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Proceedings of Symposia in Pure Mathematics

Almost Sure Rotation Number of Circle Endomorphisms

Sylvain Crovisier

Abstract. We introduce the almost sure rotation number ρas for some circle
endomorphisms f . From ergodic theory, this extends the classical rotation
number. By restriction to a particular piecewise linear family, we show that
ρas has Hölder variations with f and is irrational on a full Lebesgue measure
set of parameters.

1. Introduction

One would expect that the theory of dynamical systems ought to be able to
describe the asymptotic behaviour of “most orbits” of “most dynamical systems”.
This is the goal we want to adopt here in order to study circle endomorphisms and
their rotation number.

The rotation number was introduced by H. Poincaré for orientation-preserving
circle homeomorphisms as a conjugacy invariant. It says how fast orbits rotate
around the circle. We consider here a larger class of systems: the circle endomor-
phisms.

We will denote by T1 = R/Z the circle and by π : R → T1 its universal
covering. A map f : T1 → T1 is a circle endomorphism if there exists a continuous
map f̃ : R → R such that π ◦ f̃ = f ◦ π. It will be convenient to fix arbitrarily a
choice for the lift f̃ . The set of circle endomorphisms contains orientation preserving
circle homeomorphisms but also non-injective maps. A smooth model in this theory,
known as the Arnol’d family (f̃a,ω), and parametrized by a ≥ 0 and ω ∈ R, is defined
by

f̃a,ω(x̃) = x̃+ a sin(2πx̃) + ω

for any x̃ ∈ R. The map fa,ω is a homeomorphism when 0 ≤ a ≤ 1/2π.

For any point x ∈ T1, its rotation number during n ∈ N \ {0} iterations by f̃ is

ρn(x, f̃) =
f̃n(x̃)− x̃

n
,

where x̃ ∈ R is any lift of x (i.e. π(x̃) = x). The asymptotic rotation behaviour of

f is characterised by taking the limit values of ρn(x, f̃ ) when n goes to infinity. A
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classical result (see [CGT]) asserts that one gets a compact interval R(f̃), called

the rotation set of f̃ :

R(f̃) =
⋃

x∈T1

limit points of the sequence(ρn(x, f̃ )).

The rotation set may also be obtained from the measure theory: for any f -invariant
Borel probability measure µ over T1, let us define the rotation number of µ by

ρ(µ, f̃) =

∫

[0,1)

(f̃(x̃)− x̃) dµ.

Then,
R(f̃ ) = {ρ(µ, f̃), µ f -invariant probability measure}.

For some endomorphisms it may happen however that the sequence ρn(x, f̃)
converges for most orbits (i.e. for x in a set with full Lebesgue measure) toward
the same number. We call this “physical” rotation number the almost sure rotation
number, ρas(f̃). We hope ρas(f̃) to be defined for most systems f in order to study
how it varies. In particular, for any endomorphism f , we first introduce the family
(fω) after composition by the rotation:

f̃ω(x̃) = f̃(x̃) + ω.

We then consider, where it is defined, the map

ω 7→ ρas(f̃ω).

Our forthcoming results are motivated by the standard situation of circle dif-
feomorphisms (Section 2): in this case, R(f̃) is a singleton, so that ρas(f̃) is always

defined and called the rotation number of f̃ . Its dependence with respect to f̃ is
well-understood after Herman’s work in [H79, H77]. Figure 1 shows as an example

the variations of ω 7→ ρ(f̃a,ω) for the Arnol’d family when a = 0.15.
In order to switch to the non-invertible endomorphisms f , one has to require

some assumption that guarantees the existence of ρas(f̃). This is discussed in
Section 3. In the following sections, we restrict our study to a particular 2-parameter
family (a piecewise linear model for the Arnol’d endomorphisms), (fλ,ω), defined
as follows, for λ ≥ 1 and ω ∈ R (see Figure 2):

(1) When x̃ ∈ [0, 1+λ
2λ ), f̃λ,ω(x̃) = λx+ ω.

(2) When x̃ ∈ [ 1−λ
2λ , 0), f̃λ,ω(x̃) = −λx+ ω.

(3) For any x̃ ∈ R, f̃λ,ω(x̃ + 1) = f̃λ,ω(x̃) + 1.

When λ > 3, ρas(f̃λ,ω) is well defined and will be denoted by ρas(λ, ω). Figure 3
shows the map ω 7→ ρas(λ, ω) when λ = 3.5 (compare with Figure 1).

Then, we show in Section 4 that ρas(f̃λ,ω) varies smoothly:

Theorem 1.1. The maps ω 7→ ρas(λ, ω) for λ > 3 are Hölder continuous.

In view of Herman’s results (Section 2), it is also natural to ask how ρas(λ, ω)
varies with λ and ω. For example, is it mostly rational or irrational? Section 5
deals with this question.

Theorem 1.2. There exists λ0 > 3 and a set E with full Lebesgue measure in
(λ0,+∞]× R such that for any (λ, ω) ∈ E, ρas(λ, ω) is irrational.

Those last two results come from [Cr01b]. We present here only a sketch of
the proofs. A detailed exposition of Theorem 1.1 appeared also in [Cr01a].
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Figure 1. Rotation number ρ of the Arnol’d diffeomorphisms x̃ 7→
x̃+ 0.15 sin(2πx̃) + ω.
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Figure 2. The map x̃ 7→ f̃λ,ω(x̃).

2. The invertible case

Let us consider an orientation preserving circle homeomorphism f and the
associated map ω 7→ ρ(ω) = ρ(f̃ω). V. Arnol’d and M. Herman remarked that its
graph is a devil staircase (see [A, H77, H79] and Figure 1):

Proposition 2.1 (Arnol’d, Herman).

(1) The map ρ is continuous and non-decreasing.
(2) For any irrational number α ∈ R \Q, ρ−1(α) is a singleton.
(3) If f satisfies a generic condition A0, for any rational number p/q, ρ−1(p/q)

has non-empty interior.

Proposition 2.1 says that for a generic map f (in fact, for any f in an open

and dense subset of circle orientation preserving homeomorphisms space) ρ(f̃) is
rational. On an open and dense subset of R, ρ takes rational values. On the other
hand, Herman proved also:

Theorem 2.2 (Herman). If f is a C3-diffeomorphism that satisfies a generic con-
dition A3, the map ρ is absolutely continuous and takes irrational values on a
non-zero Lebesgue measure set.

The Arnol’d maps with 0 < a < 1/2π satisfy both condition A0 and A3.
In the measure sense, rational and irrational values are both relevant. Several
improvements to these results have been given later [Ś88, G93, GŚ, T92].

3. The non-invertible case

3.1. The rotation interval. We will only assume now that f is an endo-
morphism and for any ω ∈ R the rotation set of f̃ω will be denoted by R(f̃ω) =
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Figure 3. The maps ρ−, ρas, and ρ+ for the slope λ = 3.5.
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[ρ−(f̃ω), ρ
+(f̃ω)]. The dependence of R(f̃ω) in ω has been studied by P. Boy-

land in [B]. He showed that essentially Proposition 2.1 still holds for the maps

ω 7→ ρ−(f̃ω) and ω 7→ ρ+(f̃ω). G. Świa̧tek proved however in [Ś89] that Theo-
rem 2.2 fails here:

Theorem 3.1 (G. Świa̧tek). For f in some large class of C2 bimodal circle en-

domorphisms, and ω in a full Lebesgue measure subset of R, the endpoints ρ−(f̃ω)

and ρ+(f̃ω) are both rational.

Here again, Theorem 3.1 applies with the Arnol’d endomorphisms (a > 1/2π).

3.2. The almost sure rotation number. Those results give a complete
topological description of the rotation behaviour of circle endomorphisms. From
now on we adopt an ergodic-theoretic viewpoint and consider the almost sure rota-
tion number when it is defined. Note that this is no longer a topological invariant
of the dynamics.

The almost sure rotation number is obviously defined when a periodic cycle
attracts almost every orbit. The almost sure rotation number is then rational and
(at least in the C2 topology) this situation is robust. Thus, we will consider the
much more interesting endomorphisms f that satisfy the following condition:

(P)
There exists a set Ω ⊂ R with positive Lebesgue measure such that
any map fω with ω ∈ Ω preserves an ergodic probability measure
µω that is equivalent to the Lebesgue measure on T1.

By Birkhoff’s ergodic theorem, for any ω ∈ Ω, and Lebesgue almost every point
x ∈ T1, the sequence ρn(x, f̃ω) converges to ρ(µω, f̃ω), the almost sure rotation

number of f̃ω.

3.3. Smooth endomorphisms. It is now well-known that the existence of
an absolutely continuous invariant measure for families of smooth critical maps
is associated to large sets of parameters. This was first proven by M. Jakobson
in [J] for the quadratic family but extended later to multimodal maps (see [T93,

WY]). This absolutely continuous invariant measure is ergodic and has a positive
Lyapounov exponent. By [L], it is thus sufficient to prove then that its support
is the full circle in order to get (P). This can be obtained from the hyperbolic
behaviour of one-dimensional maps far from the critical points:

Proposition 3.2. There exists in ( 1
2π ,+∞) a set A of positive Lebesgue measure

such that for all a ∈ A, the Arnol’d families (fa,ω)ω∈R satisfy (P).

This has been proven in [Cr01b]. The measure is however obtained in an
indirect way so that the study of the variations of ρas seems difficult.

3.4. Piecewise linear endomorphisms. In order to simplify our study we
will now consider piecewise expanding maps: they are known to preserve absolutely
continuous probability measures. As a model we will work with the piecewise
linear family of bimodal circle endomorphisms (fλ,ω) as defined in Section 1. Many
authors have already been interested in piecewise linear circle maps (see [H79,

GS]).
The turning points c−0 = π(0) and c+0 = π(1 + λ/2λ) will be called the critical

points. Property (P) is easily checked:
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Proposition 3.3. For any λ > 3, the family (fλ,ω) satisfies Property (P) with
Ω = R.

Proof. From [LY, L], fλ,ω preserves at least one absolutely continuous er-
godic probability measure µ. Its support is a finite union of disjoint compact inter-
vals where µ is equivalent to the Lebesgue measure. Let I be one of these intervals.
If one assumes that I is not the full circle T1, as λ > 3, the length of fλ,ω(I) is
strictly larger than the length of I even if I contains one or the two critical points.
This is a contradiction since I should be mapped into itself after some iteration. �

For some parameters, it is possible to compute explicitly ρas(λ, ω) (see [Cr01a])
and show that the map ρas is not in general an increasing function of ω (see Fig-
ure 3).

4. Regularity

4.1. Main results. For any parameter (λ, ω) we will denote by µλ,ω the in-
variant probability measure which is equivalent to the Lebesgue measure m and by
hλ,ω its density. As a function in L1(m), hλ,ω varies smoothly with the parameters.

Theorem 4.1. For any 1 ≤ p < ∞,

(1) the map (λ, ω) 7→ hλ,ω from (3,+∞)× R to Lp(m) is continuous;
(2) for any λ > 3, the map ω 7→ hλ,ω from R to Lp(m) is α-Hölder continuous

for any exponent 0 < α < 1.

This is false in L∞(m) as explained below. Since ρas is obtained by integration
with respect to the measure µλ,ω, the same result is true for the maps (λ, ω) 7→
ρas(λ, ω) and ω 7→ ρas(λ, ω) and proves Theorem 1.1. It will follow from Section 5
that for most λ, the map ω 7→ ρas(λ, ω) is not Lipschitz, so that the exponents
given by Theorem 4.1 are optimal. The proof gives however a sharper modulus of
continuity in ω| logω|.

Theorem 4.1 also gives the following corollary.

Corollary 4.2. For any λ > 3, the set of parameters ω such that ρas(λ, ω) is
irrational has Hausdorff dimension equal to 1.

This is a first step towards Theorem 1.2.

Proof. A map which is α-Hölder continuous sends any set with Hausdorff
dimension β onto a set whose Hausdorff dimension is bounded by β/α. Here, α is
arbitrarily close to 1, and the image (the set of irrational numbers) has dimension
β = 1. �

4.2. The symbolic Perron-Frobenius operator. We sketch here the proof
of Theorem 4.1. The main idea is to introduce some operator with suitable prop-
erties.

Recall first that the absolutely continuous invariant measures can be obtained as
fixed points for the Perron-Frobenius linear operator L in the space of the densities
that have bounded variations, BV(T1): for any absolutely continuous invariant
measure µ = h.m with density h in BV(T1), the measure f(µ) is also absolutely
continuous with respect to the Lebesgue measure. The Perron-Frobenius operator
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c−1 c+1

c−1 c+1

Lλ′,ω′ .1

Lλ,ω.1

Lλ′,ω′ .1− Lλ,ω .1

Figure 4. Discontinuity of (λ, ω) 7→ Lλ,ω.

associates to the density h the density L.h of the measure f(µ). It is also defined
by the following equality:

(4.1) (L.h) (x) =
∑

f(y)=x

h(y)

|Df(y)|
.

This operator has good spectral properties: in particular, the eigenvalue 1 is iso-
lated, so that one can expect to follow the fixed points after perturbation of L.

However, the Perron-Frobenius operator Lω,λ acting on BV(T1) and associated
to the map fλ,ω does not vary continuously with the parameters (λ, ω). This can be
easily seen since the constant function 1 is mapped by Lλ,ω onto a function which
takes on two values. For closeby parameters (λ, ω) and (λ′, ω′), the function

Lλ′,ω′ .1− Lλ,ω .1

is small in any space Lp(m) but not in L∞(m) or in BV(T1) (see Figure 4): note
that the sizes and the positions of the discontinuities of the two functions are close
together. But since the positions of the discontinuities are sligthly different, the
difference between the two functions has large discontinuities.

This problem can be bypassed by changing the function space. Like for Lλ,ω .1,
all the functions Ln

λ,ω.1 (n ≥ 1) are piecewise constant with discontinuities along

the orbits of the critical points c+0 and c−0 . This leads us to work in a sequence space:
we first choose any 1 < u < λ/2. For s = (v, (s−n )n≥1

, (s+n )n≥1
) in R×RN ×RN, we

then set

‖s‖ = |v|+
∑

n≥1

(|s−n |+ |s+n |)u
n

and define the Banach space

(4.2) Êu =



s, ‖s‖ < ∞ and

∑

n≥1

(s−n + s+n ) = 0



 .
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Any element s of Êu can be identified by some linear map iλ,ω to a function in

L1(m) defined by

(4.3) iλ,ω.s(x) = v +

∫

[0,x)

∑

n

(s−n δc−n + s+n δc+n ),

where δx is the Dirac measure at x and (c−n ) and (c+n ) the postcritical orbits. (The
condition

∑
n≥1(s

−
n + s+n ) = 0 in (4.2) assures the periodicity of iλ,ω.s.)

A linear Perron-Frobenius operator L̂λ,ω can be defined on Êu (it is not unique
in general) so that the following diagram commutes:

L1(m)
Lλ,ω

−−−−→ L1(m)
xiλ,ω

xiλ,ω

Êu

L̂λ,ω

−−−−→ Êu.

The definition of L̂λ,ω is very natural from the definition (4.1) of Lλ,ω but is simpler
when the following generic assumption is satisfied (we will not discuss in detail the
general situation here):

∀n ≥ 1, c−n , c
+
n 6∈ {c−0 , c

+
0 }. (no collision condition)

In this case, for any s = (v, (s−n ), (s
+
n )), the values of iλ,ω.s at c−0 and c+0 are well

defined and equal to

(4.4) v− = v, v+ = v +
∑

c
−
n ∈π([0, 1+λ

2λ
))

s−n +
∑

c
+
n∈π([0, 1+λ

2λ
))

s+n ,

respectively. Let us define η−n = −1 or +1 in the case when c−n belongs to the
decreasing or increasing interval of fλ,ω. One defines similarly η+n . The image

sequence r = (w, (r−n ), (r+n )) = L̂λ,ω .s is defined by

r−1 =
2v−

λ
, r+1 =

−2v+

λ
, for n ≥ 2, r±n =

η±n−1s
±
n−1

λ
;

and the value of w may now be computed by noting that the integrals of iλ,ω.s and
iλ,ω.r are equal.

We introduced this space Êu because the operator L̂λ,ω can be shown to have
both of the following properties:

Spectral property: The operator L̂λ,ω keeps the good spectral properties
of the initial operator Lλ,ω : the eigenvalue 1 is isolated and has multi-
plicity 1. This is a very classical argument if one shows that the essential

spectral radius of L̂λ,ω is strictly less than 1. The idea is to consider the

projection P : Êu → Êu defined by

P(v, (s−n ), (s
+
n )) = (v, (s−1 , 0, 0, . . . ), (s

+
1 , 0, 0, . . . )).

Note that P ◦ L̂λ,ω is a finite rank operator and from (4.4) the norm of

L̂λ,ω−P◦L̂λ,ω is bounded by u
λ
. Consequently (see [DS] lemma VIII.8.2),

the spectrum of L̂λ,ω outisde the disk D(0, u
λ
) consists of a finite set of

eigenvalues.
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Continuity property: The eigenspace associated to the eigenvalue 1 of the

operator L̂λ,ω varies continuously with the dynamics fλ,ω. This comes

from the fact that, for each density, the space Êu codes each discontinuity
by its size but forgets its position on the circle.

In particular, the obstruction to the continuity in the space BV(T1) is
no longer true: this can be seen on the example given before by Figure 4:

the image of 1 by L̂λ,ω is
(
1 + (‖ω‖ − ‖ 1+λ

2 + ω‖) 2
λ
,
(
2
λ
, 0, 0, . . .

)
,
(
−2
λ
, 0, 0, . . .

))
,

where ‖x‖ denotes the fractional part of x. Note that c−1 and c+1 are equal

to π(ω) and π(1+λ
2 +ω). When the “no collision condition” is satisfied, c−1

and c+1 are distinct from c−0 so that ω and 1+λ
2 +ω have their integer parts

locally constant (and their fractional parts vary locally continuously). The

continuity of L̂λ,ω.1 with (λ, ω) is then clear.
One may obtain the continuity of the eigenspace associated to 1 by

noting that for any eigenvector s = (v, (s−n ), (s
+
n )), the sequences (s

−
n ) and

(s+n ) decrease like (λ−n) and that λ−1 < u−1. Consequently, the continu-
ity of the eigenspace with respect to the parameters (λ, ω) will follow from

the continuity of the projection of L̂λ,ω on each coordinate of R×RN×RN.
This is a consequence of the above definition of the operator after noting
that for nearby parameters that satisfy the no collision condition, each
sequence (η−n ) or (η+n ) coincides up to an arbitrarily large integer n.

This idea to introduce an operator acting on a symbolic space is inspired by [T00].

4.3. Conclusion of the proof of Theorem 4.1. This time and thanks to the
above properties, the argument announced at the beginning of the previous section
can be carried out: the eigenspace associated to the eigenvalue 1 can be followed
continuously in the space Êu when the parameters (λ, ω) vary. It is then easy to
show that the image by iλ,ω also varies continuously in L1(m): let s = (v, (s−n ), (s

+
n ))

and r = (w, (r−n ), (r+n )) be the two fixed points of closeby operators L̂λ,ω and L̂λ′,ω′

that code for some probability densities h and h′. Let us compute the distance
between h and h′ in L1. From (4.3), we get:
∫

|h− h′| dm ≤ |v − w|+
∑

n≥1

(|s−n − r−n |+ |s+n − r+n |)+

+
∑

n≥1

(|s−n |+ |r−n |) d(c
−
n (λ, ω), c

−
n (λ

′, ω′)) +
∑

n≥1

(|s+n |+ |r+n |) d(c
+
n (λ, ω), c

+
n (λ

′, ω′)).

Note that the sequences (s−n ), (s
+
n ), (r

−
n ) and (r+n ) decrease geometrically as λ−n

or λ′−n
(see (4.4)). Let us consider some large integer N in order to truncate the

sums:
∫

|h− h′| dm ≤ ‖s− r‖+
2|v|λ−N

λ− 1
+

2|w|λ′−N

λ′ − 1
+

2(|v|+ |w|)
N∑

n=1

(
d(c−n (λ, ω), c

−
n (λ

′, ω′)) + d(c−n (λ, ω), c
−
n (λ

′, ω′))
)
.

By taking N large enough and the parameters (λ, ω) and (λ′, ω′) close, one gets
that h − h′ is arbitrarily small in L1 and proves at last the continuity of h in L1
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with respect to the parameters. Some improvements of these arguments yield the
other conclusions of Theorem 4.1.

5. Generic values

5.1. Main results. The approach of this section is independent of the pre-
vious one. All the results stated here are consequences of the following technical
theorem:

Theorem 5.1. There exist a constant C0 > 0, a slope λ0 > 3 and some subset E
of the parameter space (λ0,+∞)× R with full Lebesgue measure such that for any
(λ, ω0) ∈ E and K > 0, there exist 0 < r < K−1 and P > K satisfying

sup
|ω−ω0|<r

|ρas(λ, ω)− (ρas(λ, ω0) + P.(ω − ω0))| < C0.r.

In other words, for any (λ, ω0), the slope of the map ω 7→ ρas(λ, ω) at ω0 is
arbitrarily large at some scales. The proof shows that at those points the slope
may be negative or positive depending on the scale r. Thus, for most λ the map
ω 7→ ρas(λ, ω) is not so smooth. In particular, we get the following corollary.

Corollary 5.2. There exists a slope λ0 such that for Lebesgue-almost any slope
λ > λ0, the map ω 7→ ρas(λ, ω) is not differentiable on a full Lebesgue measure set.
Hence, it is not absolutely continuous.

It is not true for all values of λ since for λ = 2n+1 with n ∈ N \ {0}, the usual
Lebesgue measure is preserved so that ρas(λ, ω) = ω+C, where C depends only on
λ.

Theorem 5.1 also has a positive consequence, the following corollary, which
proves Theorem 1.2:

Corollary 5.3. There exists a slope λ0 > 3 such that for any ρ0 ∈ R, the set of
parameters ((λ0,+∞)× R) ∩ ρ−1(ρ0) has zero Lebesgue measure.

Proof. Let E be the set given by Theorem 5.1. One argues by contradiction:
if ((λ0,+∞) × R) ∩ ρ−1(ρ0) has positive measure, there exist λ > λ0 and ω0 ∈ R

such that (λ, ω0) belongs to E and is a density point of the set ({λ}×R)∩ ρ−1(ρ0)
in {λ} × R for the Lebesgue measure.

By Theorem 5.1 with constantK = 3C0, there exists a sequence (rn) of positive
real numbers that converges to 0 such that for any ω with 1

2rn < |ω − ω0| < rn,

|ρas(λ, ω)− ρas(λ, ω0)| > K|ω − ω0| − C0rn > (
K

2
− C0)rn =

C0

2
rn,

so that ρas(λ, ω) 6= ρas(λ, ω0). The density of ({λ} × R) ∩ ρ−1(ρ0) in {λ} × (ω0 −
rn, ω0 + rn) is smaller than 1

2 , which is impossible since (λ, ω0) is a density point

of ({λ} × R) ∩ ρ−1(ρ0). �

5.2. Expression of ρas. We now sketch the proof of Theorem 5.1. The first
step shows that the almost sure rotation number may be approximated by some
affine functions of ω, at some scales of the parameter space (see Lemma 5.5).

The dynamics is controlled by the critical orbits (c−n ) and (c+n ). Let us recall
that we defined η−n = −1 or +1 in the case when c−n belongs to the decreasing or
increasing interval of fλ,ω. We defined similarly η+n . The sequences (η−n ) and (η+n )
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are called the kneading sequences of the dynamics. It is also useful to define two
derived sequences (ε−n ) and (ε+n ) by

ε−1 = 1, ε+1 = −1, and for any n ≥ 1, ε±n+1 = η±n ε±n .

They correspond to the sign of the jumps (s−n ) and (s+n ) (see formulas (4.4)).
The position of c−n is coded by its lift l−n in (−λ+1

2λ , λ+1
2λ ]. One introduces in the

same way the position l+n of c+n .
The density hλ,ω of the measure µλ,ω may now be computed explicitly using

the slope λ, the kneading invariants (η−n ) and (η+n ) and the positions (l−n ) and (l+n ).
This gives the following formula for the almost sure rotation number.

Lemma 5.4.

ρas − ω =
A

B
,

where

A =

λ2 − 1

4λ
−

∑

n≥1

η+n ε
+
n (λ− η+n )λ

−n
(
l+n
)2

1−
∑

η
+
n =1

2ε+nλ
−n

+

−
∑

n≥1

η−n ε
−
n (λ− η−n )λ

−n
(
l−n
)2

1 +
∑

η
−
n =1

2ε−n λ
−n

,

and

B =

1−
∑

n≥1

2ε+nλ
−nl+n

1−
∑

η
+
n =1

2ε+nλ
−n

+

−
∑

n≥1

2ε−nλ
−nl−n

1 +
∑

η
−
n =1

2ε−nλ
−n

.

Proof. We give the main steps of the proof and omit the computations.
Let s = (v, (s−n ), (s

+
n )) be the element of Êu that codes for the density hλ,ω. As

in (4.4), we introduce the values v− and v+ of hλ,ω at c−0 and c+0 . In particular:

(5.1) v− = v and v+ = v− +
∑

η
−
n =1

s−n +
∑

η
+
n =1

s+n .

The rotation number ρas was defined as
∫
[0,1)

(f̃λ,ω − Id)hλ,ω dm. This gives

(5.2) ρas − ω =
λ2 − 1

4λ
v+ −

∑

n≥1

η−n
s−n
2
(λ − η−n )l

−
n

2
−

∑

n≥1

η+n
s+n
2
(λ − η+n )l

+
n

2
.

We first recall that hλ,ω is normalized so that the measure hλ,ω.m is a proba-
bility. We get:

(5.3) v+ −
∑

n≥1

(s−n l
−
n + s+n l

+
n ) = 1.

The invariance of hλ,ω by Lλ,ω gives for n ≥ 1,

(5.4) s−n =
2v−ε−n
λn

, s+n =
2v+ε+n
λn

.

This allows us to eliminate (s−n ) and (s+n ) in formulas (5.1) and (5.3). Using those
two equalities, one can express v+ with the slope λ, the kneading invariants (η−n )
and (η+n ) and the positions (l−n ) and (l+n ).

From these relations, one supresses in (5.2) the occurrences of v+, (s−n ) and
(s+n ) and obtains the desired equality. �
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5.3. Approximation of ρas. Let us fix some slope λ > 3. One can approxi-
mate the density hλ,ω and the almost sure rotation number by truncating the terms
which depend on the quantities η−k , η

+
k , l

−
k and l+k with order k larger than n. One

sees that some discontinuities in the truncated sums appear when the signs of η±k
for 1 ≤ k ≤ n change. This led us to introduce the following definition (which
appeared already in Section 4.2 as the no collision condition):

We will say that no collision with order smaller than n ≥ 1 occurs on some
interval (ω1, ω2) if for any ω ∈ (ω1, ω2) and any 1 ≤ k ≤ n,

{c−k , c
+
k } ∩ {c−0 , c

+
0 } = ∅.

The truncated sums of order n thus vary continuously as long as no collision with
order smaller than n ≥ 1 occur.

A sharper approximation gives the following estimates on the variations of
ω 7→ ρas(λ, ω): on some intervals of the parameter space ω, the number ρas is
approached by some affine function whose slope ∆nρas is essentially equal to

(5.5)
∑

1≤k≤n

(
η+k (λ− η+k )l

+
k − η−k (λ− η−k )l−k

)
.

More precisely:

Lemma 5.5 (Approximation of ρas). There exist some universal constant C1, and
some function (λ, ω) 7→ B(λ, ω) bounded from below and above with the following
property: For any slope λ > 3, let us consider n ≥ 1 and some interval (ω1, ω2)
with no collision of order smaller than n. Then,

|ρas(λ, ω2)− ρas(λ, ω1)−∆nρas(λ, ω1).(ω2 − ω1)| < C1λ
−n+1,

where

(5.6) ∆nρas(λ, ω) = 1 + λ−1B(λ, ω)
∑

1≤k≤n

(
η+k (λ− η+k )l

+
k − η−k (λ− η−k )l

−
k

)
.

Proof. In order to explain how this estimate can be proven, we consider the
expression of ρas given by Lemma 5.4. Let us note that A is close to λ

4 and B close
to 1. Hence, one can roughly approximate ρas(λ, ω2)− ρas(λ, ω1)− (ω2 − ω1) by

(A(λ, ω2)−A(λ, ω1))−
λ

4
(B(λ, ω2)−B(λ, ω1)) .

The expected estimate allows an error of order λ−n+1. Hence, one can truncate in
the expressions for A and B the terms with order larger than n.

An easy computation shows that

(5.7) ε−k
∂

∂ω
c−k ≃ λk−1, ε+k

∂

∂ω
c+k ≃ −λk−1.

Let us consider in particular the points c±n . As no collision of order n occurs on
(ω1, ω2), we have by (5.7),

(5.8) |ω2 − ω1| < 2λ−n+1.

Since no collision of order smaller than n occurs on (ω1, ω2), the quantities η±k
and ε±k , with 1 ≤ k ≤ n, are constant on this interval. The length l±k varies like
∂c

±
k

∂ω
. One deduces by (5.7) that the term |B(λ, ω2) − B(λ, ω1)| may be bounded

(up to a constant) by nλ−1|ω2 − ω1|. A finer (but straightforward) computation
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shows that one has in fact the bound λ−2|ω2−ω1|. Hence from (5.8) the variations
of λ.B are bounded by λ−n and may be neglected.

We now come to the term A(λ, ω2) − A(λ, ω1). Here the dependence in l±k is
quadratic. First, the variation of A can be estimated (up to some bounded factor)
by:

−

∑

1≤k≤n

η+k ε
+
k (λ− η+k )λ

−k2l+k
∂c+k
∂ω

−
∑

1≤k≤n

η−k ε
−
k (λ− η−k )λ

−k2l−k
∂c−k
∂ω


 .(ω2−ω1)

and from (5.7) this may be approached by:

2λ−1




∑

1≤k≤n

η+k (λ− η+k )l
+
k −

∑

1≤k≤n

η−k (λ− η−k )l
−
k


 .(ω2 − ω1),

which shows how the sum (5.5) appears. These estimates together imply the lemma.
�

5.4. Localisation of the critical orbits. We now come to the second step
of the proof of Theorem 5.1.

In order to control the sum (5.5), it is convenient to estimate the positions
l−k and l+k of the critical images c−k and c+k for 1 ≤ k ≤ n. The following result
describes the behaviour of the critical orbits for any ω in some interval of length
≃ λ−n: first, it asserts that during p iterates the critical images c−k and c+k belong

to some prescribed regions of the circle (namely equal to π((0, 1
8 )) and π(( 3

16 ,
5
16 ))

respectively); second it shows that no collision with order smaller than n occurs on
this interval (so that Lemma 5.5 can be applied). Note that this second property
in the statement of Theorem 5.6 allows us to choose the integer n in some interval
[m,m+p] of length p. Theorem 5.1 will then be a direct consequence of Theorem 5.6
and of Lemma 5.5.

Theorem 5.6 (Localisation of the critical orbits). There exist some constants
C2 > 0 and λ0 > 3 and some full Lebesgue measure subset E of (λ0,+∞) × R

which satisfies the following property: for any (λ, ω) ∈ E and p ≥ 1, there exists
m ≥ 1 such that:

(1) l−m, . . . , l−m+p ∈ (0, 1
8 ) and l+m, . . . , l+m+p ∈ ( 3

16 ,
5
16 );

(2) for any m ≤ n ≤ m + p, there is no collision of order smaller than n on
(ω − C2λ

−n+1, ω + C2λ
−n+1).

5.5. Parameters exclusion: proof of Theorem 5.6. This part of the proof
is long and technical. However the arguments are similar to a standard situation
in one-dimensional dynamics: the parameters exclusion, that first appeared in [J].

Let us recall the estimate (5.7) :

(5.9)

∣∣∣∣
∂

∂ω
c−k

∣∣∣∣ ,
∣∣∣∣
∂

∂ω
c+k

∣∣∣∣ ≃ λk−1.

We consider some small neighborhoods V − and V + of π(1/16) and π(1/4)
respectively. In order to prove Theorem 5.6, we look for parameters (λ, ω0) such
that for any p ≥ 1, there exists m ≥ 1 such that:

(1) c−m, . . . , c−m+p ∈ V − and c+m, . . . , c+m+p ∈ V +.
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(2) For any 1 ≤ k ≤ m− 1,

d(c−m−k, {c
−
0 , c

+
0 }), d(c

+
m−k, {c

−
0 , c

+
0 }) > λ−k/4.

Theorem 5.6(1) is a direct consequence of (1). Theorem 5.6(2) is obtained from
both (1) and (2) with the estimate (5.9). More precisely, the estimate (2) is given
for the initial parameter ω0. If ω is close to ω0, we now obtain for any 1 ≤ k ≤ m−1,

d({c−m−k, c
+
m−k}, {c

−
0 , c

+
0 }) >

λ−k

4
− C3λ

m−k−1|ω − ω0|,

with some constant C3 > 0. This is non-zero if |ω−ω0| < λ−m+1/4C3. Thus, no col-
lision of order smaller than m−1 can occur on (ω0−λ−m+1/4C3, ω0+λ−m+1/4C3).
Using (1), the same argument for m ≤ k ≤ m+ p implies Theorem 5.6(2).

Hence, the main step of the proof shows that if one removes a zero Lebesgue
measure set, the remaining parameters satisfy both (1) and (2). This is very similar
to the parameters exclusions that appeared in the proof of Jakobson’s Theorem (see
Section 3.3), where the parameters that have too strong recurrence near the critical
set have to be avoided. Since the maps fλ,ω0

here are piecewise linear, the distortion
estimates are simplified.

However, the behaviour of both critical orbits can not be controlled indepen-
dently since one requires returns for (c−k ) and (c+k ) at the same time in V − and
V + respectively. Contrary to Jakobson’s theorem, we thus need to work in the
two-parameters space (3,+∞)× R.

5.6. Conclusion of the proof of Theorem 5.1. Let us consider the set of
parameters E given by Theorem 5.6. For (λ, ω0) ∈ E and K > 0, we choose any
large integer p ≫ K. In view of the statement of Theorem 5.6, we get some integer
m sufficiently large so that C2λ

−m+1 < K−1.
For any m ≤ n ≤ m + p, by Theorem 5.6(1) there is no collision of order

smaller than n on (ω1, ω2) = (ω0 − rn, ω0 + rn), where rn = C2λ
−n+1. Hence,

by Lemma 5.5, it is sufficient to fix some n such that |∆nρas(λ, ω0)| > K and set
r = rn.

Let us compare ∆mρas(λ, ω0) and ∆m+pρas(λ, ω0). By Theorem 5.6(2), each
term of order k ∈ {m, . . . ,m + p} in the sum (5.5) is bounded from above by
− 1

16 (λ− 1) (note also that η−k = η+k = 1). Hence, we get by (5.6),

∆m+pρas(λ, ω0) < ∆mρas(λ, ω0)−
p(λ− 1)B(λ, ω0)

16λ
< ∆mρas(λ, ω0)− 2K.

One deduces that either ∆mρas(λ, ω0) > K or ∆m+pρas(λ, ω0) < −K. Conse-
quently, n may be chosen equal to one of the integers m or m+ p, which concludes
the proof.
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endomorphismes de degré 1 du cercle, C. R. Acad. Sci. Paris Série I 299 (1984), 145–147.
[Cr01a] S. CROVISIER, Nombre de rotation presque sûr des endomorphismes du cercle affines
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Institut de Mathématiques de Bourgogne, UMR 5584, Université de Bourgogne, 9,
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