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Abstract. We prove that given a compact n-dimensional boundaryless man-
ifold M , n ≥ 2, there exists a residual subset R of the space of C1 diffeomor-
phisms Diff1(M) such that given any chain-transitive set K of f ∈ R then
either K admits a dominated splitting or else K is contained in the closure
of an infinite number of periodic sinks/sources. This result generalizes the
generic dichotomy for homoclinic classes in [BDP].

It follows from the above result that given a C1-generic diffeomorphism f

then either the nonwandering set Ω(f) may be decomposed into a finite number
of pairwise disjoint compact sets each of which admits a dominated splitting,
or else f exhibits infinitely many periodic sinks/sources (the “C1 Newhouse

phenomenon”). This result answers a question in [BDP] and generalizes the
generic dichotomy for surface diffeomorphisms in [M].

1. Context and notation

Throughout this paper, M denotes a compact boundaryless manifold of dimen-
sion n ≥ 2 and Diff1(M) is the space of C1-diffeomorphisms on M with the usual
topology.

Given an open subset U of Diff1(M), a subset R of U is residual in U if R
contains the intersection of a countable family of open and dense subsets of U ; in
this case R is dense in U . A set R ⊂ Diff1(M) is said to be residual if it is residual
in all of Diff1(M). A property (P) is locally generic if there is some nonempty open

set U ⊂ Diff1(M) such that (P) holds for all diffeomorphisms which belong to some
residual subset of U ; in this case property (P) is said to be generic in U . Property
(P) is said to be generic if it is generic in all of Diff1(M).

Given f ∈ Diff1(M), an f -invariant compact set Λ is transitive if there is some
x ∈ Λ such that the ω-limit set ωf (x) of x coincides with Λ.

A compact f -invariant set Λ is aperiodic if it contains no periodic orbits.
Given f ∈ Diff1(M) and x ∈ M , the f -orbit of x is given by Of (x) ≡ {fk(x)|k ∈

Z}. In the absence of ambiguity we may write O(x) for Of (x). If p is a periodic
point we denote its period by Π(p).

Given a compact subset K ⊂ M and ε > 0, we set Bε(K) ≡ {x ∈ M : d(x,K) <
ε}. Two compact subsets C and D of a metric space X are ε-Hausdorff-close if
Bε(C) ⊃ D and Bε(D) ⊃ C. In this case we write dH(C,D) < ε.
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2. Introduction

In the hyperbolic (i.e., Axiom A) context, the non-trivial dynamics may always
be decomposed into a finite number of pairwise disjoint transitive sets (the spectral
decomposition), each of which contains a dense subset of periodic points. Such sets
are called basic sets. A lot of recent literature is devoted to finding and studying
nonhyperbolic substitutes for the concept of hyperbolic basic sets.

Homoclinic classes – defined as the closure of the transverse homoclinic points
of a given hyperbolic periodic orbit1 – are natural candidates for such a substitute.
For one thing, they are always transitive. Furthermore, they are “robust” in that
they always admit continuations. The basic sets of Axiom A diffeomorphisms are
actually homoclinic classes. Finally, the definition of homoclinic class does not
require any hyperbolicity other than that of periodic points.

The theory of “nonhyperbolic basic sets” is best approached from a generic point
of view, that is, an approach that deals with properties of diffeomorphisms belong-
ing to residual subsets of Diff1(M) or of open regions of Diff1(M). The convenience
of this approach owes much to the genericity of Kupka-Smale diffeomorphisms, to
Pugh’s classical General Density Theorem [P], and to Hayashi’s more recent Con-
necting Lemma [H].

Mañé [M] has shown that generic surface diffeomorphisms either are Axiom A
(and hence admit spectral decompositions) or else exhibit infinitely many periodic
sinks/sources. Partly motivated by this result, Bonatti-Diaz-Pujals [BDP] showed
that, in any dimension, homoclinic classes of generic diffeomorphisms either admit
dominated splittings (a weak form of hyperbolicity, see the definition in Section 2
below) or else are contained in the closure of infinitely many periodic sinks/sources.
They then asked whether a global generalization of Mañé’s theorem might hold:
specifically, they asked whether the nonwandering sets of generic diffeomorphisms
either exhibit infinitely many periodic sinks/sources or else admit finite partitions
into compact invariant sets each of which admits a dominated splitting.

In a well-known result Newhouse [N] showed, on surfaces, the existence of C2-

locally residual subsets of Diff2(M2) consisting of diffeomorphisms which exhibit
infinitely many periodic sinks/sources. Later Bonatti and Diaz [BD1] used a dif-
ferent mechanism to obtain the C1-locally generic coexistence of infinitely many
periodic sinks/sources, for manifolds of dimensions 3 and higher. We will hence-
forth refer to the C1-generic coexistence of infinitely many periodic sinks/sources
as the C1 Newhouse phenomenon2.

We can thus loosely rephrase the question in [BDP] as follows: is it true that
generic diffeomorphisms either admit “nonhyperbolic spectral decompositions” or
else exhibit the C1 Newhouse phenomenon?

The main obstacle that [BDP] faced in using their dichotomy to solve this ques-
tion was that at the time it was unknown whether generically the nonwandering set
is a (not necessarily finite) union of homoclinic classes. In fact, Bonatti and Diaz
[BD2] later constructed a C1-locally generic region of diffeomorphisms exhibiting
uncountably many transitive sets each of which is not contained in (and actually

1To be precise: given f ∈ Diff1(M) and p a periodic hyperbolic point of f , the homoclinic

class of f relative to p is given by H(p, f) ≡ W s(O(p)) |∩ Wu(O(p)), where |∩ denotes points
of transverse intersection of the invariant manifolds.

2If a C1-generic diffeomorphism f exhibits infinitely many periodic sinks/sources, then there
is a C1-neighborhood of f where residually there also are infinitely many sinks/sources (see [A]).
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does not even intersect) any homoclinic class. So it turns out that even in the
generic context the homoclinic classes do not always constitute basic dynamically
indivisible “building blocks” of the dynamics. This fact suggests that an affirmative
answer to the question above requires that the dichotomy in [BDP] be extended to
a more general class of objects than that of homoclinic classes. This is the thrust
of our first result. Before we state it, let us define what this “more general class of
objects” is.

Given ε > 0 and f ∈ Diff1(M), an ε-pseudo-orbit of f is a (finite or infinite)
sequence {pk} of points in M such that d(f(pk), pk+1) < ε for every k. Given any
pair (x, y) of points in M we write x ⊣ y if for every ε > 0 there is an ε-pseudo-orbit
{pk}0≤k≤m such that p0 = x, pm = y and m ≥ 1. A point x ∈ M is chain-recurrent
if x ⊣ x. The set R(f) of chain-recurrent points is compact and f -invariant, and
contains the nonwandering set Ω(f). We define an equivalence relation on R(f) by
setting

x ⊢⊣ y ⇔ x ⊣ y and y ⊣ x.

Given a chain-recurrent point x ∈ M , its equivalence class C(x) under this relation
is called the chain-recurrence class of x. Clearly C(x) is f -invariant and compact.
More generally, a compact invariant set K is chain-transitive if given any two points
x, y in K and ε > 0, there is an ε-pseudo-orbit {pk}0≤k≤m contained in K such
that p0 = x, pm = y and m ≥ 1.

Bonatti and Crovisier [BC] have shown that for generic diffeomorphisms the
chain-recurrent set R(f) and the nonwandering set Ω(f) coincide. Thus, for generic
diffeomorphisms, the nonwandering set is a pairwise disjoint union of the chain-
recurrence classes C(x). Furthermore, generically each chain-recurrence class C(x)
is either a homoclinic class (and in particular has a dense subset of periodic points)
or else an aperiodic set. Hence chain-recurrence classes generalize, for generic dif-
feomorphisms, the concept of homoclinic class.

We can now state our first result in terms of these objects:

Theorem 2.1. There exists a residual subset R ⊂ Diff1(M) of diffeomorphisms f
such that given any chain-transitive set K of f , then either (a) or (b) holds:

a) there is a dominated splitting over K3;
b) the set K is contained is the Hausdorff limit of a sequence of periodic

sinks/sources of f .

Theorem 2.1 essentially follows from combining two recent results: a theorem
by Crovisier [C] and a generalization by Bonatti-Gourmelon-Vivier [BGV] of a
result of [BDP]. The theorem by [BGV] essentially states that an infinite set of
periodic orbits either admits a partition into a finite number of subsets each of
which admits a dominated splitting or else there is a small perturbation of one
of the periodic orbits such that the orbit becomes a periodic sink or source. The
theorem in [C] states that generically any chain-transitive set is the Hausdorff limit
of some sequence of periodic points. The proof of Theorem 2.1, roughly speaking,
goes as follows: given a chain-transitive set K of a generic diffeomorphism which
does not admit any dominated splitting, then by [C] it follows that K is Hausdorff-
approached by a sequence of periodic orbits. The absence of a dominated splitting
over K guarantees that the union of the periodic orbits of the sequence does not
admit any dominated splitting either. We then apply [BGV] to this sequence in

3A dominated splitting is a weak form of hyperbolicity, see section 3.
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order to create sinks/sources after small perturbations. When combined with some
generic arguments this ensures that K is contained in the Hausdorff limit of some
sequence of periodic sinks/sources.

We remark that Theorem 2.1 may also be obtained4 – albeit with greater effort –
by combining [C] with [BDP] and a result of Wen [W]. Wen’s result relates “global”
dominated splittings with the creation of homoclinic tangencies. From the generic
viewpoint, he has shown that the closure of the set of periodic orbits of a given index
admits a dominated splitting if no homoclinic tangencies can be created via small
C1-perturbations. One could extract a “local” version of this result from Wen’s
proof; this local result would say that given any set of periodic saddles with some
common index, then either (i) the closure of this set admits a dominated splitting,
or else (ii) one may create, via arbitrarily small C1 perturbations, a homoclinic
tangency associated to a periodic saddle orbit which is Hausdorff-close to one of
the saddles in the set.

The alternative proof of Theorem 2.1 would then go as follows. As in the
first proof outlined above, given a chain-transitive set K of a generic diffeomor-
phism which does not admit any dominated splitting, it follows by [C] that K is
Hausdorff-approached by a sequence of periodic orbits. Again as above, there can
be no dominated splitting over the union of the periodic orbits of the sequence.
Applying [W] to this sequence one obtains homoclinic tangencies associated to or-
bits in the sequence after small perturbations. Once a tangency is created a further
small perturbation creates a non-trivial homoclinic class associated to the periodic
orbit. Thus (allowing for some generic arguments) one proves that the set K is
(Hausdorff)-approached by non-trivial homoclinic classes.

One then applies the quantitative version of the generic dichotomy from [BDP],
which not only provides a dichotomy between dominated splittings and Newhouse’s
phenomenon for homoclinic classes, but it also provides a uniform estimate for the
“strength” of the dominated splittings. This quantitative version implies that either
the union of these homoclinic classes admits a dominated splitting (and as before it
then follows that K admits a dominated splitting) or else these homoclinic classes
(and henceK) are contained in the closure of infinitely many periodic sinks/sources.

Once we have Theorem 2.1, it is relatively easy to obtain an affirmative answer
to the question in [BDP], and hence a generalization of Mañé’s dichotomy to higher
dimensions. This is the content of our next result:

Theorem 2.2. There exists a residual subset R ⊂ Diff1(M) of diffeomorphisms f
such that either (a) or (b) holds:

a) the nonwandering set of f admits a decomposition

Ω(f) = Λ1 ∪ . . . ∪ Λkf

where the Λi’s are pairwise disjoint compact f -invariant sets each of which
is the union of chain-recurrence classes and admits some dominated split-
ting;

b) there are infinitely many periodic sinks/sources of f .

We note that, unlike hyperbolic spectral decomposition, the decomposition of
item (a) is in general not unique.

The same proof gives the following statement:

4In fact a first version of this paper written before [BGV] used this arguments.
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Theorem 2.3. There is a residual subset R ⊂ Diff1(M) of C1-diffeomorphisms f
such that:

Let us denote by K(f) the union of all chain-reccurrence classes which do not
admit any dominated splitting. Then K(f) is a compact invariant set contained
in the closure of the sinks and sources of f . Moreover, K(f) has arbitrarily small
neighborhoods U such that U ∩ R(f) is a union of chain-recurrence classes and is
both open and closed in R(f); furthermore, R(f) \ U is the union of d− 1 disjoint
invariant compact sets Λ1(U), . . . ,Λd−1(U), each of which is the union of chain-
recurrence classes and admits some dominated splitting.

The existence of a global dominated splitting appears – unlike hyperbolicity –
to be a rather weak condition. In general a global dominated splitting (e.g., a
dominated splitting over the nonwandering set, or over all of M) does not by itself
yield much information on the underlying dynamics of the diffeomorphism (except
in dimension 2, see [PS]). So far, most results in this direction also impose other,
usually quite restrictive, hypotheses. What the above result suggests, however, is
that – generically at least – the absence of a global dominated splitting is enough
to guarantee pathological dynamics.

Acknowledgments: We are grateful to M.-C. Arnaud, A. Baraviera, F. Béguin and
T. Vivier for fruitful discussions.

3. Technical Preliminaries

In this section we list several definitions and results that will be used in the next
sections.

Definition 3.1. Given f ∈ Diff1(M), a compact f -invariant set Λ ⊂ M admits an
dominated splitting of strength ℓ ∈ N and dimension i ∈ {1, . . . , d− 1} if there is a
Df -invariant splitting TΛM = E ⊕ F such that the fibers Ex of E have constant
dimension i and such that

||Df ℓ(x)|E || · ||Df−ℓ((f ℓ(x))|F || ≤ 1/2

for every x ∈ Λ.
In the absence of ambiguity we simply say that Λ admits a dominated splitting.

We now list two important properties of dominated splittings (see [BDP] section
1.3 or [V] section 6):

Proposition 3.2. Let K be an f -invariant compact set, f ∈ Diff1(M). Assume
that there is a sequence of compact f -invariant sets Kj ⊂ K such that:

i) Kj ⊂ Kj+1 for every j ∈ N;
ii) for every j ∈ N, Kj admits an dominated splitting TKj

M = Ej ⊕ Fj of
strength ℓ and dimension i;

iii) ∪j∈NKj = K.

Then K admits a dominated splitting of strength ℓ and dimension i.

Proposition 3.3. Let f ∈ Diff1(M) and let Λ be a compact f -invariant set with an
dominated splitting TΛM = E ⊕ F of strength ℓ and of dimension i. Then there is
an open neighborhood U of Λ in M such that every f -invariant compact set K ⊂ U
admits an dominated splitting TKM = E⊕F of strength ℓ and of dimension i which
is a (unique) continuation of the dominated splitting over Λ.
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Let us recall a result from Conley’s theory. A filtrating neighborhood of a compact
set K is a neighborhood of K which is the intersection of two open sets U and V
such that f(Ū) ⊂ U and f−1(V̄ ) ⊂ V .

Proposition 3.4. Let C(x) be a chain-recurrence class of some diffeomorphism f
of a compact manifold M . Then, there are arbitrarily small filtrating neighborhoods
of C(x).

Proof. Given ε > 0, let Uε(x) ≡ {y ∈ M : there is an ε-pseudo-orbit from x to y},
Vε(x) ≡ {y ∈ M : there is an ε-pseudo-orbit from y to x}, and Cε(x) ≡ Uε(x) ∩
Vε(x).

Then both Uε(x) and Vε(x) are open neighborhoods of C(x), and therefore so is
Cε(x). Moreover, clearly we have that C(x) =

⋂

n∈N
C 1

n
(x).

We claim that f(Uε(x)) ⊂ Uε(x) and that f−1(Vε(x)) ⊂ Vε(x). From the defini-
tion of ε-pseudo-orbit, the ε-neighborhood of f(Uε(x)) is contained in Uε(x) so that
Uε(x) is an attractor. The proof for Vε(x) follows by applying the same argument
to f−1.

Hence, for n large, C 1

n
(x) = U 1

n
(x) ∩ V 1

n
(x) is an arbitrarily small filtrating

neighborhood of C(X). �

Crovisier has obtained the following result concerning chain-transitive sets of
generic diffeomorphisms:

Theorem 3.5. [C, Corollary 1.9] There is a residual set R ⊂ Diff1(M) of diffeo-
morphisms f such that given any chain-transitive set K of f there is a sequence
{γn}n∈N of periodic orbits of f which converge to K in the Hausdorff topology.

The key to the proof of Theorem 2.1 is the following generalization by Bonatti-
Gourmelon-Vivier of a theorem from [BDP]:

Theorem 3.6. [BGV] Let f : M → M be a diffeomorphism of compact manifold
M and U be a C1-neighborhood of f , then there exist positive integers ℓ and n such
that any periodic point x of f with period Π(x) ≥ n satisfies one of the two following
properties:

• there is a dominated splitting of strength ℓ over the orbit of x,
• for any neighborhood U ⊂ M of the orbit Of (x) of x there is g ∈ U coin-

ciding with f on M \ U and on Of (x) such that the differential DgΠ(x)(x)
whose eigenvalues are all real and have the same modulus, which is different
from 1.

Acknowledgments: We are grateful to M.-C. Arnaud, A. Baraviera, F. Beguin and
T. Vivier for fruitful discussions at La Bussière.

4. Proof of Theorem 2.1

We start with a generic consequence of Theorem 3.6

Proposition 4.1. There a residual subset R ⊂ Diff1(M) of diffeomorphisms f
verifying the following property: for any η > 0 there is ℓ > 0 such that given any
periodic point x of f

• a) either there is a dominated splitting of strength ℓ over the orbit of x,
• b) or there exists some periodic sink or source y whose orbit is η-Hausdorff
close to the orbit of x.
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Proof. Let K(M) be the set of (maybe empty) compact subsets of M , endowed
with the Hausdorff distance5. Then K(M) is a compact metric space. Consider
now the metric space K(K(M)) defined similarly.

To any diffeomorphism f in Diff1(M), one associates the set Sf ∈ K(K(M))
which is the set of compact sets of M which are Hausdorff limits of a sequence of
sinks or sources. One notes that the map S : f 7→ Sf is lower semi-continuous. By

a well-known result (see [K], page 71), there is a residual R1 ⊂ Diff1(M) such that
every f ∈ R1 is a point of continuity of S.

We denote by R2 the Kupka-Smale residual set and by R the intersection R1 ∩
R2.

Let us consider f ∈ R and η > 0. We work by contradiction and assume that
the conclusion of the proposition does not hold. Hence, for any ℓ, there exists a
periodic point xℓ whose orbit has no dominated splitting of strength ℓ and which
is not η-Hausdorff close to any sink or source. Since f is Kupka-Smale, the lack of
dominated splitting implies that the period of xℓ goes to infinity with ℓ.

To any neighborhood U of f Theorem 3.6 associates two integers ℓ0 and n. For
ℓ large enough, we have ℓ ≥ ℓ0 and Π(xℓ) ≥ n. Since the orbit of xℓ by f has no
dominated splitting of strength ℓ, there is g ∈ U such that Of (xℓ) = Og(xℓ) and
xℓ is a hyperbolic sink or source of g. In particular the Hausdorff distance between
Sf and Sg is larger than η.

The neighborhood U of f can be chosen arbitrarily small, so we conclude that f
is not a continuity point of S, thereby obtaining a contradiction. �

End of the proof of Theorem 2.1. LetR be the residual set obtained by intersecting
the residual sets given by Proposition 4.1 and Theorem 3.5. Let f ∈ R and let K
be a chain-transitive set of f which does not admit any dominated splitting. Given
η > 0 we will show that there is a periodic sink or source whose Hausdorff distance
to K is less than 2η. Then taking η arbitrarily small this will imply that K is
Hausdorff-accumulated by a sequence of sinks or sources, as desired.

By Theorem 3.5 there is a sequence of periodic orbits {pn} which Hausdorff-
accumulates on K. Let ℓ > 0 be the number given by Proposition 4.1. Then
either there is some subsequence of {pn} which consists of periodic points whose
orbits admit dominated splittings of strength ℓ and (taking another subsequence if
necessary) of the same dimension, or else for arbitrarily large n there are periodic
sinks or sources whose orbits are η-Hausdorff-close to the orbit of pn. In the first
case K is Hausdorff-accumulated by a sequence of sets with uniform dominated
splittings, so by Proposition 3.2 K admits a dominated splitting of the same type,
a contradiction. Hence we are in the second case, where K is 2η-close to some
periodic sink or source, as announced.

�

5. Proof of Theorem 2.2

Let R be the residual set given by Theorem 2.1 and let f ∈ R have a finite
number of sinks and sources. By Theorem 2.1, each chain-recurrence class C(x)

5We previously defined the Hausdorff distance between two non-empty compact sets of M . The
Hausdorff distance between the empty set and any non-empty compact set of M will be taken
equal to twice the diameter of M .
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has a dominated splitting. By Proposition 3.4, C(x) has an arbitrarily small fil-
trating neighborhood U . Notice that for any such filtrating neighborhood U , the
intersection U ∩ R(f) is a union of chain-recurrence classes which furthermore is
open and closed in R(f). By Proposition 3.3, by choosing this U small enough we
guarantee that any invariant compact set in U has a dominated splitting.

Let us cover the chain-recurrent set by a finite collection U1, . . . , Un of such open
sets. We define :

Λ1 = U1 ∩R(f), Λ2 = (U2 \ U1) ∩R(f), . . . , Λi =



Ui \ (
i−1
⋃

j=1

Uj)



 ∩R(f).

The Λi are pairwise disjoint by construction. Let us show that they are invariant
compact sets: note that all of the sets Uj ∩ R(f)) are compact and open in R(f);
moreover they are unions of whole recurrence classes (and so invariant). Hence we

obtain the same properties for Λi = (Ui ∩ R(f) \ (
⋃i−1

j=1(Uj ∩ R(f)), and we are
done.
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