ L,X(tn+1, tn, x) ∈ K}, ∀n ∈ N, ∀K,L ∈ M, (8)

and we set
vn

L,K = |V n
L,K |, ∀n ∈ N, ∀K,L ∈ M. (9)

Observe that ⋃

K∈M

V n
L,K = L and

∑

K∈M

vn
L,K = |L|, ∀n ∈ N, ∀L ∈ M, (10)

but, setting

wn
K =

∑

L∈M

vn
L,K =

∣∣{x ∈ R
N , X(tn+1, tn, x) ∈ K

}∣∣ , ∀n ∈ N, ∀K ∈ M, (11)
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wn
K is not equal to |K| in the general case (this property would only hold in the case of incompressible

flows). We then define a finite volume scheme for the approximation of µt defined by (1), by (7)-(9) and

|K| un+1
K =

∑

L∈M

vn
L,K un

L, ∀n ∈ N, ∀K ∈ M. (12)

This formula can be interpreted as follows. Consider the piecewise constant functions un
M(x) = un

K , for
x ∈ K, K ∈ M, i.e.

un
M(x) =

∑

K∈M

1Ix∈Ku
n
K , ∀n ∈ N, ∀x ∈ R

N . (13)

Then starting from the measure un
M(x)dx at time tn and applying the transport formula (4) between

times tn and tn+1, one gets a measure µ̃n+1 such that

∫
f(x)dµ̃n+1(x) =

∫
f(X(tn+1, tn, x))u

n
M(x)dx, f ∈ Cc(R

N ). (14)

This formula is still valid for f measurable, bounded with compact support (see the last paragraph of
the proof of Lemma 10 for the argument). Taking f(x) = 1IK(x) and using (13), one gets

∫
K

dµ̃n+1 =∑
L∈M vn

L,K un
L, and thus with (12), un+1

K = (1/|K|)
∫

K
dµ̃n+1. Therefore, un+1

M is nothing else than the
piecewise constant projection over the mesh of the exact transport by the flow of un

M(x)dx during the
time interval (tn, tn+1).

The scheme (12) can also be rewritten, using (11), as

(
|K| − wn

K

)
un+1

K +
∑

L∈M

vn
L,K(un+1

K − un
L) = 0, ∀n ∈ N, ∀K ∈ M, (15)

or as
|K|(un+1

K − un
K) +

(
|K| − wn

K

)
un

K +
∑

L∈M

vn
L,K(un

K − un
L) = 0, ∀n ∈ N, ∀K ∈ M, (16)

which mimics a discretization of the equation ∂tu+ u div a + a · ∇u = 0 (see (6)).
We finally define the fully discrete solution by

uM,τ (0, x) = u0
K , x ∈ K, K ∈ M,

uM,τ (t, x) = un+1
K , t ∈ ]tn, tn+1], n ∈ N, x ∈ K, K ∈ M.

(17)

Example 1. We consider the following data:

1. N = 1, and µ0 = 1Ix∈(0,1)dx,

2. the function X is defined by

X(s, t, x) = x − (s − t), for all s ≥ t and x ≥ s − t,

X(s, t, x) = 0, for all s ≥ t and 0 ≤ x ≤ s − t,

X(s, t, x) = x, for all s ≥ t and x ≤ 0.

Then the measure µt is given, for t ∈ (0, 1), by µt = tδ0(x) + 1Ix∈(0,1−t)dx, and for t ∈ [1, +∞), by µt = δ0. The
scheme, obtained with the mesh M = {[ih, (i + 1)h), i ∈ Z} with h = 1/M for an integer M > 0, and τ = h,
reads (see Figure 1)

un+1
[0,h) = un

[0,h) + un
[h,2h),

un+1
[ih,(i+1)h) = un

[(i+1)h,(i+2)h), i ≥ 1,

un+1
[ih,(i+1)h) = un

[ih,(i+1)h), i < 0.

The convergence of the scheme is then obvious.
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Figure 1: Construction of the scheme for Example 1

It happens that in one dimension, the monotonicity criterion following from the notion of reversible
solutions of [7] enables to prove the convergence of the scheme, see [13], without any special condition
relating hM and τ . Let us consider a second example, showing that in two dimensions for the scheme
defined as above, we cannot let hM → 0 and τ → 0 with hM/τ constant without trouble.

Example 2. We consider the following data, taken from [8]: N = 2, x = (x1, x2) ∈ R
2,

Xλ(s, t, x1, x2) =

„

sgn(x1) max(0, |x1| − (s − t)), x2 + λ max(0, s − t − |x1|)
«

,

0 ≤ t ≤ s, x1, x2 ∈ R,

(18)

where λ ∈ R is a parameter. Then Xλ is globally Lipschitz continuous, and satisfies (2)-(3). Indeed, one can
check that Xλ satisfies (5) with the vector field

aλ(t, x1, x2) =



(− sgn x1, 0) for x1 6= 0,
(0, λ) for x1 = 0.

(19)

We consider the case where λ = 1, the mesh is defined by squares of side h > 0:

Kij = [(i − 1)h, ih) × [(j − 1)h, jh), i, j ∈ Z. (20)

and the time step is defined by τ = h. We notice (see Figure 2) that, for all j ∈ Z,

1. V n
K0,j−1,K1,j

= {(x1, x2) ∈ K0,j−1, x1 + x2 − (j − 2)h ≥ 0}, which provides vn
K0,j−1,K1,j

= h2/2,

2. V n
K1,j−1,K1,j

= {(x1, x2) ∈ K1,j−1, x1 − x2 + (j − 2)h ≤ 0}, which provides vn
K1,j−1,K1,j

= h2/2,

3. V n
K0,j ,K1,j

= {(x1, x2) ∈ K0,j , x1 + x2 − (j − 1)h < 0}, which provides vn
K0,j ,K1,j

= h2/2,

4. V n
K1,j ,K1,j

= {(x1, x2) ∈ K1,j , x1 − x2 + (j − 1)h > 0}, which provides vn
K1,j ,K1,j

= h2/2,

5. V n
Ki+1,j ,Ki,j

= Ki+1,j , for all i ∈ N,

6. V n
K−i−1,j ,K−i,j

= K−i−1,j , for all i ∈ N.

Therefore Scheme (12) can be written as

un+1
ij =



un
i+1,j if i ≥ 2,

un
i−1,j if i ≤ 0,

(21)

and

un+1
1,j =

1

2

`

un
1,j−1 + un

1,j

´

+ un
2,j +

1

2

`

un
0,j−1 + un

0,j

´

. (22)

In order to evaluate what happens to the mass once it arrives in the cells for which i = 1, we write down (22)
when un

i,j = 0 for all i 6= 1, which gives the one-dimensional scheme

un+1
j =

1

2

`

un
j−1 + un

j

´

= un
j − 1

2

τ

h

`

un
j − un

j−1

´

, (23)

with τ/h = 1. Since this scheme converges to the solution of the transport by the velocity 1/2 as h → 0 with
τ = h, we get that, instead of converging to the continuous solution resulting from the transport by the flow X1
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K2,j

K1,j−1K0,j−1

K0,j K1,j

x1

x2

0 h 2h−h

(j − 2)h

(j − 1)h

jh

Figure 2: Set of all points (x1, x2) such that X(tn+1, tn, x1, x2) ∈ K1,j

(λ = 1) as h → 0 with τ = h, Scheme (12) converges to the continuous solution resulting from the transport by
the flow X1/2 (λ = 1/2). This is due to the fact that during a time-step, the mass contained in a vertical segment
joining the points (0, (j − 1)h) and (0, jh) is first spread to the cell K1,j (because we replace the measure by a
piecewise constant function), and then only half of this mass is transported to the segment joining the points
(0, jh) and (0, (j + 1)h), the other half coming back to the segment joining the points (0, (j − 1)h) and (0, jh).

More generally, one can check that Scheme (12) converges, as h → 0 with τ = αh such that α ∈ (0, 2], to the
continuous solution resulting from the transport by the flow Xλ, with λ = α/2 if α ∈ (0, 1] and λ = 1 − 1/(2α) if
α ∈ [1, 2].

2.2 Convergence of the scheme under the conditions τ → 0 and hM/τ → 0

Theorem 1 (Convergence of Scheme (12) as τ → 0 and hM/τ → 0). Under Hypothesis 1, let, for any
admissible mesh M of R

N in the sense of Definition 1 and any τ > 0, uM,τ be given by (7)-(12) and
(17). Then, for all t ≥ 0, uM,τ (t, ·) converges for the weak-⋆ topology of R+(RN ) to µt defined by (1),
as τ → 0 and hM/τ → 0.

Proof. We first notice that, using (12), the following relation holds,
∑

K∈M

|K| un+1
K =

∑

K∈M

∑

L∈M

vn
L,K un

L =
∑

L∈M

un
L

∑

K∈M

vn
L,K =

∑

L∈M

|L| un
L =

∑

L∈M

|L| u0
L = M0. (24)

Let g ∈ Lipc(R
N ) be a Lipschitz continuous function with compact support, with Lip(g) ≥ 0 its Lipschitz

constant. According also to (12), we have, for n ∈ N,
∫

RN

g(x)un+1
M (x)dx =

∑

K∈M

|K|un+1
K

1

|K|

∫

K

g(x)dx =
∑

L∈M

un
L

∑

K∈M

vn
L,K

1

|K|

∫

K

g(x)dx.

Therefore we get
∫

RN

g(x)un+1
M (x)dx−

∫

RN

g(X(tn+1, tn, x))u
n
M(x)dx

=
∑

L∈M

un
L

∑

K∈M

vn
L,K

(
1

|K|

∫

K

g(x)dx−
1

vn
L,K

∫

V n
L,K

g(X(tn+1, tn, x))dx

)
.

(25)

Since we have for x ∈ K and for y ∈ V n
L,K , X(tn+1, tn, y) ∈ K, we can estimate

∣∣∣∣∣
1

|K|

∫

K

g(x)dx−
1

vn
L,K

∫

V n
L,K

g(X(tn+1, tn, x))dx

∣∣∣∣∣

≤
1

|K|vn
L,K

∫

K

∫

V n
L,K

∣∣∣g(x) − g(X(tn+1, tn, y))
∣∣∣ dydx

≤Lip(g)hM.
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We therefore have, using (25),

∣∣∣∣
∫

RN

g(x)un+1
M (x)dx−

∫

RN

g(X(tn+1, tn, x))u
n
M(x)dx

∣∣∣∣ ≤M0 Lip(g)hM. (26)

Let t > 0, and let nt ∈ N be such that t ∈ ]tnt
, tnt+1], which means that ntτ < t ≤ (nt + 1)τ . We now

consider, for a given Lipschitz continuous function f ∈ Lipc(R
N ) with constant Lip(f), the functions

fn : x 7→ f(X(tnt+1, tn+1, x)), for n = 0, 1, 2, . . . , nt. They satisfy

|fn(x) − fn(y)| ≤ Lip(f)|X(tnt+1, tn+1, x) −X(tnt+1, tn+1, y)| ≤ ξ Lip(f)|x− y|, ∀x, y ∈ R
N .

Therefore they are all Lipschitz continuous, and have compact support since |X(tnt+1, tn+1, x) − x| ≤
ξ(tnt+1 − tn+1) ≤ ξt. We can apply the inequality (26), replacing g by fn and Lip(g) by ξ Lip(f). We
get, according to (2) that implies X(tnt+1, tn+1, X(tn+1, tn, x)) = X(tnt+1, tn, x),

∣∣∣∣
∫

RN

f(X(tnt+1, tn+1, x))u
n+1
M (x)dx−

∫

RN

f(X(tnt+1, tn, x))u
n
M(x)dx

∣∣∣∣ ≤M0ξ Lip(f)hM.

Summing the above relations for n = 0, . . . , nt, we obtain
∣∣∣∣
∫

RN

f(x)unt+1
M (x)dx−

∫

RN

f(X(tnt+1, 0, x))u
0
M(x)dx

∣∣∣∣ ≤ (nt + 1)M0ξ Lip(f)hM. (27)

Moreover, writing
∫

RN

f(X(tnt+1, 0, x))u
0
M(x)dx−

∫

RN

f(X(t, 0, x))dµ0(x)

=

∫

RN

f(X(tnt+1, 0, x))u
0
M(x)dx−

∫

RN

f(X(tnt+1, 0, x))dµ0(x)

+

∫

RN

f(X(tnt+1, 0, x))dµ0(x) −

∫

RN

f(X(t, 0, x))dµ0(x),

we have, using that t ∈ ]tnt
, tnt+1],

∣∣∣∣
∫

RN

f(X(tnt+1, 0, x))u
0
M(x)dx−

∫

RN

f(X(t, 0, x))dµ0(x)

∣∣∣∣ ≤M0ξ Lip(f)(hM + τ), (28)

because ξ Lip(f) is a Lipschitz constant of the function (t, x) 7→ f(X(t, 0, x)). We thus get from (27) and
(28)

∣∣∣∣
∫

RN

f(x)uM,τ (t, x)dx−

∫

RN

f(X(t, 0, x))dµ0(x)

∣∣∣∣ ≤M0ξ Lip(f)

(
(t+ τ)

hM
τ

+ hM + τ

)
,

which tends to zero as τ → 0 and hM

τ → 0. Using (1), this proves the theorem, since we can extend the
convergence to any f ∈ Cc(R

N ) by approximation, using the bound (24).

3 Modified scheme with viscosity

3.1 Definition of the modified scheme and first properties

Assuming Hypothesis 1, let J(s, t, x) denote, for all (s, t) ∈ D and a.e. x ∈ R
N , the Jacobian determinant

with respect to x of X(s, t, x) (that is the determinant of the matrix (∂Xi/∂xj), i, j = 1, . . . , N). We
have J(s, t, x) ≥ 0 according to Lemma 9 (we shall not use this property), and J ∈ L∞ (|J(s, t, x)| ≤ ξN ,
where ξ is given in Hypothesis 1). Let us introduce the additional hypotheses and notations:
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Hypothesis 2 (Estimate of the compression). We assume that :

1. there exists p0 > N such that for all T > 0 there exists some ζT ≥ 0 satisfying

‖J(s, t, ·) − 1‖Lp0 (RN ) ≤ ζT (s− t), ∀(s, t) ∈ DT , (29)

where DT = {(s, t) ∈ R
2, 0 ≤ t ≤ s ≤ T},

2. the support of µ0 is bounded.

Remark 1. We could make the slightly weaker assumption that there exists some p0 > N such that for
all T > 0 there exists CT such that for all finite increasing sequence (sn)n of non-negative values bounded
by T , ∑

n

‖J(sn+1, sn, ·) − 1‖L
p0
loc(R

N ) ≤ CT . (30)

These assumptions (29) and (30) can be understood by writing the following formula, valid when X solves
the ODE (5) for some smooth coefficient a:

J(s, t, x) = exp

(∫ s

t

(div a)(σ,X(σ, t, x))dσ

)
. (31)

Thus, (29) means more or less that div a ∈ L∞(0, T, Lp0(RN )), while (30) means more or less that
div a ∈ L1I(0, T, Lp0

loc(R
N )). However, (29) and (30) are formulated in terms of X only, and do not

involve any vector field a, according to the spirit of this work.

Remark 2. In the case of Example 1, one has J(s, t, x) = 1 for a.e. x < 0 and x > s − t and
J(s, t, x) = 0 for a.e. 0 < x < s− t. Thus, for any p0 > 1, ‖J(s, t, ·)− 1‖Lp0 (R) = (s− t)1/p0 and (29) is
not satisfied. It is nevertheless possible to prove the convergence of the schemes presented in this paper
in the one-dimensional case, by the method of [13].

Example 3. This example is dedicated to show that it is not possible to prove the convergence of the approximate
solution provided by Scheme (12) to the continuous solution, assuming Hypothesis 1, τ/h constant, and assuming
(29) with p0 < N − 1 (this means that the condition p0 > N in (29) is in some way optimal). Consider the
generalization of Example 2, given, for x = (x′, y) ∈ R

N−1 × R (N ≥ 2) by

Xλ(s, t, x′, y) =

„

x′

|x′| max(0, |x′| − (s − t)), y + λ max(0, s − t − |x′|)
«

,

0 ≤ t ≤ s, (x′, y) ∈ R
N−1 × R,

(32)

where λ ∈ R is a parameter. Then Xλ is globally Lipschitz continuous, and satisfies (2)-(3). Indeed, Xλ satisfies
(5) with the vector field

aλ(t, x′, y) =

8

<

:

“

− x′

|x′| , 0
”

for x′ 6= 0,

(0, λ) for x′ = 0.
(33)

Denoting the first components of (32) by X ′
λ, one has

∇x′X ′
λ =

„

Id
“

1 − s − t

|x′|
”

+ (s − t)
x′ ⊗ x′

|x′|3
«

1I|x′|>s−t. (34)

Therefore, one gets

Jλ(s, t, x′, y) =

„

1 − s − t

|x′|

«N−2

1I|x′|>s−t, (35)

and (29) is satisfied (locally in space) if and only if p0 < N − 1 (except for N = 2 where the limit case p0 = 1 is
satisfied).

We consider a mesh of cubes of side h > 0, but differently from in Example 2, we take one cube centered
around the origin. We take λ = 1, τ ≤ h/2, and we apply the scheme (12) with τ/h = cst. We see that the points
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that lie in the cube centered at the origin at time tn and that travel to the neighboring cube in the direction of
increasing y during the time-step, are those for which |x′| + y ≤ τ . Hence the corresponding volume is

Z τ

0

|BN−1(0, τ − y)| dy = |BN−1(0, 1)|τ
N

N
. (36)

Therefore, dividing by hN , we find that the ratio of mass that travels to the neighboring cube by the mass
originally in the cube is λeffτ/h, with

λeff =
|BN−1(0, 1)|

N

τN−1

hN−1
, (37)

and instead of converging to the transport by the flow X1 (λ = 1), the scheme converges to the transport by the
flow Xλeff .

Example 4. This example is to show that, although the compression condition (29) does not allow div a to be
a measure, i.e. p0 = 1, Hypothesis (2) nevertheless covers cases where, for some t > 0, the solution µt of (1) is a
Dirac measure, whereas µ0 is defined by a density function. Let us take N = 1 and

X(s, t, x) =

8

>

>

<

>

>

:

x if x ≤ 0,

(max(0,
√

x − (s − t)/2))2 if 0 ≤ x ≤ 1,
x − (s − t) if x ≥ 1 and s − t ≤ x − 1,

(max(0, 1 − (s − t − x + 1)/2))2 if x ≥ 1 and x − 1 ≤ s − t.

(38)

Then X corresponds to the vector field a(x) = 0 for x < 0, a(x) = −√
x for 0 < x < 1, and a(x) = −1 for x > 1

x
0 1

t

Figure 3: Characteristics in the case of Example 4

(see Figure 4). We observe that any compact set in the positive half space is sent to 0 after a finite time. One
can also check that (29) is satisfied for all p0 < 2.

In this section, we shall use the regularity of admissible meshes, defined as follows.

Definition 2. Let M be an admissible mesh of R
N (with N ∈ N

⋆) in the sense of Definition 1. For a
given ρ > 0, we say that M is ρ-regular if

1

ρ
hM

∑

L∈NK

|σKL| ≤ |K| ≤ ρhM
∑

L∈NK

|σKL|, ∀K ∈ M, (39)

1

ρ
hM ≤ diam(K) ≤ hM, ∀K ∈ M, (40)

and
1

ρ
hN
M ≤ |K| ≤ ρhN

M, ∀K ∈ M. (41)
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Remark 3. A cubic mesh with constant side is ρ-regular for some constant ρ only depending on the
dimension N .

We again define a finite volume scheme for the approximation of µt defined by (1). Let M be an
admissible mesh of R

N in the sense of Definition 1 and τ > 0 be given. We still denote tn = nτ for n ∈ N,
and u0

K , V n
L,K and vn

L,K are again defined by (7)-(8)-(9). For a given ν > 0, we define

v̂n
L,K = vn

L,K + ν τ |σKL|, ∀n ∈ N, ∀K ∈ M, ∀L ∈ M \ {K},

v̂n
K,K = vn

K,K − ν τ
∑

L∈M\{K}

|σKL|, ∀n ∈ N, ∀K ∈ M. (42)

Let us observe that for all L,K ∈ M, again defining wn
K by (11), we have

∑

K∈M

v̂n
L,K = |L| and

∑

L∈M

v̂n
L,K = wn

K . (43)

We may now define the modification of Scheme (12) by the additional viscosity term tuned by the value
of ν:

|K| un+1
K =

∑

L∈M

v̂n
L,K un

L, ∀n ∈ N, ∀K ∈ M. (44)

It results that, thanks to (43), the following conservation property, similar to (24), holds:

∑

K∈M

|K| un+1
K =

∑

K∈M

∑

L∈M

v̂n
L,K un

L =
∑

L∈M

un
L

∑

K∈M

v̂n
L,K =

∑

L∈M

|L|un
L =

∑

L∈M

|L|u0
L = M0. (45)

Remark 4 (Finite number of non zero terms). Since the support of µ0 is bounded, for each n ∈ N, there
is only a finite number of K ∈ M for which un

K 6= 0. Indeed, according to the Lipschitz continuity of X
one has |X(tn+1, tn, x) − x| ≤ ξ τ , thus V n

L,K in (8) is non empty only if d(L,K) ≤ ξ τ . We deduce that
v̂n

L,K vanishes for d(L,K) > ξ τ , and that at each time-step, the support extends only to the cells that
are at distance at most ξ τ from the support at the previous time.

Lemma 1 (Nonnegativity of the scheme). Under Hypothesis 1, let ρ > 0, λ ∈ (0, 1) be given. Let M be
an admissible mesh of R

N in the sense of Definition 1, which is ρ-regular in the sense of Definition 2.
Let τ > 0, ν > 0 be given such that the CFL condition

τ ≤
1 − λ

ρ(ξ + ν)
hM (46)

holds. Then the coefficients v̂n
K,K given by (7)-(9) and (42) satisfy

v̂n
K,K ≥ λ|K|, ∀K ∈ M, ∀n ∈ N. (47)

Moreover, letting (un
K)K∈M,n∈N be given by (7)-(9) and (42)-(44), we have

un
K ≥ 0, ∀K ∈ M, ∀n ∈ N. (48)

Finally, there exists β, only depending on ρ and N , such that

wn
K ≤ β|K| ≤

β

λ
v̂n

K,K , ∀K ∈ M, ∀n ∈ N. (49)

Proof. According to the regularity condition (39), we have, for all K ∈ M,

ν τ
∑

L∈M\{K}

|σKL| ≤
ν(1 − λ)

ρ(ξ + ν)

∑

L∈M\{K}

|σKL|hM ≤
ν(1 − λ)

ξ + ν
|K|.

10



Recall that V n
K,K is defined by V n

K,K = {x ∈ K,X(tn+1, tn, x) ∈ K}. Let x ∈ K such that d(x, ∂K) >
ξ(1−λ)
ρ(ξ+ν)hM. Then, under the CFL condition (46), we have

|X(tn+1, tn, x) − x| = |X(tn+1, tn, x) −X(tn, tn, x)| ≤ ξτ ≤
ξ(1 − λ)

ρ(ξ + ν)
hM,

and thus X(tn+1, tn, x) ∈ K, that means x ∈ V n
K,K . Therefore, since the measure of all x ∈ K such that

d(x, ∂K) ≤ α is lower than α |∂K| (using the convexity of K), we get, using (39),

vn
K,K ≥

∣∣∣∣
{
x ∈ K, d(x, ∂K) >

ξ(1 − λ)

ρ(ξ + ν)
hM

}∣∣∣∣ ≥ |K| −
ξ(1 − λ)

ρ(ξ + ν)
hM

∑

L∈M\{K}

|σKL| ≥ |K| −
ξ(1 − λ)

ξ + ν
|K|.

Thus

v̂n
K,K ≥ |K| −

ξ(1 − λ)

ξ + ν
|K| −

ν(1 − λ)

ξ + ν
|K| = λ|K|.

This proves (47), as well as its immediate consequence (48).
We now remark that, since |X(tn+1, tn, x) − x| ≤ ξ τ ,

wn
K ≤ |B(0, hM + τξ)| ≤ |B(0, hM +

hM
ρ

)|. (50)

Using the regularity condition (41), we get the existence of β, only depending on ρ and N , such that (49)
holds (the last inequality resulting from (47)).

The following lemma completes Remark 4.

Lemma 2 (Support of the approximate solution). Under Hypotheses 1 and 2, let α > 0, ν > 0 be given.
Let M be an admissible mesh of R

N in the sense of Definition 1, and let τ > 0 be given such that the
inverse CFL condition

hM ≤ ατ (51)

holds. Let (un
K)K∈M,n∈N be given by (7)-(8) and (42)-(44). Then, for all T ≥ τ , there exists R > 0, only

depending on T , supp(µ0), ξ, and α such that

un
K 6= 0 ⇒ K ⊂ B̄(0, R), ∀n ∈ N, nτ ≤ T, ∀K ∈ M,

denoting by B̄(0, R) the closed ball with center 0 and radius R.

Proof. Let R0 be such that the support of µ0 is included in B̄(0, R0). Then, considering R̃0 = R0 + hM,
we have

u0
K 6= 0 ⇒ K ⊂ B̄(0, R̃0), ∀K ∈ M.

Let us argue by induction, and assume that for a given n ∈ N, R̃n is such that

un
K 6= 0 ⇒ K ⊂ B̄(0, R̃n), ∀K ∈ M. (52)

Let K ∈ M such that un+1
K 6= 0. Then there exists L ∈ M (the case L = K is possible) such that un

L 6= 0
and v̂n

L,K 6= 0, which means that vn
L,K 6= 0 or |σKL| > 0. In the first case, then d(K,L) ≤ ξ τ , in the

second one, d(K,L) = 0. Therefore, we have K ⊂ B̄(0, R̃n+1), with R̃n+1 = R̃n + ξ τ + hM, and this
proves (52) at level n+ 1.

We find finally that R̃n = R0 + hM + n(hM + ξ τ). Therefore, for all n ∈ N such that nτ ≤ T , one

has R̃n ≤ R0 + ατ + nτ(α+ ξ) ≤ R0 + (2α+ ξ)T . This concludes the proof with R = R0 + (2α+ ξ)T .
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3.2 Convergence

Theorem 2 (Convergence of the Scheme (44) as hM → 0 and τ ≃ hM.). Under Hypotheses 1 and
2, let ρ > 0, λ ∈ (0, 1), ν > 0 and α > 0 be fixed given values. Let M be an admissible mesh of R

N

in the sense of Definition 1, which is ρ-regular in the sense of Definition 2, and let τ be given such that
the CFL condition (46) and the inverse CFL condition (51) hold. Let (un

K)K∈M,n∈N be given by (7)-(8)
and (42)-(44) and let uM,τ be defined by (17). Then, for all t ≥ 0, uM,τ (t, ·) converges for the weak-⋆
topology in R+(RN ) to µt defined by (1), as hM → 0 (which is equivalent to τ → 0 under conditions
(46) and (51)).

Proof. Let g ∈ Lipc(R
N ) be a Lipschitz continuous function with compact support. Let us multiply (44),

for a given n ∈ N, by 1
|K|

∫
K
g(x)dx, and sum over K ∈ M. We get with the notation (13)

∫

RN

g(x)un+1
M (x)dx−

∑

K∈M

1

|K|

∫

K

g(x)dx
∑

L∈M

v̂n
L,K un

L = 0,

which provides
∫

RN

g(x)un+1
M (x)dx−

∫

RN

g(X(tn+1, tn, x))u
n
M(x)dx−Rn(g) = 0, (53)

with

Rn(g) =
∑

K∈M

1

|K|

∫

K

g(x)dx
∑

L∈M

v̂n
L,K un

L −

∫

RN

g(X(tn+1, tn, x))u
n
M(x)dx. (54)

We can then write

Rn(g) =
∑

L∈M

un
L

∑

K∈M

(
v̂n

L,K

|K|

∫

K

g(x)dx−

∫

V n
L,K

g(X(tn+1, tn, x))dx

)
.

Now, setting

R̃n(g) =
∑

L∈M

∑

K∈M

un
K

(
v̂n

L,K

|K|

∫

K

g(x)dx−

∫

V n
L,K

g(X(tn+1, tn, x))dx

)
(55)

and using that wn
K = |{x,X(tn+1, tn, x) ∈ K}|, we get

R̃n(g) =
∑

K∈M

un
K

(
wn

K

|K|

∫

K

g(x)dx−

∫

{x,X(tn+1,tn,x)∈K}

g(X(tn+1, tn, x))dx

)

= −
∑

K∈M

un
K

∫

{x,X(tn+1,tn,x)∈K}

(
g(X(tn+1, tn, x)) −

1

|K|

∫

K

g(y)dy

)
dx.

Applying Lemma 10, we may use the change of variable y = X(tn+1, tn, x) for the computation of∫
RN 1IK(y)dy and

∫
RN g(y)1IK(y)dy. We thus get

|K| =

∫

{x,X(tn+1,tn,x)∈K}

J(tn+1, tn, x)dx,

and ∫

K

g(y)dy =

∫

{x,X(tn+1,tn,x)∈K}

g(X(tn+1, tn, x))J(tn+1, tn, x)dx.

This leads to

R̃n(g) =
∑

K∈M

un
K

∫

{x,X(tn+1,tn,x)∈K}

(
g(X(tn+1, tn, x)) −

1

|K|

∫

K

g(y)dy

)
(J(tn+1, tn, x) − 1) dx.
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Since X(tn+1, tn, x) ∈ K and y ∈ K, we have |g(X(tn+1, tn, x)) −
1

|K|

∫
K
g(y)dy| ≤ Lip(g)hM. Hence,

defining

|K|Υn
K =

∫

{x,X(tn+1,tn,x)∈K}

|J(tn+1, tn, x) − 1|dx,

this allows to write
|R̃n(g)| ≤ Lip(g)hM

∑

K∈M

|K|un
KΥn

K . (56)

We can now observe that

Rn(g) − R̃n(g) =
∑

L∈M

∑

K∈M

(un
L − un

K)

(
v̂n

L,K

|K|

∫

K

g(x)dx−

∫

V n
L,K

g(X(tn+1, tn, x))dx

)
.

We then have Rn(g) − R̃n(g) = Tn
1 + Tn

2 with

Tn
1 =

∑

L∈M

∑

K∈M

(un
L − un

K)

(
vn

L,K

|K|

∫

K

g(x)dx−

∫

V n
L,K

g(X(tn+1, tn, x))dx

)
,

and

Tn
2 =

∑

L∈M

∑

K∈M

(un
L − un

K)
v̂n

L,K − vn
L,K

|K|

∫

K

g(x)dx.

We then have
|Tn

1 | ≤
∑

L∈M

∑

K∈M

|un
L − un

K |vn
L,K Lip(g)hM. (57)

We now turn to the study of Tn
2 . Since the term for L = K vanishes in the above expressions, we can

write

Tn
2 =

∑

L∈M

∑

K∈M

(un
L − un

K)
ν τ |σKL|

|K|

∫

K

g(x)dx.

We then get, gathering by pairs of control volumes,

Tn
2 =

∑

{K,L}

(un
L − un

K)ν τ |σKL|

(
1

|K|

∫

K

g(x)dx−
1

|L|

∫

L

g(x)dx

)
.

Since for all {K,L} such that |σKL| > 0, we have

∣∣∣∣
1

|K|

∫

K

g(x)dx−
1

|L|

∫

L

g(x)dx

∣∣∣∣ ≤ 2 Lip(g)hM,

we get

|Tn
2 | ≤ 2 Lip(g)hM

∑

{K,L}

|un
L − un

K | ν τ |σKL| = Lip(g)hM
∑

L∈M

∑

K∈M

ν τ |σKL||u
n
L − un

K |. (58)

Hence, from (57) and (58), we get

|Rn(g) − R̃n(g)| ≤ |Tn
1 | + |Tn

2 | ≤ Lip(g)hM
∑

L∈M

∑

K∈M

v̂n
L,K |un

L − un
K |. (59)

We now proceed as in the proof of Theorem 1: for a given t > 0, we consider nt ∈ N such that ntτ <
t ≤ (nt +1)τ , and we again define for a given f ∈ Lipc(R

N ) the functions fn : x 7→ f(X(tnt+1, tn+1, x)),

for n = 0, . . . , nt. We then define, for n = 0, . . . , nt, the terms Rn(fn) and R̃n(fn) by replacing, in (53),
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(54) and (55), the function g by the function fn, which is Lipschitz continuous with constant ξ Lip(f).
Then (53) yields

∫

RN

f(X(tnt+1, tn+1, x))u
n+1
M (x)dx−

∫

RN

f(X(tnt+1, tn, x))u
n
M(x)dx−Rn(fn) = 0.

We sum all these equations for n = 0, . . . , nt. Since (28) again holds, we obtain
∣∣∣∣
∫

RN

f(x)uM,τ (t, x)dx−

∫

RN

f(X(t, 0, x))dµ0(x)

∣∣∣∣ ≤M0ξ Lip(f)(hM + τ) + TM
3 + TM

4 ,

with, according to (59),

TM
3 =

nt∑

n=0

|Rn(fn) − R̃n(fn)| ≤ ξ Lip(f)hM

nt∑

n=0

∑

L∈M

∑

K∈M

v̂n
L,K |un

L − un
K |, (60)

and according to (56),

TM
4 =

nt∑

n=0

|R̃n(fn)| ≤ ξ Lip(f)hM

nt∑

n=0

∑

K∈M

|K|un
KΥn

K . (61)

The application of Lemma 4 with T ≥ t+ τ shows that

lim
hM→0

TM
3 = 0,

and the application of Lemma 5 with T ≥ t+ τ provides

lim
hM→0

TM
4 = 0.

This concludes the convergence proof.

It now remains to state and prove Lemmas 4 and 5, both of them being consequences of Lemma 3.
This is the aim of the following sections.

3.3 A sharp weak BV estimate

Lemma 3 (Renormalized energy dissipation bound). Under Hypotheses 1 and 2, let ρ > 0, λ ∈ (0, 1),
ν > 0 and α > 0 be given values. Let M be an admissible mesh of R

N in the sense of Definition 1, which
is ρ-regular in the sense of Definition 2, and let τ be given such that the CFL condition (46) and the
inverse CFL condition (51) hold. Let (un

K)K∈M,n∈N be given by (7)-(8) and (42)-(44), and let T > 0.
Then there exist C1 ≥ 0, only depending on N , α, ξ, ζT , p0, ρ, µ0 and T , such that, denoting nT the
largest n ∈ N such that nτ ≤ T ,

nT −1∑

n=0

Λn ≤ C1 , (62)

where
Λn =

∑

K∈M

∑

L∈M

v̂n
L,K d(un+1

K , un
L,

m+1
2 )2, (63)

defining m = 1/p0, and where, for any θ ∈ [0, 1], we define the “renormalized distance” d(x, y, θ) by

d(x, y, θ) =
|y − x|

max(|x|, |y|)θ
, ∀(x, y) ∈ R

2 \ {(0, 0)},

d(0, 0, θ) = 0.
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Proof. The scheme (44) may equivalently be written
(
|K| − wn

K

)
un+1

K +
∑

L∈M

v̂n
L,K(un+1

K − un
L) = 0, ∀n ∈ N, ∀K ∈ M. (64)

Let Ψ ∈ C2(R) be a given convex function such that Ψ(0) = 0. Let us multiply (64) by Ψ′(un+1
K ), for

n ∈ N and K ∈ M. We thus obtain
(
|K| − wn

K

)
un+1

K Ψ′(un+1
K ) +

∑

L∈M

v̂n
L,KΨ′(un+1

K )(un+1
K − un

L) = 0,

which provides, summing on K ∈ M (recall that the number of K ∈ M such that un
K 6= 0 is finite),

∑

K∈M

∑

L∈M

v̂n
L,KΨ′(un+1

K )(un+1
K − un

L) =
∑

K∈M

(
wn

K − |K|
)
un+1

K Ψ′(un+1
K ).

But since ∑

K∈M

∑

L∈M

v̂n
L,KΨ(un

L) =
∑

L∈M

|L|Ψ(un
L)

and ∑

K∈M

∑

L∈M

v̂n
L,KΨ(un+1

K ) =
∑

K∈M

Ψ(un+1
K )wn

K ,

we get ∑

K∈M

|K|Ψ(un+1
K ) −

∑

L∈M

|L|Ψ(un
L)

+
∑

K∈M

∑

L∈M

v̂n
L,K(Ψ(un

L) − Ψ(un+1
K ) + Ψ′(un+1

K )(un+1
K − un

L))

=
∑

K∈M

(
Ψ′(un+1

K )un+1
K − Ψ(un+1

K )
)
(wn

K − |K|).

This leads to
∑

K∈M

|K|(Ψ(un+1
K ) − Ψ(un

K))

+
1

2

∑

K∈M

∑

L∈M

v̂n
L,K min

s∈[min(un+1
K ,un

L),max(un+1
K ,un

L)]
Ψ′′(s) (un+1

K − un
L)2

≤
∑

K∈M

(
Ψ′(un+1

K )un+1
K − Ψ(un+1

K )
)
(wn

K − |K|).

According to Lemma 1, that ensures the non-negativity of un
K , we can consider functions Ψ only defined

on [0,∞). Hence we choose the function Ψ defined for given m ∈ [0, 1) and ε > 0, by

Ψ(s) =
ε1−m − (s+ ε)1−m

1 −m
, ∀s ≥ 0.

Then, for s ≥ 0, we have Ψ′(s) = −(s+ ε)−m and Ψ′′(s) = m/(s+ ε)m+1, and we obtain, using that Ψ′′

is non-increasing,

1

1 −m

∑

K∈M

|K|((un
K + ε)1−m − (un+1

K + ε)1−m)

+
m

2

∑

K∈M

∑

L∈M

v̂n
L,K

(un+1
K − un

L)2

(max(un+1
K , un

L) + ε)1+m

≤
∑

K∈M

(wn
K − |K|)

(
−(un+1

K + ε)−m un+1
K −

1

1 −m

(
ε1−m − (un+1

K + ε)1−m
))

.
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It is then possible to let ε→ 0, thus obtaining

1

1 −m

∑

K∈M

|K|(un
K)1−m +

m

2
Λn

≤
1

1 −m

∑

K∈M

|K|(un+1
K )1−m +

m

1 −m

∑

K∈M

(wn
K − |K|)(un+1

K )1−m.

Therefore, summing over n = 0, . . . , nT − 1 gives

m

2

nT −1∑

n=0

Λn ≤
1

1 −m

∑

K∈M

|K|(unT

K )1−m +
m

1 −m

nT −1∑

n=0

∑

K∈M

(wn
K − |K|)(un+1

K )1−m. (65)

Now, in order to estimate the right-hand side of (65), we write for all n = 0, . . . , nT − 1,

∑

K∈M

|wn
K − |K|| (un+1

K )1−m ≤

(
∑

K∈M

|K|

∣∣∣∣
wn

K − |K|

|K|

∣∣∣∣
1/m
)m( ∑

K∈M

|K| un+1
K

)1−m

=

(
∑

K∈M

1

|K|1/m−1
|wn

K − |K||1/m

)m

M0
1−m.

(66)

We can write, according to the change of variable formula given in Lemma 10 with f(x) = 1IK(x),

wn
K − |K| =

∫

{x,X(tn+1,tn,x)∈K}

(1 − J(tn+1, tn, x)) dx.

Thus

|wn
K − |K|| ≤ (wn

K)1−m

(∫

{x,X(tn+1,tn,x)∈K}

|J(tn+1, tn, x) − 1|1/mdx

)m

.

Therefore, using Lemma 1, we have

1

|K|1/m−1
|wn

K − |K||1/m ≤ β1/m−1

∫

{x,X(tn+1,tn,x)∈K}

|J(tn+1, tn, x) − 1|1/mdx.

This gives ∑

K∈M

1

|K|1/m−1
|wn

K − |K||1/m ≤ β1/m−1

∫

RN

|J(tn+1, tn, x) − 1|1/mdx.

Therefore we get from (66)
∑

K∈M

|wn
K − |K|| (un+1

K )1−m ≤ (βM0)
1−m‖J(tn+1, tn, x) − 1‖L1/m(RN ).

We now use the value of m = 1
p0

given in the statement of the lemma. Then, using Hypothesis 2,

nT −1∑

n=0

∑

K∈M

|wn
K − |K|| (un+1

K )1−1/p0 ≤ (βM0)
(1−1/p0)ζTT. (67)

Finally, we remark that, applying Lemma 2,
∑

K∈M

|K|(unT

K )1−1/p0 ≤
∑

K∈M,K⊂B̄(0,R)

|K|(unT

K )1−1/p0

≤




∑

K∈M,K⊂B̄(0,R)

|K|




1/p0



∑

K∈M,K⊂B̄(0,R)

|K|unT

K




1−1/p0

≤ |B̄(0, R)|1/p0M
1−1/p0

0 .
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Introducing Inequality (67) and the above inequality in (65) concludes the proof of the lemma.

Lemma 4 (Weak BV estimate). Under the hypotheses of Lemma 3, there exist C2 ≥ 0 and r > 0, only
depending on N , λ, ν, α, ξ, ζT , p0, ρ, µ0 and T such that

hM

nT −1∑

n=0

∑

K∈M

∑

L∈M

v̂n
L,K |un

K − un
L| ≤ C2 (hM)r. (68)

Proof. In this proof, we denote by Ci various non-negative values, only depending on N , λ, ν, α, ξ, ζT ,
p0, ρ, µ0 and T . Since

|un
K − un

L| = max(un
K , u

n
L)(m+1)/2d(un

K , u
n
L,

m+1
2 ),

we have
∑

K∈M

∑

L∈M

v̂n
L,K |un

K − un
L|

≤

(
∑

K∈M

∑

L∈M

v̂n
L,K max(un

K , u
n
L)m+1

)1/2( ∑

K∈M

∑

L∈M

v̂n
L,Kd(un

K , u
n
L,

m+1
2 )2

)1/2

.

(69)

Then, using Lemma 1,

∑

K∈M

∑

L∈M

v̂n
L,K max(un

K , u
n
L)m+1 ≤

∑

K∈M

∑

L∈M

v̂n
L,K((un

K)m+1 + (un
L)m+1)

=
∑

K∈M

wn
K(un

K)m+1 +
∑

L∈M

|L|(un
L)m+1

≤ (β + 1)
∑

K∈M

|K|(un
K)m+1.

(70)

According to Lemma 8, we can write, for a given n ∈ N,

∑

K∈M

∑

L∈M

v̂n
L,Kd(un

K , u
n
L,

m+1
2 )2 ≤ 2

∑

K∈M

∑

L∈M

v̂n
L,K

(
d(un

K , u
n+1
K , m+1

2 )2 + d(un+1
K , un

L,
m+1

2 )2
)
,

= 2
∑

K∈M

wn
K d(un+1

K , un
K ,

m+1
2 )2 + 2Λn.

(71)

Again using Lemma 1, we get

∑

K∈M

wn
K d(un+1

K , un
K ,

m+1
2 )2 ≤

β

λ

∑

K∈M

v̂n
K,K d(un+1

K , un
K ,

m+1
2 )2 ≤

β

λ
Λn.

Therefore, we obtain the existence of C3, only depending on λ, ρ and N , such that

∑

K∈M

∑

L∈M

v̂n
L,Kd(un

K , u
n
L,

m+1
2 )2 ≤ C3 Λn. (72)

Thus, gathering (69), (70) and (72), we get

∑

K∈M

∑

L∈M

v̂n
L,K |un

K − un
L| ≤

(
(β + 1)

∑

K∈M

|K|(un
K)m+1

)1/2

(C3 Λn)
1/2

. (73)

We let again m = 1/p0. Since p0 > N , it satisfies

0 < m < 1, m <
2

N
, m ≤

1

N − 1
, (74)
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and we may apply Lemma 6 with ûK = un
K , q = 2, p = 1+m = 1+1/p0 > 1. Indeed, in the case N > 2,

the last inequality of (74) yields the condition in Lemma 6 that p ≤ (1 −m)/(1 − 2
N ). We thus get

(
∑

K∈M

|K|(un
K)1+m

)1/(1+m)

≤ C4

(
∑

K∈M

|K|un
K

)1−θ ( ∑

K∈M

∑

L∈NK

|σKL|h
−1
M d

(
un

K , u
n
L,

m+1
2

)2
) θ

1−m

.

Since ν τ |σKL| ≤ v̂n
L,K for K 6= L, and d

(
un

K , u
n
L,

m+1
2

)
= 0 for K = L, we have

(
∑

K∈M

|K|(un
K)1+m

)1/(1+m)

≤ C4 M0
1−θ

(
∑

K∈M

∑

L∈NK

v̂n
L,K (hMντ)−1 d

(
un

K , u
n
L,

m+1
2

)2
) θ

1−m

.

Using (73) and (72), we obtain

∑

K∈M

∑

L∈M

v̂n
L,K |un

K − un
L| ≤ C5M0

1− 1−m
2−mN (Λn)

1/2

(
Λn

hMτ

) 1
2−mN − 1

2

.

Then, since m ≤ 1
N , we have 2 −mN ≥ 1. According to Hölder’s inequality, we can write

nT −1∑

n=0

∑

K∈M

∑

L∈M

v̂n
L,K |un

K − un
L| ≤ C6

(
T

τ

)1− 1
2−mN

(
nT −1∑

n=0

Λn

hM

) 1
2−mN

hM
1
2

(
1

τ

) 1
2−mN − 1

2

,

which gives, using the inverse CFL condition (51),

hM

nT −1∑

n=0

∑

K∈M

∑

L∈M

v̂n
L,K |un

K − un
L| ≤ C7

(
nT −1∑

n=0

Λn

) 1
2−mN

(hM)
1− 1

2−mN . (75)

According to the estimate (62) proved in Lemma 3, the above inequality provides the estimate (68) with
r = 1 − 1

2−N/p0
> 0.

Remark 5. In order to get (75), the inverse CFL condition (51) can be avoided if one makes some
suitable assumptions so that v̂n

L,K ≤ Cτ |σKL| for K 6= L, that allows to improve (70) by a factor τ/hM.

Lemma 5 (Estimate of the term due to compression effects). Under the hypotheses of Lemma 3, there
exists C8 ≥ 0 and r > 0, only depending on N , λ, ν, α, ξ, ζT , p0, ρ, µ0 and T such that

hM

nT −1∑

n=0

∑

K∈M

|K|un
KΥn

K ≤ C8 (hM)r, (76)

with

|K|Υn
K =

∫

{x,X(tn+1,tn,x)∈K}

|J(tn+1, tn, x) − 1|dx.

Proof. In this proof, we again denote by Ci various non-negative values, only depending on N , λ, ν, α,
ξ, ζT , p0, ρ, µ0 and T . Let p ≥ p0 be given (it will be chosen later), and let again m = 1/p0. Since J is
bounded by ξN and p ≥ p0, we can write

‖J(tn+1, tn, ·) − 1‖Lp(RN ) ≤ (ξN + 1)1−p0/p ‖J(tn+1, tn, ·) − 1‖
p0/p

Lp0 (RN )
. (77)

For any K ∈ M, we have

|K|p(Υn
K)p ≤ (wn

K)p−1

∫

{x,X(tn+1,tn,x)∈K}

|J(tn+1, tn, x) − 1|pdx.
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Thus, using (49),

|K|(Υn
K)p ≤ βp−1

∫

{x,X(tn+1,tn,x)∈K}

|J(tn+1, tn, x) − 1|pdx,

which enables to estimate

∑

K∈M

|K|un
KΥn

K ≤

(
∑

K∈M

|K|(Υn
K)p

)1/p( ∑

K∈M

|K|(un
K)

p
p−1

)1−1/p

≤ C9 ‖J(tn+1, tn, ·) − 1‖Lp(RN )

(
∑

K∈M

|K|(un
K)

p
p−1

)1−1/p

≤ C10 ‖J(tn+1, tn, .) − 1‖
p0/p

Lp0 (RN )

(
∑

K∈M

|K|(un
K)

p
p−1

)1−1/p

.

(78)

In the case N > 2, since p ≥ p0 > N , the real p′ such that 1/p+ 1/p′ = 1 satisfies p′ < 1 + 1/(N − 1) <
1 + 1/(N − 2). Hence for m = 1/p0,

p′ < 1 +
1

N − 2
<

(
1 −

1

p0

)
N

N − 2
= (1 −m)/(1 − 2/N).

Therefore, we can apply Lemma 6 with q = 2, m = 1/p0, p = p′, ûK = un
K , thus obtaining

(
∑

K∈M

|K|(un
K)

p
p−1

)1−1/p

≤ C14

(
∑

K∈M

|K|un
K

)1−θ ( ∑

K∈M

∑

L∈NK

|σKL|h
−1
M d

(
un

K , u
n
L,

m+1
2

)2
) θ

1−m

,

with

θ =
1 −m

p

1

2/N −m
. (79)

As in the proof of Lemma 4 and (72), it gives

(
∑

K∈M

|K|(un
K)

p
p−1

)1−1/p

≤ C11M0
1−θ

(
Λn

hMτ

) θ
1−m

,

which yields
∑

K∈M

|K|un
KΥn

K ≤ C12 ‖J(tn+1, tn, ·) − 1‖
p0/p

Lp0 (RN )

(
Λn

hMτ

) θ
1−m

.

Recalling (79), we now set the value of p ≥ p0 by

θ

1 −m
+
p0

p
= 1,

which provides

p = p0 +
1

2/N −m
=

p0

1 −N/2p0
and

θ

1 −m
=

N

2p0
.

We then get

hM

nT −1∑

n=0

∑

K∈M

|K|un
KΥn

K

≤ C12 hM

(
nT −1∑

n=0

‖J(tn+1, tn, ·) − 1‖Lp0 (RN )

)p0/p(nT −1∑

n=0

Λn

hMτ

) θ
1−m

≤ C13 hM

(
nT −1∑

n=0

Λn

hMτ

)N/2p0

,

(80)
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which gives, according to the inverse CFL condition (51),

hM

nT −1∑

n=0

∑

K∈M

|K|un
KΥn

K ≤ C13

(
α

nT −1∑

n=0

Λn

)N/2p0

hM
1−N/p0 .

Using the bound (62) proved in Lemma 3, the above inequality provides (76) with r = 1 −N/p0 > 0.

4 Technical results

In this section we gather several technical lemmas.

Lemma 6 (Improved discrete Gagliardo-Nirenberg-Sobolev inequality). Let N ∈ N
⋆, q ∈ [1,∞), m a

real number such that m < 1, m < q/N be given. Let p ∈ [1,∞) and assume in the case when q < N that
p ≤ (1 −m)/(1 − q/N). Let θ be such that

1

p
= 1 − θ + θ

1 − q/N

1 −m
, or equivalently θ = (1 −m)

1 − 1/p

q/N −m
, (81)

which within our assumptions implies θ ∈ [0, 1].
Let ρ > 0 be given and let M be an admissible mesh of R

N in the sense of Definition 1, which is
ρ-regular in the sense of Definition 2. Let (ûK)K∈M be a family of real numbers such that the number of
K ∈ M such that ûK 6= 0 is finite. Then one has

(
∑

K∈M

|K||ûK |p

)1/p

≤ C14

(
∑

K∈M

|K||ûK |

)1−θ ( ∑

K∈M

∑

L∈NK

|σKL|h
1−q
M d

(
ûK , ûL,

m+q−1
q

)q
) θ

1−m

,

(82)
where C14 only depends on N , q, m, p, and on ρ.

Remark 6. At the continuous level, the improved Gagliardo-Nirenberg-Sobolev inequality writes as fol-
lows, under the same assumptions on the exponents,

‖u‖Lp(RN ) ≤ C15 ‖u‖1−θ
L1(RN )

(∫

RN

|∇u|q

|u|m+q−1
dx

) θ
1−m

, for all u ∈ C1
c (RN ),

where C15 depends only on N , q, m, p (the proof is omitted).

Proof of Lemma 6. In this proof, we denote by Ci various non-negative constants which only depend on
N , q, m, p and on ρ. Let γ > 0, that will be chosen later on. We define the function v̂(x) for x ∈ R

N

by v̂(x) = v̂K for almost every x ∈ K, all K ∈ M, where v̂K = |ûK |γ for all K ∈ M. According to the
Sobolev inequality, we have

‖v̂‖LN/(N−1)(RN ) ≤ CN |v̂|BV (RN ) (83)

(which is also true for N = 1), where

|v̂|BV (RN ) = sup

{∣∣∣∣
∫

RN

v̂(x) divϕ(x) dx

∣∣∣∣ , ϕ ∈ C1
c (RN ), ‖ϕ‖∞ ≤ 1

}
.

In the particular case of the piecewise constant function v̂, we have

|v̂|BV (RN ) =
1

2

∑

K∈M

∑

L∈NK

|σKL| |v̂K − v̂L|, (84)
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the factor 1/2 resulting from the fact that each interface appears twice in the double sum. According to
Lemma 7, one has

∣∣|ûK |γ − |ûL|
γ
∣∣ ≤ max(1, γ) max(|ûK |, |ûL|)

γ−1|ûK − ûL|, thus

|v̂|BV (RN ) ≤
max(1, γ)

2

∑

K∈M

∑

L∈NK

|σKL| max(|ûK |, |ûL|)
γ−(1−m)/qd

(
ûK , ûL,

m+q−1
q

)
. (85)

Let us first consider the case q = 1. We then take γ = 1 −m, and (85), together with (83), gives

‖|û|1−m‖LN/(N−1)(RN ) ≤
CN

2
max(1, γ)

(
∑

K∈M

∑

L∈NK

|σKL|d(ûK , ûL,m)

)
. (86)

If N = 1, it yields the existence of C16 such that

sup
K∈M

|ûK | ≤ C16

(
∑

K∈M

∑

L∈NK

|σKL|d(ûK , ûL,m)

)1/(1−m)

,

which means that (82) holds for p = ∞ (and θ = 1). Since 1/p = (1 − θ)/1 + θ/∞, one has

‖û‖Lp(RN ) ≤ ‖û‖L1(RN )
1−θ‖û‖L∞(RN )

θ
,

which implies that (82) holds for all 1 ≤ p ≤ ∞.
Next, if N > 1 (still with q = 1), (86) means that (82) holds for p = (1 −m)N/(N − 1) (and θ = 1).

Since 1/p = (1 − θ)/1 + θ/((1 −m)N/(N − 1)), one has

‖û‖Lp(RN ) ≤ ‖û‖L1(RN )
1−θ‖û‖L(1−m)N/(N−1)(RN )

θ
,

which implies that (82) holds for all 1 ≤ p ≤ (1 −m)N/(N − 1), proving the result.
From now on, we assume that q > 1. Then, from (85) we get

|v̂|BV (RN ) ≤
max(1, γ)

2

(
∑

K∈M

∑

L∈NK

|σKL|
(
max(|ûK |, |ûL|)

γ−(1−m)/q
)q/(q−1)

)1−1/q

×

(
∑

K∈M

∑

L∈NK

|σKL|d
(
ûK , ûL,

m+q−1
q

)q
)1/q

.

(87)

We write ∑

K∈M

∑

L∈NK

|σKL|
(
max(|ûK |, |ûL|)

γ−(1−m)/q
)q/(q−1)

≤
∑

K∈M

∑

L∈NK

|σKL|
(
|ûK |(γ−(1−m)/q)q/(q−1) + |ûL|

(γ−(1−m)/q)q/(q−1)
)

= 2
∑

K∈M

∑

L∈NK

|σKL| |ûK |(γ−(1−m)/q)q/(q−1)

≤ 2
ρ

hM

∑

K∈M

|K||ûK |(γ−(1−m)/q)q/(q−1),

(88)

where we used (39). Therefore, (87), together with (83), (88), yield

‖|û|γ‖LN/(N−1)(RN ) ≤ CN max(1, γ)

(
∑

K∈M

|K||ûK |(γ−(1−m)/q)q/(q−1)

)1−1/q

×

((
ρ

hM

)q−1 ∑

K∈M

∑

L∈NK

|σKL|d
(
ûK , ûL,

m+q−1
q

)q
)1/q

.

(89)

21



Let us first consider the case q < N (that implies N > 1). Then we choose γ > 0 by the relation (all the
factors are positive)

γ

(
q

q − 1
−

N

N − 1

)
=

1 −m

q − 1
.

This choice gives (
γ −

1 −m

q

)
q

q − 1
= γ

N

N − 1
=

1 −m

1 − q/N
,

and (89) becomes

(
∑

K∈M

|K||ûK |γN/(N−1)

)1−1/N

≤ CN max(1, γ)

(
∑

K∈M

|K||ûK |(1−m)/(1−q/N)

)1−1/q

×

((
ρ

hM

)q−1 ∑

K∈M

∑

L∈NK

|σKL|d
(
ûK , ûL,

m+q−1
q

)q
)1/q

,

(90)

that is

(
∑

K∈M

|K||ûK |(1−m)/(1−q/N)

)(1−q/N)/(1−m)

≤ (CN max(1, γ))q/(1−m)

((
ρ

hM

)q−1 ∑

K∈M

∑

L∈NK

|σKL|d
(
ûK , ûL,

m+q−1
q

)q
)1/(1−m)

.

This inequality means that (82) holds for p = (1 −m)/(1 − q/N) (and θ = 1). Since 1/p = (1 − θ)/1 +
θ/[(1 −m)/(1 − q/N)], one has

‖û‖Lp(RN ) ≤ ‖û‖L1(RN )
1−θ‖û‖L(1−m)/(1−q/N)(RN )

θ
,

that enables to conclude that (82) holds for all 1 ≤ p ≤ (1 −m)/(1 − q/N), proving the result.
Consider now the case q ≥ N , still with q > 1. Then for all γ > 0

(
γ −

1 −m

q

)
q

q − 1
< γ

N

N − 1
. (91)

We consider coefficients γ > 0 satisfying

r ≡

(
γ −

1 −m

q

)
q

q − 1
≥ 1. (92)

Assume first that N = 1. Then one has

(
∑

K∈M

|K||ûK |r

)1/r

≤

(
∑

K∈M

|K||ûK |

)1/r (
sup

K∈M
|ûK |

)1−1/r

,

which yields in (89)

(
sup

K∈M
|ûK |

)γ−r(1−1/q)(1−1/r)

≤ CN max(1, γ)

(
∑

K∈M

|K||ûK |

)1−1/q

×

((
ρ

hM

)q−1 ∑

K∈M

∑

L∈NK

|σKL|d
(
ûK , ûL,

m+q−1
q

)q
)1/q

.
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Since γ − r(1 − 1/q)(1 − 1/r) = 1 −m/q, one gets

sup
K∈M

|ûK | ≤ (CN max(1, γ))q/(q−m)

(
∑

K∈M

|K||ûK |

)(q−1)/(q−m)

×

((
ρ

hM

)q−1 ∑

K∈M

∑

L∈NK

|σKL|d
(
ûK , ûL,

m+q−1
q

)q
)1/(q−m)

.

and one can verify, for p = ∞, that 1− θ = (q − 1)/(q −m) and θ/(1−m) = 1/(q −m) so that it means
that (82) holds for p = ∞ (take any γ satisfying (92)). Since 1/p = (1/p)/1 + (1 − 1/p)/∞, we have

‖û‖Lp(RN ) ≤ ‖û‖L1(RN )
1/p‖û‖L∞(RN )

1−1/p
,

thus we get

(
∑

K∈M

|K||ûK |p

)1/p

≤ (CN max(1, γ))(1−1/p)q/(q−m)

(
∑

K∈M

|K||ûK |

)1/p+(1−1/p)(q−1)/(q−m)

×

((
ρ

hM

)q−1 ∑

K∈M

∑

L∈NK

|σKL|d
(
ûK , ûL,

m+q−1
q

)q
)(1−1/p)/(q−m)

,

and one has
1

p
=

[
1

p
+

(
1 −

1

p

)
q − 1

q −m

]
+ (1 − q)

[(
1 −

1

p

)
1

q −m

]
,

hence we conclude again that (82) holds for all 1 ≤ p ≤ ∞.
Consider finally the case q ≥ N > 1. If p = 1, (82) is obvious. So we assume that γN/(N − 1) > 1

(we will let p = γN/(N − 1)). According to (91) and (92), one can write

1

r
= 1 − α+

α

γ

(
1 −

1

N

)
, for some α ∈ [0, 1],

that enables to write

(
∑

K∈M

|K||ûK |r

)1/r

≤

(
∑

K∈M

|K||ûK |

)1−α( ∑

K∈M

|K||ûK |γN/(N−1)

)α(1−1/N)/γ

.

Inserting this in (89) gives

(
∑

K∈M

|K||ûK |γN/(N−1)

)1−1/N−r(1−1/q)α(1−1/N)/γ

≤ CN max(1, γ)

(
∑

K∈M

|K||ûK |

)r(1−α)(1−1/q)

×

((
ρ

hM

)q−1 ∑

K∈M

∑

L∈NK

|σKL|d
(
ûK , ûL,

m+q−1
q

)q
)1/q

,
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thus (
∑

K∈M

|K||ûK |γN/(N−1)

)(1−1/N)/γ

≤ (CN max(1, γ))1/(γ−r(1−1/q)α)

(
∑

K∈M

|K||ûK |

)r(1−α)(1−1/q)/(γ−r(1−1/q)α)

×

((
ρ

hM

)q−1 ∑

K∈M

∑

L∈NK

|σKL|d
(
ûK , ûL,

m+q−1
q

)q
)1/q(γ−r(1−1/q)α)

.

Since α = (1 − 1/r)/(1 − (1 − 1/N)/γ) one has

(1 − 1/N)/γ =

[
r(1 − α)(1 − 1/q)

γ − r(1 − 1/q)α

]
+ (1 − q/N)

[
1

q(γ − r(1 − 1/q)α)

]
.

This means that (82) holds for p = γN/(N − 1). Since there is no upper limitation in γ from (92), we
can take arbitrarily large γ, and we conclude that (82) holds for all 1 ≤ p <∞.

Lemma 7. Let γ > 0 and a, b ≥ 0. Then we have

|aγ − bγ | ≤ max(1, γ) max(a, b)γ−1|a− b|,

where the product on the right-hand side is understood as 0 when a = b = 0, even if γ < 1.

Proof. We can assume that a > 0 and b > 0. In the case γ ≥ 1, obviously

|aγ − bγ | ≤ sup
x∈[a,b]

(γxγ−1)|a− b| = γmax(a, b)γ−1|a− b|.

Assume now that 0 < γ < 1. We can assume that a ≥ b, and we set x = a/b ≥ 1. Then we have to prove
that

xγ − 1 ≤ xγ−1(x− 1), for all x ≥ 1, (93)

or in other words xγ−1 ≤ 1 for all x ≥ 1, which is obvious since γ < 1.

Lemma 8 (Renormalized distance). Let 0 ≤ θ ≤ 1 be given, and define d(x, y, θ) by

d(x, y, θ) =
|y − x|

max(|x|, |y|)θ
, ∀(x, y) ∈ R

2 \ {(0, 0)},

d(0, 0, θ) = 0.
(94)

Then the triangle inequality holds:

d(x, y, θ) ≤ d(x, z, θ) + d(z, y, θ), ∀x, y, z ∈ R. (95)

In particular, d(., ., θ) is a distance on R for all θ ∈ [0, 1|.

Proof. Let x, y, z ∈ R be given. For symmetry reasons, we can assume that |x| ≤ |y|. Since the inequality
(95) holds for x = y = 0, let us assume that 0 < |y|.

In the case |z| ≤ |y|, we have

d(x, y, θ) =
|y − x|

|y|θ
≤

|y − z| + |x− z|

|y|θ
≤ d(x, z, θ) + d(z, y, θ),

since max(|x|, |z|) ≤ |y|.
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We now assume |z| ≥ |y|, and consider the function g(x), defined for all x ∈ [−|y|, |y|] by

g(x) = d(x, z, θ) + d(z, y, θ) − d(x, y, θ) =
|z − x| + |y − z|

|z|θ
−

|y − x|

|y|θ
.

Then g is linear over the interval [−|y|, |y|], since nor y nor z belong to its interior. Thus the minimum
of g on [−|y|, |y|] is reached on the boundary, i.e. x = y or x = −y. We have

g(y) = 2
|z − y|

|z|θ
≥ 0,

and since |z| ≥ |y|,

g(−y) =
|z + y| + |y − z|

|z|θ
− 2

|y|

|y|θ
= 2(|z|1−θ − |y|1−θ) ≥ 0.

Hence g(x) ≥ 0 for all x ∈ [−|y|, |y|].

In the proof of the two next lemmas, we use Brouwer’s topological degree in R
N . In order to make

these proofs clear, we first state a few basic properties of the topological degree, and we refer to [12] for
the general theory.

The topological degree d(φ,Ω, b) is defined for

• Ω non-empty bounded open set of R
N ,

• φ continuous from Ω to R
N ,

• b ∈ R
N\φ(∂Ω).

It satisfies the following properties.
(0) d(φ,Ω, b) ∈ Z,
(i) d is continuous with respect to φ for the topology of uniform convergence over Ω (and with (0) it
implies that the degree is invariant by homotopy),
(ii) for φ as above and additionally of class C1 in Ω, denoting by C(b) the connected component of b in
R

N\φ(∂Ω), we have
∫

Ω

f(φ(x)) detφ′(x) dx = d(φ,Ω, b)

∫

C(b)

f(y) dy, for all f ∈ Cc(C(b),R). (96)

(iii) For φ as above and additionally of class C1 in Ω, and if b is a regular value of φ, (i.e. ∀x ∈
φ−1(b), detφ′(x) 6= 0), then

d(φ,Ω, b) =
∑

x∈φ−1(b)

sgn detφ′(x). (97)

We remark that if φ is not C1 in property (ii), but only satisfies φ′ ∈ LN
loc(R

N ), then (96) still holds
by simple approximation argument (use (i)). Property (ii) can be found in [12], Remark 1.14 p.16.

Lemma 9 (Nonnegativity of the Jacobian determinant for flows). Let DT = {(s, t) ∈ R
2, 0 ≤ t ≤ s ≤ T},

and let X be a continuous map from DT × R
N to R

N (for an integer N ≥ 1), such that

X(s3, s2, X(s2, s1, x)) = X(s3, s1, x), for all 0 ≤ s1 ≤ s2 ≤ s3 ≤ T, x ∈ R
N , (98)

X(s, s, x) = x, for all s ∈ [0, T ], x ∈ R
N . (99)

Let x0 ∈ R
N and (s, t) ∈ DT be given such that X(s, t, ·) is differentiable at x0. Let DX(s, t, x0) denote

the differential of X(s, t, ·) at the point x0, and let J(s, t, x0) denote the determinant of DX(s, t, x0).
Then J(s, t, x0) is positive or equal to zero.
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Proof. If DX(s, t, x0) is non-invertible, then J(s, t, x0) = 0 and the conclusion holds. Let us now assume
that DX(s, t, x0) is invertible, i.e. that J(s, t, x0) 6= 0. Then there exists M > 0 such that

|DX(s, t, x0) z| ≥M |z| for all z ∈ R
N .

Since X(s, t, ·) is differentiable at x0, there exists r0 > 0 such that

|X(s, t, y) −X(s, t, x0) −DX(s, t, x0)(y − x0)| ≤
M

2
|y − x0| for all y ∈ B(x0, r0).

Let us consider, for any θ ∈ [0, 1], the map ψθ : R
N → R

N defined by

ψθ(y) = θX(s, t, y) + (1 − θ)
(
X(s, t, x0) +DX(s, t, x0)(y − x0)

)
, for y ∈ R

N .

We have

ψθ(y) − ψθ(x0) = DX(s, t, x0)(y − x0) + θ
(
X(s, t, y) −X(s, t, x0) −DX(s, t, x0)(y − x0)

)
,

which leads to

|ψθ(y) − ψθ(x0)| ≥M |y − x0| − θ
M

2
|y − x0| ≥

M

2
|y − x0|, for all y ∈ B(x0, r0).

Therefore, for all y ∈ ∂B(x0, r0), we have

|ψθ(y) − ψθ(x0)| ≥
M

2
|y − x0| =

M

2
r0 > 0.

This proves that
ψθ(x0) = X(s, t, x0) 6∈ ψθ(∂B(x0, r0)), ∀θ ∈ [0, 1]. (100)

Hence the value of Brouwer’s topological degree deg(ψθ, B(x0, r0), X(s, t, x0)) (see the comments above
on the topological degree) is defined and constant for θ ∈ [0, 1]. Since ψ0 is an invertible affine function,
we get that

deg(ψθ, B(x0, r0), X(s, t, x0)) = deg(ψ0, B(x0, r0), X(s, t, x0)) = sgn(J(s, t, x0)),

since X(s, t, x0) ∈ ψ0(B(x0, r0)). Setting θ = 1 in the previous equation, we obtain

deg(X(s, t, ·), B(x0, r0), X(s, t, x0)) = sgn(J(s, t, x0)). (101)

Now, for τ ∈ [t, s], one has according to (98),

X(s, τ,X(τ, t, y)) = X(s, t, y). (102)

Using (100) with θ = 1, we have that the map X(s, t, .) takes values over ∂B(x0, r0) that differ from its
value at x0. Thus, because of (102), the map X(τ, t, .) also satisfies this property. This proves that, for
all τ ∈ [t, s], X(τ, t, x0) 6∈ X(τ, t, ·)(∂B(x0, r0)).

Therefore, for all τ ∈ [t, s], deg(X(τ, t, ·), B(x0, r0), X(τ, t, x0)) is well defined, and constant according
to the continuity properties of X. Identifying the values for τ = s and τ = t yields

deg
(
X(s, t, ·), B(x0, r0), X(s, t, x0)

)
= deg

(
X(t, t, ·), B(x0, r0), X(t, t, x0)

)
= 1,

because of (99) that states that X(t, t, ·) is the identity operator, and since x0 ∈ B(x0, r0). This proves,
according to (101), that sgn(J(s, t, x0)) = 1, and concludes the proof.
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Lemma 10 (Change of variable formula). Let X : R
N → R

N (for an integer N ≥ 1) be a Lipschitz
continuous map. We assume that there exists A ≥ 0 such that

|X(x) − x| ≤ A, for all x ∈ R
N . (103)

Let J(x) denote, for a.e. x ∈ R
N , the determinant of the Jacobian matrix of X (recall that J ∈ L∞(RN )).

Then the following change of variable formula holds:

∫

RN

f(X(x))J(x) dx =

∫

RN

f(y) dy, (104)

for all test functions f : R
N → R measurable, bounded, with compact support.

Proof. Note that J does not necessarily have a fixed sign in (104). For 0 ≤ θ ≤ 1, let us define ψθ(x) =
(1 − θ)x+ θX(x) for all x ∈ R

N . Since by (103), |ψθ(x) − x| = θ|X(x) − x| ≤ A, we deduce that

|ψθ(x)| ≥ |x| −A, ∀x ∈ R
N . (105)

For any radius R > A, let B(0, R) be the open ball with center 0 and radius R. Let b ∈ R
N be given

such that
|b| < R−A. (106)

From (105) and (106), we get that b 6∈ ψθ(∂B(0, R)) for all 0 ≤ θ ≤ 1. Therefore the value of Brouwer’s
topological degree deg(ψθ, B(0, R), b) (see the comments above about the topological degree) is indepen-
dent of 0 ≤ θ ≤ 1. Since ψ0 is the identity mapping and b ∈ B(0, R), we have deg(ψ0, B(0, R), b) = 1,
which leads for θ = 1 that deg(X,B(0, R), b) = 1. We then apply the relation (96) to X (X is not C1

but see the comment after (iii)), which yields

∫

B(0,R)

f(X(x))J(x) dx =

∫

C(b)

f(y) dy, for all f ∈ Cc(C(b)), (107)

where C(b) denotes the greatest connected open subset in R
N\X(∂B(0, R)) containing b. It now suffices

to remark that C(b) ⊃ B(0, R−A), which implies that (107) holds for all f ∈ Cc(B(0, R−A)), i.e.

∫

RN

f(X(x))J(x) dx =

∫

RN

f(y) dy, for all f ∈ Cc(B(0, R−A)), (108)

where we replaced B(0, R) by R
N for the set of integration in the left-hand side because according to

(105), |X(x)| ≥ R − A for x /∈ B(0, R), which gives that f(X(x)) = 0 for x /∈ B(0, R). Now, since (108)
holds for all R > A, letting R→ ∞, we get that (104) holds for all f ∈ Cc(R

N ).
For extending the identity (104) to measurable test functions, we consider the local Radon measure

defined by

λ(E) =

∫

X−1(E)

J(x) dx

for any bounded Borel set E ⊂ R
N . Then one has

∫

RN

f(y) dλ(y) =

∫

RN

f(X(x))J(x) dx, for all bounded measurable f with compact support, (109)

which follows from uniform approximation of f by step functions with compact support. We have proved
above that

∫
f(y)dλ(y) =

∫
f(y)dy for all f ∈ Cc(R

N ), and this implies that λ and the Lebesgue measure
are identical. Thus, writing (109) with λ the Lebesgue measure yields (104) in the general case.
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5 Conclusion

In this paper, we have given sufficient conditions for the convergence of some finite volume schemes built
via characteristics to the measure solution of a convection equation, in the case of irregular flow. These
finite volume schemes are expressed, only using minimal hypotheses on the flow. It is worth noticing that
the simplest schemes that are commonly used in the case of regular vector fields with bounded divergence
and of bounded solutions, are no longer convergent in our context, without the surprising hypothesis that
the ratio of the space step to the time-step tends to zero.

The ideas, appeared in the past decade, that enable to prove the convergence of transport schemes
with additional numerical viscosity, using constant ratio of the space step to the time-step, can be used
in the context of measures, but under strong restrictions on the concentration properties of the flow.
Moreover, the convergence proofs involve the use of sharp weak BV-inequalities, leading to quite complex
calculations.

Nevertheless, the results of this paper enhance the toolbox for the study of finite volume schemes, in
cases of increasing importance in the probabilistic framework.
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