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Abstract— This paper explores the use of a mechanism to
auto-regulate the robot behavior in situations of persistent
failures. In order to give more autonomy to a mobile robot, a
generical frustration mechanism based on the automonitoring
of the progress (in terms of goal distance reduction) is studied
in different situations and on different parts of the robot
architecture. To escape failure situations and deadlocks, the
frustration reaction can inhibit the robot navigation strategies,
goals or drives.

I. INTRODUCTION

If we follow the animat approach [5], to ensure its sur-

vival, a robot must maintain a set of artificial physiological

variables inside safe levels. Thus, the robot must look

for different resources to fulfill its various needs i.e. the

robot must have goals that depends on its motivations [12],

[13]. However, sustaining a durably efficient behavior in a

dynamic and complex environment remains a difficult task

[15], [10], [1]. The very nature of the environment as well

as the robot’s own imperfections will most likely let arise

situations where the learned behaviors are not sufficient and

may lead to deadlocks [3]. Lacking the ability to monitor

their behavior, robots get no satisfaction from productive

actions and no frustration from vain ones. This is why most

robots exhibit a very counterproductive rigidity when facing

unforeseen situations.

In this paper, we describe a generical frustration mechanism

based on the robot goals monitoring. Frustration is used to

regulate the robot behavior in case of persistent failures. The

robot navigates using biologically inspired mechanisms like

path integration based on odometric information [6], [14]

(return vector computing) and sensorimotor learning based

on visual place recognition [8], [7], [18]. These navigation

strategies are coupled to a low level motivational system

(using the simulated physiology as input) in order to perform

a survival task. Metacontrol of the robot success is an

efficient way to design an emotional regulation [2] and

enhance the robot autonomy. Figure 1 shows the robot and

its environment.

Section 2 describes the simulated physiology and the mo-

tivational system. The proprioceptive and visual navigation

architecture we use are briefly presented in section 3. Section

4 describes the robot goals multimodal automonitoring and

the frustration mechanism. Section 5 shows experimental re-

sults with the robot. And section 6 contains the conclusions.

Fig. 1. The robot in its environment (5m x 5m). A color detector is
placed under the robot. Colored squares on the ground represent simulated
resources.

II. PHYSIOLOGY AND MOTIVATIONAL SYSTEM

A synthetic physiology simulates physiological variables

like hydration or glucose levels. These variables levels

constantly decrease as the robot consumes its internal re-

sources. Collecting a simulated resource (i.e. detecting a

needed resource) results in an increase of the corresponding

resource level. Robot’s survival is only possible if it collects

periodically the resources it needs so these variables levels

don’t go below a given critical threshold (simulated death).

A low-level drive system, reacts to the physiological state

perception. For instance, as food level gets low, the hunger

drive gets high. This physiological and drive system is what

gives a goal to the robot. A distinction is made between

the inner drives, drives as they are computed directly from

the physiological variables levels, and integrated drives,

temporal integration of the inner drives. The integrated drives

offer the possibility to modulate drives according to higher

order source of information without manipulating the actual

physiological state of the system. The most active drive dic-

tates the robot’s behavior (competition mechanism). When a

needed resource is detected, the corresponding physiological

variable level increases (following the above equations) and

the temporal integration of the corresponding drive is reset

to 0. Figure 2 describes this system.

III. NAVIGATION STRATEGIES

Two different navigation strategies were used in order to

study inhibitory effects of the frustration regulation on the

action selection process. Furthermore, this provides different

test situations for the frustration regulation.



Fig. 2. Low level drive system : inner drives are computed from
the physiological variables levels, integrated drives are signals that can
be manipulated without affecting the inner states of the system and the
expressed drive is the most active integrated drive. Frustration inhibition is
described in section IV.

Proprioceptive navigation : path integration is the ability

to determine the return vector (angle and distance) to an

arbitrary reference point using odometric information. We

designed a motor working memory [9] to use path integration

implementation presented in [6] (figures 3 and 4) for multiple

goal tasks.

Fig. 3. Illustration of the path integration computation. Left figure shows a
simulated trajectory composed of two segments of different lengths (the first
is three times the length of the second) and orientations (25◦and 90◦from
an arbitrary absolute direction). Right figure shows the two inputs (dotted
curves) as bell shape centered on the movements absolute directions (α and
β) and their sum (the bold curve). The global movement vector orientation
(ω) is coded as the position of the maximum activity in a neural field and
its norm is coded as the value of the maximum activity. Here, a neural field
only means a group of neurons (no connections between each other) but the
topology is important since position in the field has a meaning (an angle in
our case).

Detection of a new goal allows the recruitment of a

dedicated integration field. Every integration field computes

dynamically the return vector to its associated goal (figure 5).

Visual navigation : the visual system (figure 8) is able

to learn to characterize (and thus recognize) different places

of the environment. The visual system, a simulated neural

network, learns place cells i.e. neurons that code information

about a constellation of local views (visual cues) and their

azimuths from of a specific place in that environment [8],

[7] (see figure 6).

Activities of the different place cells depend on the recog-

nition levels of these visual cues and of their locations. As

shown in figure 7, a place cell will then be more and more

Fig. 4. Path integration : speed is coded as the activity of one neuron and
orientation as the most active neuron of a field (i.e. a simple linear collection
of neurons). At every time step, the integrator takes as input the activity of
the orientation field (convoluted by a bell shape curve e.g. a gaussian or a
cosine) multiplied by the activity of the speed neuron. This input represents
the orientation and distance traveled since the last time step. Summing this
input with its own activity, the integration field computes the return vector.

Fig. 5. multi goal path integration navigation : return vectors to several
places (goals) are computed dynamically. This model is fully described in
[9]. Recruitment reset is the recruitment of a new integration field when a
new goal is found. Recognition reset is the reset of the field corresponding
to a detected known goal. Field selection is the selection of the integration
field corresponding to the closest goal satisfying the active drive.

active as the robot gets closer to its learning location.

The area where a given place cell is the more active is

called its place field. An associative learning group of neu-

rons allows sensorimotor learning (place-drive-action group

on figure 8). Place-drive neurons learn the conditioning

between place cells and drives (hebbian learning). They are

associated with the return vector of the corresponding goals

to build a visual attraction basin around each goal.

IV. FRUSTRATION FROM GOAL DISTANCE MONITORING

In a dynamic environment, conditions will inevitably

change in a very perturbing way for the robot. For instance, a

resource might be unreachable, all lights in the environment

might be turned off (no more visual navigation), the robot

might be ”kidnapped” and placed in another place (erroneous

proprioceptive navigation), ... All these perturbations might

get the robot trapped in a deadlock situation. They could

each be detected by specific means at sensor level, but

a progress (or failure) evaluation might offer a generical

approach to this issue. The aim is not to combine navigation

strategies in a way that avoids deadlocks but to construct



Fig. 6. Landmarks and their azimuths extracted from the raw visual flow
and learned by the visual system.

Fig. 7. As the robot gets closer to each place cell learning location, the
corresponding place cell (PCn) gets more active. the maximum activity of a
place cell corresponds to its learning location. And the area where a place
cell activity is the highest is its place field (PCnF).

a simple mechanism to detect them. Monitoring the goal

distance over time is an efficient and simple way for the

robot to evaluate its progress. Using two different sources

of information (vision and proprioception), the robot has

access to two different ways of monitoring its goal distance.

From the proprioception, the robot can monitor the fields

used for path integration. Each field holds the information

needed to represent the return vector to its corresponding

goal i.e. its direction (position of the maximum activity in

the field) and distance (value of the maximum activity). As

the robot gets closer to the goal, the maximum activity of

the corresponding path integration field gets lower. From

Fig. 8. Sensorimotor visual navigation : a visual place cell is constructed
from recognition of a specific landmarks-azimuths pattern (tensorial prod-
uct) and an action (the return vector) is associated with this place cell.

vision, the robot can monitor the activity of the place cell

associated with the goal. The robot has to learn which place

cell corresponds to the goal and then monitor its activity.

As the robot gets closer to the goal, the corresponding

place cell activity gets higher. When the robot has an active

drive e.g. when it is hungry, until food is found, as long

as the predicted distance between the food and the robot

decreases, the robot might assume that everything is alright.

But if goal distance does not decrease, the robot behavior is

inefficient. And if this inefficiency is lasting this means the

robot is caught in a deadlock. The threshold T (figure 9)

defines the robot tolerance to frustration. This mechanism

differs from a simple timeout because failure and not

time is what increase frustration. According to this view,

solving a long problem should not be frustrating as long as

progress can be perceived. Furthermore, frustration increase

is not necessarily regular since it relies on how much goal

proximity approximation varies. Detection of this failure

situation gives the robot a way to escape from inefficient

repetitive behavior. The following equation describe the

frustration mechanism :

F(t) =
{

1 if [f(t−∆t) + [G(t)−G(t−∆t)
∆t

+ ǫ]+ −R]+ > T

0 otherwise

with [x]+ equals x if x > 0 and equals 0 otherwise.

F (t) is the frustration value, f(t) is the temporal inte-

gration of failure to get closer to the goal, G(t) is the goal

distance, ∆t is the duration of each calculation time-step, ǫ

is a small constant and R is a reset signal that equals 1 when

the goal is satisfied (when the needed resource is detected)

and 0 otherwise.

The simplest way to escape a deadlock is to use failure

detection to inhibit the underlying behavior. But there are

many ways to alter the robot behavior. Failure detection

might inhibit the currently used navigation strategy e.g.

switching for from path integration to visual navigation. But

it can equally inhibit the active goal to look for another

similar goal. Failure detection can also inhibit the active



drive e.g. switching from hunger to thirst. An example of

this inhibition is shown in figure 2 but the same kind of

inhibition allows to switch from the active strategy or goal.

Figure 9 shows the neural network used to detect failure

situations and the way it can regulate the robot behavior.

Fig. 9. Frustration mechanism : non linear integration of the goal distance
derivative over time. When the goal distance comes from vision, its temporal
difference is computed the opposite way as when goal distance comes
from proprioception (goal place cell activity increases while integration
field maximum activity decreases). A small constant input added to this
integration insures that although goal distance is constant, frustration might
arise. Above a definite threshold T , the active strategy, goal or drive is
inhibited.

V. ROBOTIC EXPERIMENTS

In the first experiment1, the effect of the frustration regula-

tion is tested on drives. The visual navigation strategy is used

in an environment containing one of each resource (colored

square on the ground). After having learned to reach the two

resources, the robot alternates between them according to its

drive system. If an obstacle is put on one of the resources,

the robot cannot access it. According to its drive system,

the winning drive will get stronger with time and the robot

should be stuck between going to the resource and avoiding

the obstacle. When the frustration system is introduced, the

robot gets more and more ”frustrated” and inhibits the active

drive allowing the robot to escape the deadlock to satisfy its

other drive. Figure 10 shows the robot trajectories as well as

its internal drive, failure detection and frustration signals.

In the second experiment, frustration regulation is tested

on the goal level. The proprioceptive navigation strategy is

used in an environment containing two of each resource (2

goals for each drive). After having learned to reach the four

resources, the robot alternates between the two closest goal

places according to its drive system (determine the active

drive) and its motor working memory [9] (determine the

closest goal). Similar to the first experiment, an obstacle is

placed under one of the resources the robot regularly use. The

inhibition of the active goal allows the robot to escape from

the deadlock to look for the other resource corresponding

to the active drive. Figure 11 shows the robot trajectories

as well as its internal goals, failure detection and frustration

signals.

In the third experiment, frustration regulation is applied

to strategy selection. Both path integration and visual nav-

igation are used in an environment containing one of each

1Trajectories in all experiments are recorded from an onboard tracking
device that is not used by the robot.

Fig. 10. Up : robot trajectories with frustration of the active drive (visual
navigation). F stands for food and W for water. Down : goal distance, failure
detection and drive signals. In 1, the robot starts the experiment with thirst
as the most active drive. In 2, the robot satisfy its thirst and hunger becomes
the active drive. In 3, the water resource is obstructed by an obstacle. When
enough failure detection has been integrated, a frustration inhibition is sent
to the active drive (thirst) and in 4, the robot go back the food location.

resource. After having learned to reach the two resources

with each strategy, the robot uses the proprioceptive strategy

to alternate between each resource. Next, the robot is ”kid-

napped” and placed in a different place of its environment.

Because this movement cannot be integrated by the proprio-

ceptive strategy, the return vectors all become erroneous. The

robot then converge toward the wrong locations. Inhibition

of the active strategy allows the robot to switch from its

proprioceptive to its visual navigation strategy which is

robust to that kind of perturbation. Similarly, proprioceptive

navigation is a good way to navigate in the dark thus offering

a good alternative to visual navigation. Figure 12 shows the

robot trajectories as well as its internal strategies, failure

detection and frustration signals.

VI. CONCLUSION AND PERSPECTIVE

Monitoring progress is an efficient way to react to chang-

ing conditions of a dynamical environment. The robot can

construct evaluations of the distance to its goal from its

different perceptions. Behavior effectiveness is viewed in

terms of reduction of the goal distance. Accumulation over

time of the inability to reduce goal distance (and reach



Fig. 11. Up : robot trajectories with frustration of the active goal
(proprioceptive navigation). F1 and F2 are the two food resource and W1
and W2 are the two water resource. Down : goal distance, frustration and
goals signals. In 1, the robot starts the experiment with hunger as the active
drive and its goal is F1, the closest food location. In 2, after reaching F1,
the robot is now thirsty. It is reaching W1, the closest water location. In
3, the robot finds water and is now hungry. It is heading toward F1, the
closest food location. F1 is now obstructed with an obstacle. In 4, when
enough failure detection has been integrated, a frustration inhibition is sent
to the active goal F1. In 5, the robot heads toward F2, the new closest goal
satisfying the active drive. And in 6, the robot heads toward W2, the new
closest water location.

satisfaction) give rise to an inhibition potential that can be

directed on different parts of the robot control architecture :

the used strategy, the active goal or the active drive. This

generical inhibition mechanism and the behavioral change it

causes can be viewed as an emotional regulation : frustration.

Using a metacontrol regulatory mechanism, the robot adapts

its behavior to changing conditions rather than getting stuck

in a deadlock situation where its learnings are not sufficient.

In this paper, we described an empirical view of the frustra-

tion regulation which needs to be refined in later works. This

emotional regulation was used for rapid behavioral changes

but it could also be used for long term evaluation. The

frustration associated to the robot strategies, goals or drives

(through classical conditioning) can be seen as a prediction of

the robot success or failure for this particular strategy, goal

Fig. 12. Up : robot trajectories with frustration of the active strategy.
Down : goal distance, frustration and strategy signals. In 1, the robot
starts the experiment with path integration. The active drive is thirst. In
2, after having satisfied its thirst, hunger becomes the active drive and
the robot heads toward the food location. In 3, after having satisfied its
hunger, the robot is thirsty and head toward the water location but the
robot is ”kidnapped” along the way and put somewhere else. This makes
its proprioceptive strategy wrong. In 4, the robot follows its path integration
until enough failure detection has been integrated. A frustration inhibition
is sent to path integration strategy and in 5, the robot switch to visual
navigation.

or drive and can then be used to select them accordingly.

Our model thus bears strong similarities with TD lambda

[17], [4] and the possibilities of hedonist neurons [11]. This

frustration regulation can also be compared to the novelty

detection and curiosity mechanisms described by [16]. While

curiosity regulates the robot behavior in order to stay in a

state of learning progress, frustration regulates the behavior

in order to stay out of failure states.

Future works will focus on the need to construct a mul-

timodal perception of the goal distance able to use both or

only a single modal goal distance according to the perceptual

context and the ongoing frustration regulation. Furthermore,

in order to allow failure detection to be robust to noise on

the goal distance prediction (mainly concerning vision), we

intend to use a statistical version of this equation. Frustration

inhibition has been applied to strategies, goals and drives,

but no preference or selection mechanism has been used.

Future works will thus also focus on the need to define



specific failure context and link them to effective frustration

inhibition.
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