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S U M M A R Y
When considering numerical acoustic or elastic wave propagation in media containing small
heterogeneities with respect to the minimum wavelength of the wavefield, being able to upscale
physical properties (or homogenize them) is valuable mainly for two reasons. First, replacing
the original discontinuous and very heterogeneous medium by a smooth and more simple one,
is a judicious alternative to the necessary fine and difficult meshing of the original medium
required by many wave equation solvers. Second, it helps to understand what properties of a
medium are really ‘seen’ by the wavefield propagating through, which is an important aspect
in an inverse problem approach. This paper is an attempt of a pedagogical introduction to non-
periodic homogenization in 1-D, allowing to find the effective wave equation and effective
physical properties, of the elastodynamics equation in a highly heterogeneous medium. It
can be extrapolated from 1-D to a higher space dimensions. This development can be seen
as an extension of the classical two-scale homogenization theory applied to the elastic wave
equation in periodic media, with this limitation that it does not hold beyond order 1 in the
asymptotic expansion involved in the classical theory.

Key words: Computational seismology; Wave scattering and diffraction; Wave propagation.

1 I N T RO D U C T I O N

In seismology or in seismic exploration, inhomogeneities of scale
much smaller than the minimum wavelength are a challenge for both
the forward problem and the inverse problem. This introduction is
focused on the forward problem.

In recent years, advances in numerical methods have allowed
to model full seismic waveforms in complex media. Among these
advances in numerical modelling, the introduction of the Spec-
tral Element Method (SEM) (see, for example, Priolo et al. 1994;
Komatitsch & Vilotte 1998, for the first SEM applications to the
elastic wave equation and Chaljub et al. 2007 for a review) has
been particularly interesting. This method has the advantage to be
accurate for all kinds of waves and any type of media, as long as
a hexahedral mesh, on which the method most often relies, can be
designed for a partition of the space (note the SEM can be based on
tetrahedral meshes Komatitsch et al. 2001; Mercerat et al. 2006, but
at the price of lower efficiency). This method can be very efficient,
depending on the complexity of the mesh. Nevertheless, difficulties
arise when encountering some spatial patterns quite typical of the
Earth like 0th-order discontinuities in material properties.

Time signals in seismology, recorded at some receivers after the
Earth has been excited (e.g. by some quake), have a finite frequency
support [ f min, f max]. This finiteness can be due to the instrument
response at the receiver, to the limited frequency band of the source,
to the attenuation in the medium, or to the bandpass filtering ap-
plied to the data by a seismologist. For the wave equation, the

existence of a frequency cut-off f max of a wavefield propagating in
a medium implies the existence of a minimum wavelength for this
wavefield except in some special locations (close to a point source
for example). The knowledge of this maximum frequency—and of
the associated, minimum wavelength—allows to efficiently solve
the wave equation with numerical techniques like the SEM, in some
complex media, at a reasonable numerical cost. Indeed, when the
medium is smoothly heterogeneous and does not contain scales
smaller than the minimum wavelength of the wavefield, the mesh
design is mostly driven by the sampling of the wavefield and the
numerical cost is minimum. On the other hand, when the medium
contains heterogeneities at a small scale, the mesh design is driven
by the sampling of these heterogeneities, and this can lead to a very
high numerical cost. Another constraint on the mesh design is that
all physical discontinuities must be matched by an element interface.
If for technical reasons, a mesh honouring all physical interfaces
cannot be designed, the accuracy of the numerical solution is not
warranted and even worse, for special waves like interface waves,
the accuracy is difficult to be predicted. In realistic 3-D media, an
hexahedral mesh design is often impossible and requires simplifi-
cations in the model structure. Despite this trick, once the mesh is
designed, its complexity again involves a very small time step to
satisfy the stability condition of the explicit Newmark time scheme
used in most cases (Hughes 1987), leading to a very high numerical
cost. This time step problem can be avoided with unconditionally
stable time schemes (Seriani 1997, 1998), but at a price of a higher
complexity and numerical cost and such schemes are not widely
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used so far. Let us mention that other methods based on tetrahe-
dral meshes (whose design is much simpler than hexahedral ones
and can be automated) like the ADER scheme (Kaser & Dumbser
2006) or SEM based on tetrahedral meshes (Komatitsch et al. 2001;
Mercerat et al. 2006) exist, are promising, but so far less competitive
than the hexahedral version of SEM.

There is an alternative way to overcome these technical problems.
It is based on simple physical considerations, and intimately con-
nected to the reason why we are able to model seismic data quite
simply in some situations. Indeed it is known (see, for example,
Backus 1962; Chapman 2004, or the work on highly heterogeneous
media of Zhang & LeVeque 1997; Fogarty & LeVeque 1999) that
heterogeneities whose size is much smaller than the minimum wave-
length, only affect the wavefield in an effective way, and this is why
simple models can be very efficient to predict data in some cases. A
pertinent example is given in global seismology: very long period
data can be predicted with a good accuracy using a simple spheri-
cally symmetric model, despite the relatively well-known complex
structure in the crust at smaller scales. Being aware of this fact, and
rather than trying to mesh details much smaller than the minimum
wavelength of a wavefield, an appealing idea is to find a smooth,
effective model (and as we shall see, an effective wave equation)
that would lead to an accurate modelling of data, without resorting
to a very fine partition of the space. The issue is then the following:
given a known acoustic or elastic model, containing heterogeneities
at scales much smaller that the minimum wavelength of a wavefield
propagating through, may one find a smooth effective model and an
effective wave equation, that reproduce the full waveform observed
in the original medium? In other words, how may one upscale the
original medium to the scale of the wavefield?

In the static case, this kind of problem has been studied for a
long time and a large number of results have been obtained us-
ing the so-called homogenization theory applied to media showing
rapid and periodical variations of their physical properties. Since
the pioneering work of Auriault & Sanchez-Palencia (1977), nu-
merous studies have been devoted either to the mathematical foun-
dations of the homogenization theory in the static context (e.g.
Bensoussan et al. 1978; Murat & Tartar 1985; Allaire 1992), to
applications to the effective static behaviour of composite materials
(e.g. Dumontet 1986; Francfort & Murat 1986; Abdelmoula &
Marigo 2000; Haboussi et al. 2001a,b), to the application to the
heat diffusion (e.g. Marchenko & Khruslov 2005), to porous me-
dia (e.g. Hornung 1996), etc. In contrast, fewer studies have been
devoted to the theory and its applications in the general dynamical
context or to the non-periodic cases. However, one can for example
refer to Sanchez-Palencia (1980), Willis (1981), Auriault & Bonnet
(1985), Moskow & Vogelius (1997), Allaire & Conca (1998), Fish
et al. (2002), Fish & Chen (2004), Parnell & Abrahams (2006),
Milton & Willis (2007), Lurie (2009) or Allaire et al. (2009) for
the dynamical context, to Briane (1994), Nguetseng (2003) or to
Marchenko & Khruslov (2005) for the non-periodic case. Moczo
et al. (2002) have also used a kind of local homogenization to
take into account interfaces with the finite differences method. The
specific case of a long wave propagating in finely layered media
has been studied by Backus (1962) and the same results can be
extracted from the 0th-order term of the asymptotic expansion im-
plied in homogenization theory. Higher order homogenization in the
non-periodic case has been studied by Capdeville & Marigo (2007)
and Capdeville & Marigo (2008) for wave propagation in strati-
fied media, but the extension to media characterized by 3-D rapid
variation is not obvious from these works. Indeed, the non-periodic
homogenization strategy suggested in Capdeville & Marigo (2007)

is based on the knowledge of an explicit solution of the cell problem
(see main text for a definition of this concept), and such a solution
only exists for layered media. The challenge is therefore to present
a non-periodic homogenization that can be extended from the 1-D
to the 2-D/3-D case.

We first recall some general features of the homogenization the-
ory in the context of 1-D periodic media, in a slightly different
manner as done by Fish et al. (2002). Then, we generalize these re-
sults, to 1-D non-periodic media in a way that can be extended form
1-D to 2-D/3-D. Numerical convergence tests of the asymptotic,
homogenized solution towards the reference one, are performed.
Our aim is to present in this paper, a clear introduction for the 1-D
case, of the techniques and hypotheses that will be presented later
for 2-D and 3-D wave propagation problems.

2 1 - D P E R I O D I C C A S E

We consider an infinite elastic bar of density ρ0 and elastic mod-
ulus E0. In this first part, it is assumed that the bar properties are
�-periodic, that is ρ0(x + �) = ρ0(x) and E0(x + �) = E0(x).
The bar is considered as infinite in order to avoid the treatment
of any boundary condition that normally would be necessary in
the following development. The boundary condition problem as-
sociated with homogenization has nevertheless been addressed by
Capdeville & Marigo (2007) and Capdeville & Marigo (2008) for
layered media, and will be the purpose of future works for a more
general case. An external force f = f (x , t) is applied to the bar
inducing a displacement field u(x , t) propagating along the x axis.
We assume that f (x , t) has a corner frequency fc which allows us
to assume that a minimum wavelength λm to the wavefield u exists.
The main assumption of this section is

ε = �

λm
� 1 (1)

which means that the size of heterogeneities in the bar is much
smaller than the minimum wavelength of the propagating wavefield.

2.1 Set up of the homogenization problem

In this section, we give an intuitive construction of the homoge-
nization problem. For a more precise and formal set up, one can
for example refers to Sanchez-Palencia (1980). A classical homog-
enization problem is built over a sequence of problems obtained by
varying the periodicity �. For a fixed λm, one particular bar model of
periodicity � is associated to a unique ε and therefore, the sequence
of problems can be indexed by the sequence of ε. The original prob-
lem, which has a given periodicity, let say �0, corresponding to the
parameter ε0 = �0/λm, is met only if ε = ε0. To the sequence of
problems corresponds a sequence of elastic and density properties
named Eε and ρε (and we have Eε0 = E0 and ρε0 = ρ0). We
assume the external source does not depend on ε. Nevertheless, in
practice, the source if often represented as a point source which
can lead to some complications. This point will be discussed and
addressed at the end of this section. We assume here that f is smooth
both in space and time. For a given ε, the equation of motion and
constitutive relation in the bar are

ρε∂t t uε − ∂xσ
ε = f

σ ε = Eε∂x uε,
(2)

where uε = uε(x , t) is the displacement along x , σ ε = σ ε(x , t) is
the stress, ∂t t uε the second derivative of uε with respect to time and
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Figure 1. Sketch showing the infinite periodic bar and a zoom on one
periodic cell.

∂x the partial derivative with respect to x. We assume zero initial
conditions at t = 0 and radiation conditions at the infinity.

To explicitly take small-scale heterogeneities into account when
solving the wave equation, a fast space variable is introduced (see
Fig. 1)

y = x

ε
, (3)

where y is called the microscopic variable and x is the macroscopic
variable. When ε → 0, any change in y induces a very small change
in x. This leads to the separation of scales: y and x are treated
as independent variables. This implies that partial derivatives with
respect to x become

∂

∂x
→ ∂

∂x
+ 1

ε

∂

∂y
. (4)

The solution to the wave eqs (2) is sought as an asymptotic expansion
in ε

uε(x, t) =
∑
i≥0

εi ui (x, x/ε, t) =
∑
i≥0

εi ui (x, y, t) ,

σ ε(x, t) =
∑
i≥−1

εiσ i (x, x/ε, t) =
∑
i≥−1

εiσ i (x, y, t) ,

(5)

in which coefficients ui and σ i depend on both space variables
x and y and must be λm-periodic in y. This ansatz—the x and y
dependence of the solution—explicitly incorporates our intuition,
that the sought solution, depends on the wavefield at the large scale,
but also, locally, on the fast variations of elastic properties. Starting
the stress expansion at i = −1 is required by constitutive relation
between the stress and the displacement and the 1/ε in (4).

We introduce ρ and E

ρ(y) = ρε(εy) ,

E(y) = Eε(εy) ,
(6)

the unit cell elastic modulus and density. E and ρ are independent of
ε and are λm-periodic. Introducing expansions (5) in eqs (2), using
(4) and identifying term by term in εi we obtain:

ρ∂t t u
i − ∂xσ

i − ∂yσ
i+1 = f δi,0 , (7)

σ i = E
(
∂x ui + ∂yui+1

)
, (8)

where δi,0 takes for value 1 for i = 0 and 0 otherwise. These last
equations have to be solved for each i. Before going further, we
introduce the cell average, for any function h(x , y) λm-periodic in y

〈h〉(x) = 1

λm

∫ λm

0
h(x, y)dy . (9)

For any function h(x , y), λm-periodic in y, it can easily be shown
that

∂yh = 0 ⇔ h(x, y) = 〈h〉(x), (10)

and

〈∂yh〉 = 0. (11)

2.2 Resolution of the homogenization problem

In the following, the time dependence t is dropped to ease the
notations.

• Eqs (7) for i = −2 and (8) for i = −1 give

∂yσ
−1 = 0 ,

σ−1 = E∂yu0,
(12)

which implies

∂y

(
E∂yu0

) = 0. (13)

Multiplying the last equation by u0, integrating over the unit cell,
using an integration by part and taking account of the periodicity of
u0 and E∂y u0, we get∫ λm

0

(
∂yu0

)2
E dy = 0. (14)

E(y) being a positive function, the unique solution to the above
equation is ∂yu0 = 0. We therefore have

u0 = 〈u0〉 , (15)

σ−1 = 0. (16)

Eq. (15) implies that the order 0 solution in displacement is in-
dependent on the fast variable y. This is an important result that
confirms the well known fact that the displacement field is poorly
sensitive to scales much smaller than its own scale.

• Eqs (7) for i = −1 and (8) for i = 0 give

∂yσ
0 = 0, (17)

σ 0 = E
(
∂yu1 + ∂x u0

)
. (18)

Eq. (17) implies that σ 0(x, y) = 〈σ 0〉(x) and, with (18), that

∂y

(
E∂yu1

) = −∂y E ∂x u0 . (19)

Using the linearity of the last equation we can separate the variables
and look for a solution of the form

u1(x, y) = χ 1(y)∂x u0(x) + 〈u1〉(x), (20)

where χ 1(y) is called the first-order periodic corrector. To enforce
the uniqueness of the solution, we impose 〈χ 1〉 = 0. Introducing
(20) into (19), we obtain the equation of the so-called cell problem

∂y

[
E

(
1 + ∂yχ

1
)] = 0 , (21)

χ 1 being λm-periodic and verifying 〈χ 1〉 = 0. It is useful to note
that a general analytical solution to (21) exists and is

χ 1(y) = −y + a

∫ y

0

1

E(y′)
dy′ + b . (22)

The periodicity condition imposes

a =
〈

1

E

〉−1

, (23)

and b can be found using 〈χ 1〉 = 0. We therefore have

∂yχ
1(y) = −1 +

〈
1

E

〉−1 1

E(y)
. (24)
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Introducing (20) into (18), taking the cell average and using the fact
that we have shown that σ 0 does not depend upon y, we find the
order 0 constitutive relation,

σ 0 = E∗∂x u0 , (25)

where E∗ is the order 0 homogenized elastic coefficient,

E∗ = 〈
E

(
1 + ∂yχ

1
)〉

. (26)

Using (24) in the last equation we have

E∗ =
〈

1

E

〉−1

. (27)

• Eqs (7) for i = 0 and (8) for i = 1 give

ρ∂t t u
0 − ∂xσ

0 − ∂yσ
1 = f, (28)

σ 1 = E
(
∂yu2 + ∂x u1

)
. (29)

Applying the cell average on (28), using the property (11), the fact
that u0 and σ 0 do not depend on y and gathering the result with (25),
we find the order 0 wave equation

ρ∗∂t t u0 − ∂xσ
0 = f

σ 0 = E∗∂x u0 ,
(30)

where ρ∗ = 〈ρ〉 is the effective density and E∗ is defined by eq. (27).
This is the classical wave equation that can be solved using classical
techniques. Knowing that ρ∗ and E∗ are constant, solving the wave
equation for the order 0 homogenized medium is a much simpler
task than for the original medium and no numerical difficulty related
to the rapid variation of the properties of the bar arises. One of
the important results of homogenization theory is to show that uε

‘converges’ to u0 when ε tends towards 0 (the so-called convergence
theorem, see Sanchez-Palencia 1980).

Once u0 is found, the first-order correction, χ 1(x/ε) ∂xu0(x), can
be computed. To obtain the complete order 1 solution u1 using (20),
〈u1〉 remains to be found. Subtracting (30) from (28) we have,

∂yσ
1 = (ρ − 〈ρ〉)∂t t u

0 , (31)

which, together with (29) and (20) gives

∂y

(
E∂yu2

) = −∂y

(
E∂x u1

) + (ρ − 〈ρ〉)∂t t u
0 , (32)

= −∂y E ∂x 〈u1〉 − ∂y(Eχ1)∂xx u0 + (ρ − 〈ρ〉)∂t t u
0 . (33)

Using the linearity of the last equation we can separate the variables
and look for a solution of the form

u2(x,y) =χ 2(y)∂xx u0(x) +χ 1(y)∂x 〈u1〉(x) +χρ(y)∂t t u
0 +〈u2〉(x),

(34)

where χ 2 and χρ are solutions of

∂y

[
E

(
χ 1 + ∂yχ

2
)] = 0 , (35)

∂y

[
E∂yχ

ρ
] = ρ − 〈ρ〉 , (36)

with χ 2 and χρ λm-periodic and where we impose 〈χ 2〉 = 〈χρ〉 = 0
to ensure the uniqueness of the solutions. Introducing (34) into (29)
and taking the cell average, we find the order 1 constitutive relation

〈σ 1〉 = E∗∂x 〈u1〉 + E1∗∂xx u0 + Eρ∗∂t t u
0 (37)

with

E1∗ = 〈
E

(
χ 1 + ∂yχ

2
)〉

(38)

Eρ∗ = 〈
E∂yχ

ρ
〉
. (39)

The periodicity condition on χ 2 imposes ∂yχ
2 = −χ 1 and therefore

E1∗ = 0.
Finally using (20) and taking the average of eqs (7) for i = 1

gives the order 1 wave equation

〈ρ〉∂t t 〈u1〉 + 〈ρχ 1〉∂x∂t t u0 − ∂x 〈σ 1〉 = 0

〈σ 1〉 = E∗∂x 〈u1〉 + Eρ∗∂t t u0 . (40)

It is shown in the Appendix that Eρ∗ = 〈ρχ 1〉 and therefore, renam-
ing 〈σ̃ 1〉 = 〈σ 1〉 − Eρ∗∂t t u0, the last equations can be simplified
to

〈ρ〉∂t t 〈u1〉 − ∂x 〈σ̃ 1〉 = 0

〈σ̃ 1〉 = E∗∂x 〈u1〉 . (41)

We stop here our resolution but we could go up to a higher order
(see Fish et al. 2002, for a 1-D periodic case up to the order 2).

2.3 Combining all orders together

Our aim is to solve for the homogenized wave equation using nu-
merical methods like the Spectral Element Method (SEM). For such
a method it is convenient to combine all the orders together rather
than solving each order one after another. For that purpose, we solve
for 〈ûε,1〉 solution of

〈ρ〉∂t t 〈ûε,1〉 − ∂x 〈σ̂ ε,1〉 = f (42)

〈σ̂ ε,1〉 = E∗∂x 〈ûε,1〉 . (43)

One can check that

〈ûε,1〉 = u0 + ε〈u1〉 + O(ε2) , (44)

〈σ̂ ε,1〉 = σ 0 + ε〈σ̃ 1〉 + O(ε2) . (45)

Furthermore, if we name

ûε,1 =
[
1 + εχ1

( x

ε

)
∂x

]
〈ûε,1〉 (46)

we can show that

ûε,1 = uε + O(ε2) . (47)

Higher order terms in the asymptotic expansion can be added, as it
will be shown below for the partial order 2.

2.4 External point sources

In practice, the external source is often localized to an area much
smaller than the smallest wavelength λm allowing to consider it
ideally as a point source: f (x , t) = g(t)δ(x − x0). Two potential
issues then arise:

(i) In the vicinity of x0, there is no such a thing as a minimum
wavelength. The asymptotic development presented here is there-
fore only valid far away enough from x0.

(ii) A point source has a local interaction with the microscopic
structure that needs to be accounted for.

The first point is not really a problem because, for most realistic
cases, the point source assumption is not valid in the near field
anyway. One should nevertheless keep in mind that very close to
x0, which means closer than λm, the solution is not accurate but
not less than any standard numerical methods used to solve the
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Figure 2. Sample (5 cm) of the bar density (grey line, in 103 kg m−3) and
velocity (black line, in km s−1) for l0=6 mm.

wave equation. The second point is more important and can be
addressed the following way: the hypothetical point source is just
a macroscopic representation of a more complex physical process,
and what is relevant is to ensure the conservation of the energy
released at the source. Therefore we need to find an effective source
f̂ ε,1 that preserves the energy associated to the original force f up
to the wanted order (here 1). We therefore need

(uε, f ) = (〈ûε,1〉, f̂ ε,1) + O(ε2) , (48)

where (. , .) is the L2 inner product, and, for any function g and h is

(g, h) =
∫

R

g(x)h(x)dx . (49)

Using (47), (46) and an integration by part, we find

f̂ ε,1(x, t) =
[
1 − εχ 1

( x

ε

)
∂x

]
f (x, t) . (50)

f̂ ε,1 needs to be used in (42) instead of f .

2.5 A numerical experiment for a periodic case

A numerical experiment in a bar of periodic properties shown in
Fig. 2 is performed. The periodicity of the structure is l0 = 6 mm.

First, the cell problems (21), (35) and (36) with periodic boundary
conditions are solved with a finite element method based on the same
mesh and quadrature than the one that will be used to solve the wave
equation. This is not necessary, but for this simple 1-D case, it is
a convenient solution. This allows to compute E∗, the correctors
χ 1, χ 2 and χρ as well as the external source term f̂ ε,1. Then, the
homogenized wave equation,

〈ρ0〉∂t t u − ∂x (E∗∂x u) = f , (51)

where u = 〈ûε,1〉 and f = f̂ ε,1, is solved using the SEM (see
Capdeville 2000, for a complete description of the 1-D SEM).

A point source is located at x = 2 m. The time wavelet g(t)
is a Ricker with a central frequency of 50 kHz (which gives
a corner frequency of about 125 kHz) and a central time shift
t0 = 6.4 × 10−5 s. In the far field, this wavelet gives a minimum
wavelength of about 4 cm; that corresponds to a wave propagation
with ε = 0.15. In practice the bar is of course not infinite, but its
length (5 m) and the time (4.9 × 10−4 s) at which is recorded the
displacement is such that the wave pulse does not reach the extrem-
ity of the bar. To be accurate, the reference solution is computed
with a SEM mesh matching all interfaces with an element boundary
(7440 elements for the 5 m bar). To make sure that only the effect of
homogenization is seen in the simulations, the mesh and time step
used to compute the reference solution are also used to compute the

homogenized solutions. Once the simulation is done, for a given
time step corresponding to t = 4.9 × 10−4 s, the complete order
1 solution can be computed with (46). We can also compute the
incomplete homogenized solution at the order 2

ûε,3/2 =
[
1 + εχ1

( x

ε

)
∂x + ε2χ 2

( x

ε

)
∂xx + ε2χρ

( x

ε

)
∂t t

]

×〈ûε,1〉 , (52)

where ûε,3/2 is an incomplete order 2 solution and the ‘3/2’ is just a
notation to indicate that it is the order 1 plus second order correction
(‘1/2 order 2’). It is incomplete because 〈u2〉 has not been computed
and is missing in (52) to obtain ûε,2. In other words, ûε,3/2 only
contains the order 2 periodic correction beyond the order 1 solution.

In Fig. 3 are shown the results of the simulation. On the upper
left plot (Fig. 3a) are shown the reference solution (bold grey line),
the order 0 solution (black line) and a solution obtained in the
bar with a E∗ = 〈E0〉 (‘E average’, dashed line) for t = 4.9 ×
10−4 s as a function of x. As expected, the ‘E average’ solution
is not in phase with the reference solution and shows that this
‘natural’ filtering is not accurate. On the other hand, the order 0
homogenized solution is already in excellent agreement with the
reference solution. On Fig. 3(b) is shown the residual between the
order 0 homogenized solution and the reference solution û0(x, t) −
uε(x, t). The error amplitude reaches 2 per cent and contains fast
variations. On Fig. 3(c) is shown the order 1 residual û1(x, t) −
uε(x, t) (bold grey line) and the partial order 2 residual ûε,3/2(x, t)−
uε(x, t) (see eq. 52). It can be seen, comparing Figs 3(b) and (c),
that the order 1 periodic corrector removes most of the fast variation
present in the order 0 residual. The remaining fast variation residual
disappears with the partial order 2 residual. The smooth remaining
residual is due to the 〈u2〉 that is not computed. In order to check that
this smooth remaining residual is indeed an ε2 residual, this residual
computed for ε = 0.15 is overlapped with a residual computed for
ε = 0.075 (which corresponds to l0 = 3 mm) to which is applied
a factor 4 in amplitude. The fact that these two signals overlap is
consistent with a ε2 residual.

3 N O N - P E R I O D I C C A S E

We now give up the hypothesis of periodicity of E0 and ρ0 and con-
sider more complex spectra for the size of the heterogeneities. As a
specific case, in the following, the bar properties in each cell are now
generated randomly around a constant mean value. Homogeniza-
tion of random structures as studied by Papanicolaou & Varadhan
(1979) is not our purpose and the problem is considered as deter-
ministic: the bar properties are completely known and unique for
each bar under study. An example of such bar is given in Fig. 4. We
still assume a minimum wavelength λm (or a maximum wavenum-
ber km = 1/λm) for the wavefield u, far enough from the source. It
is still reasonable to expect, to some sense, that heterogeneities in
the bar, whose size is much smaller than λm have a little influence
on the wavefield u and that an homogenization procedure can be
performed.

3.1 Preliminary: an intuitive solution

The first idea one can have is to consider the whole non-periodic
bar as a single periodic cell and apply results obtained in the pre-
vious section. The obtained effective medium has a constant den-
sity (ρ∗ = limT →∞ 1

2T

∫ T
−T ρ0(x)dx) and elastic modulus ( 1

E∗ =
limT →∞ 1

2T

∫ T
−T

1
E0 (x)dx) as shown in Fig. 4 in dashed line. Fig. 5,
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Figure 3. (a) Grey line: displacement uε(x , t) at t = 4.9 × 10−3 s computed in the reference model described Fig. 2. Black line: the order 0 homogenized
solution û0(x, t). Dashed line: solution computed in a model obtained by averaging the elastic properties (〈ρ0〉 and 〈E0〉). (b) Order 0 residual, û0(x, t)−uε(x, t).
(c) Grey line: order 1 residual, ûε,1(x, t) − uε(x, t). Black line: partial order 2 residual, ûε,3/2 − uε(x, t) (see eq. 52) (d) Grey line: partial order 2 residual for
ε = 0.15. Black line: partial order 2 residual for ε = 0.075 with amplitude multiplied by 4.

0 0.05 0.1
x (m)

8

10

k
m

/s

Figure 4. Black line: 10cm sample of the velocity c =
√

E0/ρ0 in a non-
periodic bar. Dashed line: ‘periodic’ homogenized velocity if the whole
bar is considered has a single periodic cell (c =

√
〈E0〉/〈ρ0〉). Grey line:

velocity obtained with the spatial filtering (c =
√
F k0 (E0)/F k0 (ρ0)).

left-hand plot, shows a result obtained in such a medium com-
pared to a reference solution computed in the original bar. The
direct arrival is acceptable, but the coda wave corresponding to
waves trapped in the heterogeneous medium can not be captured
with this simple constant homogenized medium. The waving-hand
explanation to that problem is that the wavefield interacts with het-
erogeneities of the medium whose wavenumbers are as high as
k0 where k0 = 1/λ0 is a wavenumber somewhat larger than the
maximum wavenumber of the wavefield, km. To be accurate, the ef-
fective medium should keep information up to k0. Without getting

into details, and given km, we can indeed distinguish three different
propagation regimes (see Aki & Richards 1980), as follows.

• Heterogeneities for which k0 � km (scale of the heterogeneities
much smaller than the wavelength), where the highly heterogeneous
medium can be considered as a homogeneous body with effective
elastic properties; this will be the domain of application of the
homogenization.

• Heterogeneities for which k0 � km (scale of the heterogeneities
much larger than the wavelength); the medium then can be consid-
ered as a smoothly-varying body.

• Heterogeneities for which k0 ≈ km. The inhomogeneity scale
is comparable to wavelength; this is the domain where coda waves
do exist.

The difficulty we are facing, is then to separate these scales correctly
in order to homogenize both elastic properties and the wave equa-
tion. Remember that this is not so obvious: in the periodic case, the
physical quantity to be manipulated, was {not} the elastic constant
— but its inverse.

To be able to separate wavenumber above k0 from that one be-
low k0, we introduce a mother filter wavelet w(x) (see Fig. 6). w

is normalized such that
∫

R
w(x)dx = 1. When convolved with any

function, w acts as a low-pass spatial filter of corner spatial fre-
quency 1. We define wk0 (x) = k0 w(xk0) the same but contracted
(if k0 > 1) wavelet of corner spatial frequency k0. We still have∫

R
wk0 (x)dx = 1. This allows to define a ‘filtering operator’, for

any function h(x)

F k0 (h) (x) =
∫

R

h(x ′)wk0 (x − x ′)dx ′ . (53)

F k0 (h) (x) is a smooth version of h where all wavenumbers larger
than k0 have been muted to zero. If we apply this filter to 1/E0 and
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Figure 5. Examples of seismogram computed in bar models presented on Fig. 4. The distance between the source and the receiver is 1 m. The minimum
wavelength is 10 cm. Left-hand plot: grey line: reference solution computed in the original bar model; black line: solution obtained in the ‘periodic’ homogenized
model (ρ∗ = 〈ρ0〉, 1/E∗ = 〈1/E0〉 represented in dashed line Fig. 4). Right-hand plot: grey line: reference solution computed in the original bar model; black
line solution obtained by using 1/E∗(x) = F k0 (1/E0) and ρ∗(x) = F k0 (ρ0) as an effective medium (represented in grey line Fig. 4).

-2 0 2
x (m)

0 1
k (1/m)

0

1

Figure 6. Example of mother filter wavelet w(x) used in practice. On one hand, the cut-off spatial frequency is around 1 but is not sharp and on the other hand,
the spatial support can be considered as finite with a good approximation.

ρ0 and use

E∗(x) =
[
F k0

(
1

E0

)]−1

(x) (54)

and ρ∗(x) = F k0 (ρ0)(x) we obtain the smooth medium (Fig. 4,
grey line) and the seismogram obtained in such a medium includes
the coda waves (Fig. 5, right-hand plot). This intuitive construction
of the effective medium seems convenient, but we now need to
obtain this result more formally. To do so, one need to construct
the sequence of models (Eε , ρε) and fast parameters [E(y), ρ(y)]
from (E0, ρ0) which is not as straightforward as for the periodic
case. Nevertheless, both are necessary to build the homogenization
asymptotic expansion. The idea here is to define and keep all the
bar properties with wavelength greater than λ0 and to homogenize
all wavelength λ smaller than λ0 using a spatial filtering similar to
(53).

3.2 Set up of the homogenization problem for
the non-periodic case

We first introduce the small parameter

ε = λ

λm
, (55)

where λ is a spatial length or a scale. For the periodic case, λ

would be �0, the periodicity of the model. Because we are not in the
periodic case, another parameter is required

ε0 = λ0

λm
, (56)

where λ0 is the user defined scale below which scales are considered
as small scale (microscopic) and above which scales are considered
as large scale (macroscopic). While ε is a formal parameter that
could be used to show a convergence theorem, ε0 is a parameter
that indicates the degree of smoothness of the homogenized model
and accuracy of the homogenized solution (a small ε0 corresponds
to a homogenized model with a lot of details and a precise solu-
tion; a large ε0 corresponds to a smooth homogenized model and
an imprecise solution). With that respect, the non-periodic case is
different from the periodic case. Indeed, for the periodic case no
parameter choice is left to the user, and the accuracy if fixed by the
frequency cut-off of the source and the geometry of the elastic struc-
ture. For the non-periodic case, we shall see that the introduction
of the second small parameters ε0 allows to specify the accuracy of
the solution independently from the geometry of the elastic model.
In the following we assume ε ≤ ε0 � 1. As for the periodic case,
we work at λm fixed. Therefore, a given spatial wavelength λ or
wavenumber k = 1/λ fully defines ε = λ/λm = 1/(kλm). We de-
fine wm(y) = km w(ykm). We assume that wm support in the space
domain is contained in [−α/km, + α/km] and α is a positive num-
ber that depends upon the specific design of w (as wm has a finite
support in the frequency domain, it can not have one in the space
domain and α → ∞. Nevertheless, in practice, we assume that w

is designed in such a way that the support of wm can be considered
as finite is a good approximation and that a reasonably small α can
be found).

Let Yx = [x/ε0 − β/km, x/ε0 + β/km] be a segment of R where
β is a positive number (much) larger than α. Yx is the sampling area
around x. We define T = {h(x, y) : R

2 → R , 2βλm-periodic iny}
the set of functions defined in y on Y 0 and extended to R by
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periodicity. We define the filtering operator, for any function h ∈ T

F (h) (x, y) =
∫

R

h(x, y′)wm(y − y′)dy′ . (57)

F is a linear operator. For a perfectly sharp cut-off low-pass filter
in the wavenumber domain, we have, for any h

F [F (h)] = F (h) . (58)

The last property is not exactly true in practice because, in order to
have a compact support for wm, we do not use a sharp cut-off in the
wavenumber domain. We nevertheless assume that (58) is true.

Finally let V , be the set of functions h(x , y) such that, for a given
x, the y part of h is periodic and contains only spatial frequencies
higher than km, plus a constant value in y

V = {h ∈ T /F (h) (x, y) = 〈h〉(x)} , (59)

where

〈h〉(x) = 1

2βλm

∫ βλm

−βλm

h(x, y)dy , (60)

is still the y average of h(x , y) over the periodic cell. In other words,
V is the set of functions that present only fast variations plus a
constant value in y. An example of a function h in V is given in
Fig. 7. For any periodic function g with a periodicity smaller than
λm, choosing β such that an integer number of periodicity fits in Y 0,
we have F (g) = 〈g〉 and therefore g belongs to V . This implies that
the periodic case is a particular case of the following development.
As the periodicity has been kept, we still have

∀h ∈ V, 〈∂yh〉 = 0 , (61)

and

∀h ∈ V, ∂yh = 0 ⇔ h(x, y) = 〈h〉(x) . (62)

It can be shown that, for any function h ∈ V , its derivative is also in
V , and that

∀h ∈ V with 〈h〉 = 0 ⇒ g(x, y) ≡
∫ y

0
h(x, y′)dy′ ∈ V . (63)

Unfortunately, the product of two functions of V is not in V unless
these two functions are periodic with the same periodicity smaller
than λm (and well chosen β as already mentioned).

In this section and the next one, we assume that we have been
able to define [ρε0 (x, y), Eε0 (x, y)] in T that set up a sequence of
parameters

ρε0,ε(x) ≡ ρε0

(
x,

x

ε

)
,

Eε0,ε(x) ≡ E ε0

(
x,

x

ε

)
,

(64)

and that, with such a set of parameters, a solution to the problem
described below exists. This assumption is by far not obvious and the
construction of such a [ρε0 (x, y), Eε0 (x, y)] from [ρ0(x), E0(x)],
which is the critical point of this paper, is left for Section 3.4.

We look for the solution of the following wave equations

ρε0,ε∂t t uε0,ε − ∂xσ
ε0,ε = f ,

σ ε0,ε = Eε0,ε∂x uε0,ε .
(65)

To solve this problem, the fast space variable y defined (3) is once
again used and, in the limit ε → 0 x and y are treated as independent
variables which implies the transformation (4).

The solution to the wave eqs (65) is again sought as an asymptotic
expansion in ε, but this time we look for uε0,i and σ ε0,i in V

uε0,ε(x, t) =
∞∑

i=0

εi uε0,i (x, x/ε, t) =
∞∑

i=0

εi uε0,i (x, y, t) ,

σ ε0,ε(x, t) =
∞∑

i=−1

εiσ ε0,i (x, x/ε, t) =
∞∑

i=−1

εiσ ε0,i (x, y, t) .

(66)

Note that imposing uε0,i and σ ε0,i in V is a strong condition that
mainly means that only slow variations must appear in x and only
fast in y. Introducing expansions (66) in the wave eqs (65) and using
(4) we obtain

ρε0∂t t u
ε0,i − ∂xσ

ε0,i − ∂yσ
ε0,i+1 = f δi,0 , (67)

0 0.5 0 50 100

0 0.5
y (m)

0 50 100
k (1/m)

a b

c d

Figure 7. Example of a function h(x, y) ∈ T but not in V (graph a) and h(x, y) ∈ V (graph c) for a km = 16 m−1 plotted for a given x as a function of y and
their respective power spectra (graphs b and d) for positive wavenumber (k). It can be seen that, for h(x, y) ∈ V the power spectrum is 0 is the range [0 m−1,
16 m−1]. Both functions are periodic with a periodicity of 0.5 m.
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σ ε0,i = Eε0
(
∂x uε0,i + ∂yuε0,i+1

)
, (68)

which need to be solved for each i ≥ −2 and i ≥ −1, respectively.

3.3 Resolution of the homogenization problem

We follow the same procedure as for the periodic case. We work at ε0

fixed and, to ease the notations, the ε0 superscript is only kept for the
bar properties and correctors, but dropped for uε0,i , σ ε0,i . Because
the y periodicity is kept in V , the resolution of the homogenized
equations is almost the same as in the periodic case.

• As for the periodic case, eqs (67) for i = −2 and (68) for
i = −1 gives σ−1 = 0 and u0 = 〈u0〉.

• Eqs (67) for i = −1 and (68) for i = 0 implies σ 0 = 〈σ 0〉 and

∂y

(
Eε0∂yu1

) = −∂y Eε0 ∂x u0 . (69)

Using the linearity of the last equation we can separate the variables
and look for a solution of the form

u1(x, y) = χε0,1(x, y)∂x u0(x) + 〈u1〉(x) . (70)

As u1 ∈ V and u0 = 〈u0〉, χε0,1 must lie in V and satisfies

∂y

[
Eε0

(
1 + ∂yχ

ε0,1
)] = 0 , (71)

with periodic boundary conditions. We impose 〈χε0,1〉(x) = 0. A
solution in V to the last equation exists only if E ε0 have been
correctly build, that is, using the general solution (22), 1/Eε0 must
lie in V . If this condition is met, χε0,1(x, y) is in V and

∂yχ
ε0,1(x, y) = −1 +

〈
1

Eε0

〉−1

(x)
1

Eε0 (x, y)
. (72)

As for the periodic case, we find the order 0 constitutive relation

σ 0(x) = E ε0∗(x)∂x u0(x) , (73)

with

Eε0∗(x) = 〈
E ε0

(
1 + ∂yχ

ε0,1
)〉

(x) , (74)

=
〈

1

Eε0

〉−1

(x) . (75)

• Eqs (67) for i = 0 and (68) for i = 1 give

ρε0∂t t u
0 − ∂xσ

0 − ∂yσ
1 = f , (76)

σ 1 = Eε0
(
∂yu2 + ∂x u1

)
. (77)

To be able to obtain σ 1 in V , (76) implies that ρε0 must lie in V .
Taking the average on (76) together with (73) allows to find the
order 0 wave equation

〈ρε0 〉 ∂t t u
0 − ∂xσ

0 = f (78)

σ 0 = Eε0∗∂x u0 . (79)

Subtracting (78) from (76), together with (77) gives

∂y

(
Eε0∂yu2

) = −∂y Eε0 ∂x 〈u1〉 − ∂y

(
Eε0χε0,1

)
∂xx u0

−∂y

(
Eε0∂xχ

ε0,1
)
∂x u0 + (ρε0 − 〈ρε0 〉)∂t t u0 .

(80)

We can once again use the linearity of the last equation and we can
separate the variables and look for a solution of the form

u2(x, y) = χε0,2(x, y)∂xx u0(x) + χε0,2x (x, y)∂x u0(x)

+χε0,1(x, y)∂x 〈u1〉(x) + χε0,ρ(x, y)∂t t u0 + 〈u2〉(x) ,

(81)

where χε0,2, χε0,2x and χε0,ρ are solutions of

∂y

[
Eε0

(
χε0,1 + ∂yχ

ε0,2
)] = 0 , (82)

∂y

[
Eε0

(
∂xχ

ε0,1 + ∂yχ
ε0,2x

)] = 0 , (83)

∂y

[
Eε0∂yχ

ε0,ρ
] = ρε0 − 〈ρε0 〉 , (84)

with χε0,2, χε0,2x and χε0,ρ in V and 〈χε0,2〉 = 〈χε0,2x 〉 = 〈χε0,ρ〉 =
0. An important point here is to check that it exists a solution to
(82) in V . The general solution of (82) is

χε0,2(x, y) = a

∫ y

0

1

Eε0
(x, y′)dy′ −

∫ y

0
χε0,1(x, y′)dy′ + b .

(85)

The periodic condition and 〈χε0,1〉 = 0 give a = 0. We therefore
have χε0,2 = − ∫ y

0 χε0,1(x, y′)dy′ + b and, thanks to (63), χε0,2

is indeed in V . Similarly, it can be shown that χε0,2x is in V . On
the other hand, in general, χε0,ρ is not in V as the product of two
functions in V is not in V . Nevertheless, in the periodic case with a
periodicity smaller than 1/k0, the product of two functions are still
periodic with the same periodicity and therefore belongs to V . In
that case, χε0,ρ is indeed in V .

Introducing (81) into (77) and taking the average, we find the
order 1 constitutive relation

〈σ 1〉 = Eε0∗∂x 〈u1〉 + Eε0,1x∗∂x u0 + Eε0,1∗∂xx u0 + Eε0,ρ∗∂t t u
0 (86)

with

Eε0,1∗ = 〈
Eε0

(
χε0,1 + ∂yχ

ε0,2
)〉

, (87)

Eε0,1x∗ = 〈
Eε0

(
∂xχ

ε0,1 + ∂yχ
ε0,2x

)〉
, (88)

Eε0,ρ∗ = 〈
Eε0∂yχ

ε0,ρ
〉
. (89)

As we have already seen, χε0,2 in V and 〈χε0,2〉 = 0 impose
∂yχ

ε0,2 = −χε0,1 and therefore Eε0,1∗ = 0. Similarly, we have
Eε0,1x∗ = 0.

Finally, using (70) and taking the average of eqs (67) for i = 1
gives the order 1 wave equation

〈ρε0 〉 ∂t t 〈u1〉 + 〈ρε0χε0,1〉∂x∂t t u0 − ∂x 〈σ 1〉 = 0

〈σ 1〉 = Eε0∗∂x 〈u1〉 + Eρ,ε0∗∂t t u0 .
(90)

In general, ρε0χε0,1 is not in V , but we still have Eρ,ε0∗ = 〈ρε0χε0,1〉
and similarly to the periodic case, the last equation can be rewritten
as

(〈ρε0 〉 + ∂x Eρ,ε0∗)∂t t u1 − ∂x 〈σ̃ 1〉 = 0

〈σ̃ 1〉 = Eε0∗∂x 〈u1〉 ,
(91)

where 〈σ̃ 1〉 = 〈σ 1〉 − Eρ,ε0∗∂t t u0.
As we have seen earlier, in general ρε0χε0,1 and χε0,ρ are not in V

which means that, in general, the whole non-periodic development
presented is only valid for the order 0 and the first order corrector.
It is valid for higher order only if ρε0 has no fast variation or for
periodic variations. Nevertheless, in practice , χε0,ρ and ρε0χε0,1 are
very close to be in V and the whole development can be used as we
will see in the non-periodic example.
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As for the periodic case, the different orders can be combined as
shown in Section 2.3.

3.4 Construction of Eε0 and ρε0

We present here two ways of building Eε0 and ρε0 in T with the
following constraints obtained in the previous sections:

(i) ρε0 and χε0 must lie in V (see eqs 76 and 72).
(ii) ρε0 and Eε0 must be positive functions.
(iii) ρε0 (x, x/ε0) = ρ0(x) and Eε0 (x, x/ε0) = E0(x).

The first constraint is necessary to obtain solutions in V at least
up to the order 1.

3.4.1 Direct construction

The 1-D case is interesting because it gives an explicit formula for
χε0 , and implies that 1/Eε0 should be in V (constraint (i)) so that a
solution to the non-periodic homogenized problem exists. Thanks
to this explicit constraint, we can propose, for a given x and any y
∈ Yx,

ρε0 (x, y) = F k0 (ρ0)(x) + [ρ0 − F k0 (ρ0)](ε0 y) , (92)

Eε0 (x, y) =
{
F k0

(
1

E0

)
(x) +

[
1

E0
− F k0

(
1

E0

)]
(ε0 y)

}−1

,

(93)

and then extended to R in y by periodicity. ρε0 and Eε0 are by
construction in T . Thanks to the fact that, for any h

F k0
(
F k0 (h)

) = F k0 (h) , (94)

it can be checked that ρε0 and 1/Eε0 are in V (which is not the case
of Eε0 ). Note that this is not completely true in practice because the
filter w has not a sharp cut-off, which implies that (94) is not fully
accurate. We consider this side effect as being negligible. We define

ρε0,ε(x) = ρε0

(
x,

x

ε

)
, (95)

Eε0,ε(x) = E ε0

(
x,

x

ε

)
, (96)

and one can check that ρε0,ε0 = ρ0 and Eε0,ε0 = E0.
For most standard applications, ρε0 and Eε0 are positive functions

for any filter wavelet w. Nevertheless, for some extreme cases (e.g. a
single discontinuity with several orders of magnitude of elastic
modulus contrast), some filter wavelet w designs could lead to a
negative Eε0 . In such an extreme case, on should make sure that the
design of w allows ρε0 and Eε0 to be positive functions.

Finally, we can check that

1

Eε0,∗ =
〈

1

Eε0

〉
= F k0

(
1

E0

)
(x) , (97)

which is the intuitive effective elastic modulus (54) guessed in
Section 3.1.

3.4.2 Implicit construction

For higher dimensions than 1-D, a cell problem, similar to (71),
arises (see, for example Sanchez-Palencia 1980). Unfortunately, in
general, there is no explicit solution to this cell problem leading to an
analytical solution equivalent to (72) (there is one for layered media,

but it can be considered as a 1-D case). The direct solution explained
above to build Eε0 is therefore not available for higher dimensions
(it still is for ρε0 ). We propose here a procedure that gives a similar
result as the explicit construction without the knowledge that the
construction should to be done on 1/E0. The main interest of the
procedure is it can be generalized to a higher space dimension. It
is based on the work of Papanicolaou & Varadhan (1979) on the
homogenization for random media. They suggest to work with the
gradient of correctors rather than to work on corrector directly. If
we name

Gε0 = ∂yχ
ε0,1 + 1 , (98)

H ε0 (x, y) = Eε0 (x, y)Gε0 (x, y) , (99)

a solution to our problem in V up to the order 1 is found if we can
build Eε0 (x, y) such that (H ε0 , Gε0 ) ∈ V and 〈Gε0 〉 = 1.

To do so, we propose the following procedure:

(i) Build a start Eε0
s defined as, for a given x and for any y ∈

Yx , Eε0
s (x, y) = E0(ε0 y) and then extended to R in y by periodicity

(Eε0
s is therefore in T ). Then solve (71) with periodic boundary

conditions on Yx to find χε0,1
s (x, y).

(ii) Compute Gε0
s = ∂yχ

ε0,1
s + 1, then H ε0

s (x, y) =
Eε0

s (x, y)Gε0
s (x, y) and finally

Gε0 (x, y) = 1

F
(
Gε0

s

)
(x, x/ε0)

(
Gε0

s − F
(
Gε0

s

))
(x, y) + 1 ,

(100)

H ε0 (x, y) = 1

F
(
Gε0

s

)
(x, x/ε0)

× [(
H ε0

s − F
(
H ε0

s

))
(x, y) + F

(
H ε0

s

)
(x, x/ε0)

]
.

(101)

At this stage, we have (H ε0 , Gε0 ) ∈ V2 and 〈Gε0 〉 = 1.
(iii) From (99) and (74), we have

Eε0 (x, y) = H ε0
s

Gε0
s

(x, y) , (102)

E∗,ε0 (x) = 〈H ε0 〉 (x) = F
(
H ε0

s

)
F

(
Gε0

s

) (x, x/ε0) . (103)

(iv) Once Eε0 (x, y) is known, follow the whole homogenization
procedure to find the different correctors can be pursued.

Once again, we insist on the fact that the main interest of this
procedure is that obtaining an explicit solution to the cell problem
is not required and it can be extended to 2-D or 3-D.

Remarks

• In practical cases, the bar is finite and Yx can be chosen to en-
close the whole bar. In that case, the dependence to the macroscopic
location x in χε0,1

s , Gε0
s , H ε0

s and Eε0
s disappears.

• The step (i) of the implicit construction procedure involves
to solve (71) with periodic boundary conditions on Yx. This step
implies the use of a finite element solver on a single large domain
(if Y 0 is set as the whole bar) or on a set of smaller domains (Yx)
and this implies that a mesh, or a set of meshes, of the elastic
properties in the Yx domain must be designed. Therefore, even if
the meshing problem for the elastic wave propagation in order 0
homogenized model is much simpler for the than for the original
model, the problem is still not mesh free. Fine meshes still must be

C© 2010 The Authors, GJI, 181, 897–910

Journal compilation C© 2010 RAS



1-D non-periodic homogenization 907

designed to solve the homogenization problem. Nevertheless, these
meshes can be based on tetrahedra even if the wave equation solver
is based on hexahedra. Moreover, as the homogenization problem is
time independent, the consequences of very small or badly shaped
elements on the computing time are limited.

We can check that this procedure gives a correct result on our
1-D case.

(i) Taking Yx as R (β infinite), the first step allows to find
∂yχ

ε0,1
s (y) = C

E0 (ε0 y)−1 where C = (limT →∞ 1
2T

∫ T
−T

1
E0 (x)dx)−1.

(ii) H ε0 and Gε0 are straight forward to compute from step (i).
We have

Gε0 (x, y) = 1

F k0
(

1
E0

) (x)

[
1

E0
− F k0

(
1

E0

)]
(ε0 y) + 1, (104)

where the fact that, for any h, F (h) (x/ε0) = F k0 (h) (x). We also
find H ε0 (x, y) = [F k0 ( 1

E0 )(x)]−1.
(iii) The third step allows to find

Eε0 (x, y) =
{[

1

E0
− F k0

(
1

E0

)]
(ε0 y) + F k0

(
1

E0

)
(x)

}−1

(105)

E∗,ε0 (x) =
[
F k0

(
1

E0

)
(x)

]−1

(106)

which are the desired results.

3.5 Convergence of the asymptotic solution with ε0

As for this non-periodic case, we have built a classical periodic
homogenization scheme, the convergence theorem is still valid: uε0,ε

converges in the appropriate sense to the leading order asymptotic
term uε0,i=0 as ε tends towards 0 (see Section 2.1). In the periodic
case, one particular ε (ε = �0/λm) corresponds to the ‘real’ case
we wish to approximate. In the non-periodic case, it is ε = ε0,
but this is true for any ε0. Let us name ure f the reference solution
obtained in the ‘real model’ (ρ0, E0). Thanks to the condition (iii)
of Section 3.4, we have, for all ε0, ure f = uε0,ε0 . Therefore, still
using the classical convergence theorem, we know that the leading
order asymptotic term uε0,0 will converge towards ure f as ε0 tends
towards 0. Furthermore, using (47), we also have

ûε0,1 = ure f + O
(
ε2

0

)
. (107)

3.6 A numerical experiment for a non-periodic case

As mentioned above, the only case that can be considered practically
is ε = ε0. A consequence of this is, in order to check the convergence
with ε, the only way is to vary ε0 through the filter wk0 used to
separate the scales.

As for the periodic case, we perform a numerical experiment us-
ing SEM. We generate a bar model composed of slices of 0.64 mm
thick in which the properties E and ρ are constant and determined
randomly. A sample of the E0 values are shown on Fig. 8. We
first build E ε0 (x, y) and ρε0 (x, y) using one of the two methods
described in Section 3.4 (they both give the same result). Two ex-
amples of homogenized E∗,ε0 can be seen on Fig. 8. Then the cells
problem (71), (82), (83) and (84) are solved for each x of the SEM
mesh using the same finite elements method than the one used for

0 0.05 0.1
x (m)

7

8

9

10

k
m

/s

Figure 8. Sample (10 cm) of the bar velocity (black line, km s−1) and two
examples of order 0 homogenized velocities (bold grey line for ε0 = 0.125
and bold dashed grey line for ε0 = 0.25). The density has a similar but
uncorrelated pattern.

the periodic case. This part is more time consuming than for the pe-
riodic case because these equations have to be solved on many large
Yx segments or on a single global Y 0 segment. The wave equation

ρ̃∂t t u − ∂x (Eε0,∗∂x u) = f , (108)

where ρ̃ = 〈ρε0 〉 + ε0∂x Eρ,ε0∗, u = 〈ûε0,1〉 and f = f̂ ε0,1, is then
solved using the SEM.

The source is the same as for the periodic case as well as the set
up of the SEM. In the case presented here, ε0 � 0.125. Once the
simulation is done, for a given time step corresponding to t = 4.9 ×
10−4 s, the complete order 1 solution can be computed with (46).
We can also compute the incomplete order 2 solution

ûε0,3/2 =
[

1 + ε0χ
ε0,1

(
x,

x

ε0

)
∂x + ε2

0

(
χε0,2x

(
x,

x

ε0

)
∂x

+χε0,2

(
x,

x

ε0

)
∂xx + χε0,ρ

(
x,

x

ε0

)
∂t t

)]
〈ûε0,1〉 .

(109)

On Fig. 9 are shown the results of the simulation. On the upper left
plot (Fig. 9a) are shown the reference solution (bold grey line), the
order 0 solution (black line) and a solution obtained in bar with an
effective E∗ = F k0 (E0) (‘E average’, dashed line) for t = 4.9 ×
10−4 s as a function of x. Note the strong coda wave trapped in the
random model on the left of the ballistic pulse which was not at all
present in the periodic case. As expected, the ‘E average’ solution is
not in phase with the reference solution and shows that this ‘natural’
filtering is not accurate. On the other hand, the order 0 homogenized
solution is already in excellent agreement with the reference solu-
tion. On Fig. 9(b) is shown the residual between the order 0 homoge-
nized solution and the reference solution ûε0,0(x, t)−uref (x, t). The
error amplitude reaches 1 per cent and contains fast variations. On
Fig. 9(c) is shown the order 1 residual ûε0,1(x, t) − ure f (x, t) (bold
grey line) and the partial order 2 residual ûε0,3/2(x, t) − ure f (x, t)
(see eq. 109). It can be seen comparing Figs 9(b) and (c) that the
order 1 periodic corrector removes most of the fast variation present
in the order 0 residual. The remaining fast variation residual dis-
appears with the partial order 2 residual. The smooth remaining
residual is due to the 〈u2〉 that is not computed. In order to check
that this smooth remaining residual is indeed an ε2

0 residual, the
same residual, computed for ε0 = 0.125 is compared to the par-
tial order 2 residual computed for ε0 = 0.0625 (multiplying its
amplitude by 4) and for ε0 = 0.25 (dividing its amplitude by 4).
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Figure 9. (a) Grey line: displacement ure f (x , t) at t = 4.9 × 10−3 s computed in the reference model described Fig. 2. Black line: the order 0 homogenized
solution û0(x, t). Dashed line: solution computed in a model obtained by averaging the elastic properties [F k0 (ρ0) and F k0 (E0)]. (b) Order 0 residual,
û0(x, t) − ure f (x, t). (c) Grey line: order 1 residual, ûε0,1(x, t) − ure f (x, t). Black line: partial order 2 residual, ûε0,3/2 − ure f (x, t) (see eq. 109). (d) Black
line: partial order 2 residual for ε0 = 0.125 mm. Grey line: partial order 2 residual for ε0 = 0.0625 mm with amplitude multiplied by 4. Dashed line: partial
order 2 residual for ε0 = 0.25 mm with amplitude divided by 4.

It can be seen that these three signals overlap but not completely.
This is consistent with a ε2

0 residual but it shows that the approxi-
mations made, mainly on the fact that support of the filters wk0 has
been truncated to make their support finite, has some effect on the
convergence rate.

4 C O N C LU S I O N S A N D P E R S P E C T I V E S

We have presented an extension of the classical two scale homoge-
nization from 1-D periodic media to 1-D non-periodic media. This
extension does not hold beyond the order 1, but for the periodic
case. This non-periodic homogenization procedure is based on the
introduction of a spatial filter, that allows to separate scales in the
heterogeneity pattern of the medium. In the wavenumber domain,
the location of the filter cut-off k0 that separates slow and fast
variations in the physical properties, is left at the discretion of the
user, but must be chosen such that k0 is larger than the maximum
wavenumber of the wavefield km to obtain an accurate result. For the
leading order of this asymptotic theory, the wavefield computed in
the homogenized medium converge towards the reference solution
as ε0 = km/k0. The level of accuracy can therefore be chosen by
selecting the appropriate k0.

In contrast to the periodic case, the general solution presented
is computationally intensive. Indeed, the non-periodic homogeniza-
tion requires to solve the so-called cell problem (eq. 71) over the full
model (in one time or in a multitude of smaller problems) and not on
a single cell as in the periodic case; and this can be very challeng-
ing. Nevertheless, this cell problem is time-independent, and has to
be solved only once for the whole medium (using a classical finite
element method); and simulating wave propagation with SEM, in
the smooth, homogenized medium is much less time-consuming,
than doing the same in the rough, initial one.

Another issue is that the effective medium resulting from the
homogenization procedure at the leading order, is often oscillating
in space. These oscillations result from the application of the spatial

filter to discontinuities. Because the spatial cut-off k0 is chosen
larger than the maximum wavenumber km, the spatial oscillations of
the medium may be faster than the maximum ones of the wavefield.
For the SEM point of view, this must be taken into account and
the classical rule used to sample the wavefield (e.g. 2 minimum
wavelength per degree 8 elements) for piecewise content medium
does not fully apply. The solution is just to increase the number
of elements per wavelength, but this unfortunately has a numerical
cost. The optimum sampling of the wavefield in such a case remains
to be studied.

A critical aspect of this work is that the methodology exposed
for the 1-D case can be extended to higher dimensions because
it is not based on the knowledge of an analytical solution of the
cell problem as it was the case in Capdeville & Marigo (2007). An
important perspective of this work is then to extend it to 2- and 3-D.
This should allow to solve many meshes difficulties that arise when
using the SEM for wave propagation simulation in complex 3-D
media.

Finally, we underline the fact that the results obtained may have
important applications in inverse problems for the Earth structure:
first it is shown how to define a multiscale parametrization de-
pending on the wavefield properties; second, physical quantities
that should be inverted for (here 1/E), directly appear in the set
of equations involved in the homogenization procedure. Moreover,
the periodic correctors should allow to make inferences about local
effect at source and receiver locations.

A patent (Capdeville 2009) has been filed on the non-periodic
homogenization process by the ‘Centre national de la recherche sci-
entifique’ (CNRS) (this is by no mean a restriction to any academic
research on the subject).
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A P P E N D I X A :

We show here that Eρ∗ = 〈ρχ 1〉. We start with

∂y[E∂yχ
ρ] = ρ − 〈ρ〉. (A1)
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Multiplying the last equation by χ 1, taking the cell average and
using the fact that 〈χ 1〉 = 0, we find〈
χ 1∂y

[
E∂yχ

ρ
]〉 = 〈χ 1ρ〉 . (A2)

Using an integration by part, we have

− 〈
∂yχ

1
[
E∂yχ

ρ
]〉 = 〈χ 1ρ〉 . (A3)

Using (24) we find〈
E∂yχ

ρ
〉 = 〈χ 1ρ〉 , (A4)

which, using the definition Eρ∗ = 〈E∂yχ
ρ〉, is the wanted result.
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