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When intense laser pulses release correlated electrons, the time delay between the ionizations
may last more than half a laser period. We show that this “Recollision-Excitation with Subsequent
Ionization” pathway originates from chaotic dynamics in the double ionization process. The long
delays after the first ionization are caused by “sticky” regions in phase space, and the unstable
manifold of a particular periodic orbit regulates the second ionization. The oscillations observed
in the corresponding double ionization yields versus the laser intensity are a signature of chaotic
processes in two-active electron systems.
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Atoms in strong laser pulses lose their electrons
through two ionization channels [1]: A sequential one
(SDI) and its non-sequential counterpart (NSDI). The
SDI mechanism consists of successive and independent
removals of the two electrons. The recollision (or three-
step) scenario [2, 3] in which an ionized electron returns
to the ion core to dislodge a bound electron is the char-
acteristic mechanism for NSDI. In contrast to SDI, the
latter mechanism is driven by electron correlation. It
turns out that there is a rich variety of pathways among
NSDI processes, also. At first sight, these pathways can
be distinguished by the time it takes the second electron
to ionize. The common variant involves little, if any, de-
lay between the recollision and ionization. However, this
so-called “direct impact ionization” [4] is often accompa-
nied by an alternative (and less straightforward) road to
NSDI called Recollision-induced Excitation with Subse-
quent Ionization (or RESI for short [4–7]): The recolli-
sion excites the parent ion which is ionized by the laser
field after some delay, sometimes lasting longer than half
a laser cycle after the recollision and therefore imitating
an uncorrelated ionization process. RESI processes have
been computed quantum mechanically [8–10] and clas-
sically [11–13]. Fortunately one does not need to rely
on vague criteria like length of delay when distinguish-
ing these pathways since they carry distinct signatures in
their ion momentum distributions: The two lateral peaks
in the bimodal distribution come from direct ionization
whereas the central part around zero ion momentum is
due to RESI [4, 5, 8, 14, 15]. It also turns out that di-
rect impact ionization takes place when the electric field
is close to zero whereas RESI when the electric field is
maximum.

In this Letter, we investigate the phase-space mech-
anisms of RESI. We show that RESI is organized by a
small number of periodic orbits and their manifolds [16]
that, in a manner of speaking, “funnel” the ionizing elec-
trons away from the ion core in specific ways. These
structures are embedded in a “sticky” (chaotic) re-
gion [17] that traps some trajectories before ionizing.
While we present numerical results for neon, we find
that the same qualitative mechanism holds for other two

active electron systems as well. In particular, our dy-
namical treatment confirms that the second ionization in
RESI happens at the maxima of the field irrespective of
the atom considered.
Remarkably, classical mechanics can identify both

pathways that lead to double ionization (as well as RESI)
and reproduce the experimental and computational ob-
servations closely [18–20]. Classical models scale advan-
tageously with system size, and detailed trajectories can
reveal the underlying mechanisms. Here we complement
the three-step picture [2, 3] with an analysis of the core
electron dynamics. Indeed, it turns out that the dynam-
ics of the remaining ion after a recollision is pivotal in
understanding the mechanisms at play in the subsequent
ionization processes [20].
We consider a two active electron atom with soft-

Coulomb potentials subjected to an intense and short
linearly polarized laser pulse in the dipole approxima-
tion [18–20]. The relevant dynamics of this standard
model takes place along the polarization axis that per-
mits a Hamiltonian model with a single spatial dimen-
sion [18, 21–23]:
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where xi is the position of the ith electron (the nucleus
is assumed to be fixed at the origin) and pi is its canoni-
cally conjugate momentum. The laser field is character-
ized by its amplitude E0 and has a wavelength of 780 nm
(ω = 0.0584 a.u.) with a trapezoidal shape f consisting
of two-cycle linear ramp up and six laser cycle constant
plateau. The constants a and b are the electron-nucleus
and electron-electron softening parameters [18, 21–23] re-
spectively and are chosen so as to be compatible with the
ground state energy Eg.
RESI events are described by two-electron trajectories

for which, after a recollision, one electron remains bound
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FIG. 1: Poincaré section (stroboscopic plot at the maximum
of the field, φ = π/2) of RESI trajectories, after the last
recollision, obtained for the two active electron model (1) of
neon [18–20] for I = 3× 1015W · cm−2 during the plateau of
the laser. The parameters are a = 1 and b = 1 and the initial
conditions have a microcanonical distribution on the energy
surface Eg = −2.3 a.u. For each RESI, the first point on the
section is plotted in light blue while the following ones are in
dark blue.

to the nucleus for a long time before ionizing without any
additional recollision, i.e., without the other electron ever
returning to the nucleus. We use an energy criterion to
designate an electron as ionized or not [20, 22, 24]. A rec-
ollision is said to have occurred whenever the distance be-
tween the two electrons is smaller (or equivalently, when-
ever the Coulomb interaction between the two electrons
is larger) than some threshold. We consider the NSDI
trajectories which double-ionize after a (last) recollision.
In some of these, the RESIs, one electron leaves the nu-
cleus long after the first electron has left that region. For
the computation, we choose a time delay of at least half
of a laser cycle between the last recollision and the ion-
ization of the remaining ion. Poincaré sections of RESI
trajectories are depicted in Fig. 1 for Hamiltonian (1).
Looking at the swirling patterns that compose these tra-
jectories, it is natural to ask: Why do trajectoies follow
these complicated paths?
This question is best answered using a single atomic

electron model (Ne+ for instance): A recollision has ex-
cited the inner electron while the recolliding electron
remains ionized [20] [which allows us to neglect the
electron-electron interaction in Hamiltonian (1)]. The
resulting reduced-dimensional Hamiltonian with one and
a half degrees of freedom reads

H (x, p, t) =
p2

2
− 2√

x2 + a2
+ xE0 sin(ωt+ φ0), (2)

where φ0 denotes the phase at which the last recollision
occurs [25]. RESI are obtained by imposing the following

FIG. 2: Left panels: Poincaré section (stroboscopic plots
at the maximum of the laser field, i.e. φ = π/2) of RESI
trajectories of the one-electron reduced Hamiltonian (2) for
Ne+ detected from a large set of random initial conditions
for a laser intensity I = 3 × 1015 W · cm−2. Right panels:
Poincaré section (with the same surface of section and laser
intensity as the left panels) of the stable (light orange dots)
and unstable (dark blue dots) manifolds of the periodic orbit
Oa of Hamiltonian (2). The position of the periodic orbit Oa

is indicated with a black diamond (see the arrow) in the upper
right panel. The pink area in the upper panels represents the
part of phase space from which the inner electron does not
ionize. The lower panels focus on specific parts of the phase
space depicted in the upper panels.

requirements to trajectories of Hamiltonian (2), initiated
randomly: They are those for which the electron ion-
izes at the end of the laser pulse and, during (at least)
half of a laser cycle it remains bound to the nucleus.
In the left panels of Fig. 2, we represent Poincaré sec-
tions (stroboscopic plots at the maximum of the laser,
i.e., φ ≡ ωt + φ0 mod 2π = π/2) of all the RESI tra-
jectories that were detected according to the above cri-
teria for Hamiltonian (2). For clarity we left out the
two first points on the Poincaré section for each detected
RESI (the missing points are located in the same part of
phase space as the remaining ones, but they clutter the
fine structures depicted on the figure). Note the close
similarity between the Poincaré section of trajectories of
the two-electron system (1) in Fig. 1 and the ones of
the reduced one electron system (2) in Fig. 2 (upper left
panel). In particular the filamented patterns in both fig-
ures stand out.

The dynamics given by Hamiltonian (2) in phase space
is the key to the patterns formed by the RESI trajecto-
ries. Previous studies on Hamiltonian (2) [20, 24] have
yielded two qualitatively different kinds of dynamics for
the electron driven by the field: In the competition be-
tween Coulomb attraction to the nucleus and the laser
excitation, either the latter prevails, and the electron is
quickly ionized; or the Coulomb attraction manages to



3

maintain the electron trapped near the core [27]. Two ar-
eas in phase space emerge from this distinction: A bound
area, close to the nucleus (pink area in Fig. 2, upper pan-
els), where the electron is trapped by the nucleus and
cannot ionize; and an unbound area, further away (white
area in the same panels), where the electron is quickly
ionized by the laser. Loosely speaking, one can almost
certainly predict the electron’s fate from its starting po-
sition in phase space: Un-ionized if it starts in the bound
area (colored pink in Fig. 2, upper panels) or ionized if
it starts in the unbound area (outside the pink region).
The comparatively long ionization times stem from the
RESI trajectories starting from the edge of the bound
area. A more detailed study shows that the behavior in
the unbound region is more complex than anticipated.
This is readily observed by the patterns present in the
unbound region in Fig. 2. The rich dynamics in that re-
gion is caused by the structures observed for the RESI
trajectories, as we shall see below.

A thin chaotic transition layer of phase space in the
unbound region, and located outside the last invariant
torus that defines the bound region, is responsible for
RESI. This region is filled with periodic orbits, invari-
ant tori (in small elliptic islands), cantori, stable and
unstable manifolds of hyperbolic orbits, etc. . . In what
follows, we show that this transition region, at a given
intensity, is organized by a small number (between one
and three) of hyperbolic periodic orbits. All those pe-
riodic orbits are created by the main resonances of the
free field dynamics [E0 = 0 in Hamiltonian (2)] and the
laser (the resonant periodic orbits have the same period
as the laser). Since they are linked by symmetry we need
to consider only one of them. We denote that periodic
orbit by Oa.

The behavior around Oa depends strongly on its lo-
cation, linear, and nonlinear stability properties. To an-
alyze the nonlinear properties of this orbit, and to un-
derstand how Oa organizes effectively the dynamics in
the transition region, we compute the stable and unsta-
ble manifolds of the hyperbolic periodic orbit Oa and
display the resulting pictures in Fig. 2 (right panels).
These are the pathways by which the electrons approach
or leave the core. Note the strong similarities of the
unstable manifold of Oa with the Poincaré sections of
RESI trajectories in Fig. 1. This similarity confirms the
important role played by this unstable manifold in the
RESI process. Looking at Fig. 2, we see that the sta-
ble and unstable manifolds associated with Oa develop
around the bound area. Parts of these manifolds are in
the close vicinity of the bound region, and branches ex-
tend deep into the unbound region. Besides, the thinness
of those manifolds explains why the transition between
the bound and unbound areas is so sharp [20]. In addi-
tion, we see that the stable and unstable manifolds inter-
sect an infinite number of times, a characteristic feature
of a chaotic dynamics [28]. A comparison between the
left and right panels of Fig. 2 (obtained for an intensity
I = 3 × 1015 W · cm−2) shows that the unstable mani-

FIG. 3: Projection of the unstable manifold of the periodic
orbit Oa of Hamiltonian (2) for I = 3× 1015 W · cm−2 in the
(x,φ) plane. The black curve is a projection of the periodic
orbit Oa in the plane (x, φ), and the black squares indicate
the position of the saddle point at the maximum of the field.

fold of Oa regulates the dynamics of the RESI trajecto-
ries; even some of the very fine details of the unstable
manifold are reproduced by this set of RESI trajectories.
We note that parts of the unstable manifold are miss-
ing: They correspond to the intersections between the
stable and the unstable manifolds. The overlap between
the stable and unstable manifolds of Oa forms a “sticky”
region [17] that traps trajectories for some time before
ionizing. There are other periodic orbits in the vicinity
of the bound area, but they influence only the fine details
of the chaotic structure.

For deeper insight into the shape of the unstable man-
ifold of Oa, we represent a projection of this manifold in
the plane (x, φ) together with a projection of Oa (black
curve) in Fig. 3. It shows a central region near x = 0 and
two main branches which depart from this central region.
It is worth noticing that these branches are located near
the extrema of the electric field, i.e., when φ = π/2 and
φ = 3π/2. Since a RESI trajectory follows asymptoti-
cally this unstable manifold, we see that this trajectory
will leave the nucleus at times that correspond to the ex-
trema of the electric field. This is consistent with what
is already observed [8]. The unstable manifold has some
other branches through which an electron can leave the
nucleus and that do not correspond to extrema of the
electric field. However, the probability of those ioniza-
tion channels is much smaller.

The bound region shrinks with increasing laser inten-
sity, and higher-order resonant periodic orbits are drawn
to the unbound region. To investigate the impact of these
orbits on RESI, we compute the proportion of RESI rel-
ative to the double ionization yield of Hamiltonian (1)
when the intensity of the laser is varied. These yields are
compared with the stability index [16] of the resonant pe-
riodic orbits identified from the reduced model (2). The
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FIG. 4: Proportion of RESI relative to the double ioniza-
tion yield for neon (red dots, left hand y-axis) obtained from
Hamiltonian (1) and linear stability index [16] of the reso-
nant periodic orbits of Hamiltonian (2) (blue curves, right
hand y-axis) as functions of the laser intensity I . Continuous
and broken curves refer to odd and even (1 : n) resonances,
respectively (see text).

stability index measures the typical time this orbit is ex-
pected to influence the neighboring dynamics: The larger
the stability index, the sooner a neighboring trajectory
will diverge from it. The resulting picture is displayed in
Fig. 4 for neon. It shows that, in the nonsequential dou-

ble ionization regime the proportion of RESI oscillates
around an almost constant value. These oscillations are
a clear signature of the resonant periodic orbits of the re-
duced Hamiltonian (2) which organize the chaotic layer
around the bound region.

The same analysis can be carried out for other two-
active-electron atoms by varying the ground state en-
ergy and adjusting the softening parameters. In partic-
ular, for helium, neon, and argon we have found that
the RESI process is organized by the same resonant pe-
riodic orbits. Our findings suggest that the differences in
the momentum spectra as observed for various atoms in
Ref. [4, 6, 7] do not come from the phase space structures
that regulate RESI. Since the relative amount of RESI
versus NSDI is fairly similar for all three atoms and does
not depend strongly on the intensity in the NSDI regime,
the origin of these differences must be sought in the pro-
portion of SDI versus NSDI in various intensity regimes.

In summary, we have shown that the process of RESI
is a signature of a chaotic behavior resulting from the
competition between the laser field and the attraction to
the nucleus. This mechanism holds irrespectively of the
atom, and it persists all over the nonsequential double
ionization regime. The oscillations observed in Fig. 4 are
one of the few signatures of chaos in the dynamics of two
active electron atoms subjected to strong laser pulses.
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