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We prove that there is a residual subset I of Diff 1 (M) such that any homoclinic class of a diffeomorphism f ∈ I having saddles of indices α and β contains a dense subset of saddles of index τ for every τ ∈ [α, β] ∩ N. We also derive some consequences from this result about the Lyapunov exponents of periodic points and the sort of bifurcations inside homoclinic classes of generic diffeomorphisms.

Introduction

Hyperbolic periodic points play a key role in the study of the dynamics of diffeomorphisms. Naively speaking, one tries to structure the dynamics using these points as a spine. This strategy is supported by the Closing Lemma of Pugh ([Pu]), which claims that, for generic C 1 -diffeomorphisms (i.e., diffeomorphisms in a residual subset of Diff 1 (M), that is, a set containing a countable intersection of open and dense subsets of Diff 1 (M)), hyperbolic periodic points form a dense subset of the limit set of f . Using hyperbolic periodic points one attempts to split the dynamics of C 1 -generic diffeomorphisms into elementary pieces (whose archetypal models are the basic sets of the Smale's theory [Sm]). Ideally, these elementary pieces should be pairwise disjoint, indecomposable (i.e., each piece is in some sense a dynamical unity) and not contained in bigger pieces (this corresponds to the notion of maximality).

Recently, in the C 1 -generic context, substantial progress has been made in the direction of finding good candidates for the role of these elementary pieces. The results in [BC] state that, for generic diffeomorphisms of Diff 1 (M), these elementary pieces are the chain recurrence classes. Moreover, every chain recurrence class containing a periodic point p is the homoclinic class of p. See also some preliminary results in [Ab, Ar, GW, We 1 ]. Furthermore, due to the closing lemma mentioned above and the results in [CMP], the homoclinic classes constitute a partition of a dense part of the limit set of generic diffeomorphisms. Furthermore, [Cr] states that chain recurrence classes of generic diffeomorphisms are Hausdorff limits of homoclinic classes. These results evidence the importance of the homoclinic classes in dynamics. For a discussion of the notion of elementary piece of dynamics and a survey on recent progress in the study of C1 -generic dynamics we refer to [START_REF] Ch | Dynamics beyond uniform hyperbolicity[END_REF]Chapter 10].

The previous results motivate our interest in obtaining as complete as possible description of homoclinic classes, especially in the non-hyperbolic context. Homoclinic classes were introduced by Newhouse in [Ne 1 ] as a generalization of the basic sets in the Smale Decomposition Theorem (see [Sm]). The homoclinic class of a (hyperbolic) saddle p of a diffeomorphism f , denoted by H(p, f ), is the closure of the transverse intersections of the invariant manifolds (stable and unstable ones) of the orbit of p. A homoclinic class can be also (equivalently) defined as the closure of the set of (hyperbolic) saddles q homoclinically related to p (the stable manifold of the orbit of q transversely meets the unstable one of the orbit of p and vice-versa). This implies that the saddles having the same index (dimension of the stable bundle) as p form a dense subset of the whole class H(p, f ).

Every homoclinic class H(p, f ) is f -invariant and transitive (in fact, the points of H(p, f ) whose orbits are dense in the whole class form a residual subset of it): the homoclinic class is the ω-limit set of some z ∈ H(p, f ) (see for instance, [Ne 4 ]). But a homoclinic class may fail to be uniformly hyperbolic (for instance, it may contain in a robust way hyperbolic saddles having different indices as p, see the constructions in [Dí 1 , Dí 2 , DR] and the examples of non-hyperbolic robustly transitive diffeomorphisms in [BD 1 , BV]) and locally maximal (for instance, a class can be contained with some persistence in the closure of an infinite set of sinks or sources, see [BD 2 ]).

Bearing in mind that homoclinic classes may fail to be hyperbolic and may indeed contain hyperbolic periodic points having different indices in a robust way, it is natural to wonder whether these indices form an interval in N. We give a positive answer to this question for homoclinic classes of C 1 -generic diffeomorphisms. Our main result is the following: Theorem 1. There is a residual subset I of Diff 1 (M) of diffeomorphisms f such that, for every f ∈ I, any homoclinic class H(p, f ) containing hyperbolic saddles of indices α and β contains a dense subset of saddles of index τ for all τ ∈ [α, β] ∩ N.

This paper can be viewed as a continuation of [BDPR], where an analogous result was proved for robustly transitive sets 1 : among the diffeomorphisms f ∈ Diff 1 (M) having a robustly transitive set Λ f , the property of the indices of the saddles of Λ f forming an interval in N holds open and densely. Our proof involves a lot of the C 1 -generic machinery developed recently. Moreover, as in [BDPR], a key ingredient in our constructions is the notion of heterodimensional cycle (i.e., there are saddles p and q of different indices such that the stable manifold of p intersects the unstable one of q and vice-versa). We analyze the creation of new saddles (of intermediate indices) via heterodimensional cycles associated to saddles of the homoclinic class (see Sections 3.2 and 3.3).

Let us briefly explain this point and summarize the main ingredients of our proof. Suppose that a diffeomorphism f has a saddle p f of index α whose homoclinic class contains a saddle q f of index β. In our generic context, we can assume that this property holds locally residually (i.e., in a residual set of an open neighborhood of f in Diff 1 (M)) and that, in fact, the homoclinic classes of p f and q f locally residually coincide (this follows from [CMP], see Section 2.2). Using the Connecting Lemma of Hayashi (see Lemma 2.7), this allows us to create heterodimensional cycles associated to the continuations of p f and q f (see Section 2.4). We then show that the unfolding of these heterodimensional cycles leads to diffeomorphisms g having saddles r g of any index τ in between α and β (Section 3.2). In principle, this new saddle r g might not belong to the homoclinic class H(p g , g) = H(q g , g). Let us point out that in the context of robustly transitive sets in [BDPR] this problem does not appear: the new saddle r g automatically belongs to the robustly transitive set. So an extra difficulty of this paper is to see that the saddle r g , obtained after a perturbation, can be taken inside the homoclinic class.

We see that, after an appropriate perturbation, the new saddle r g can be taken in H(p g , g). Generically, this implies that H(r g , g) = H(p g , g). This is done in two steps. We first see that the new saddle can be obtained in such a way W u (p g , g) transversely meets W s (r g , g) and that W u (r g , g) transversely meets W s (q g , g) (this is done in Section 3.3). We see that this implies that the three saddles p g , r g and q g are in the same chain recurrence class (see Section 2.1 for the precise definition). Finally, a genericity argument we borrow from [BC] assures that, for generic diffeomorphisms, any chain recurrence class containing a periodic point is the homoclinic class of that point. This guarantees that generically H(p g , g) = H(q g , g) = H(r g , g), which implies Theorem 1 (see Section 4 for details). Using Markov partitions, it is easy to see that this result holds for any hyperbolic homoclinic class.

The proof of

We now derive further consequences from our main result and state some related problems. We first study the sort of bifurcations associated to a homoclinic class in terms of its dominated splitting. A dominated splitting of an f -invariant set K is a Df -invariant splitting

T K M = E 1 ⊕ • • • ⊕ E k
over K such that the dimensions of the fibers E i (x) of E i do not depend on the base point x ∈ K, and the expansion rate of Df on E i is uniformly smaller than the expansion rate on E i+1 , that is, there are C > 0 and λ > 1 such that for any integer n > 0, any x ∈ K, one has:

Df n (u) Df n (v) < Cλ -n , for every unitary vectors u ∈ E i (x), v ∈ E j (x) with i < j.
In this case one writes

E 1 ≺ • • • ≺ E k .
Let us recall two results relating dominated splitting and homoclinic tangencies. Consider a diffeomorphism f and an f -invariant compact set K contained in the closure of a set of periodic saddles having the same index τ . [We 2 ] proved that if the natural splitting over this set of periodic orbits given by the stable and unstable bundles cannot be extended to a dominated splitting over the whole K, then there is g arbitrarily C 1 -close to f having a homoclinic tangency (in an arbitrarily small neighborhood of K).

The second result deals with robustly transitive sets. First, every robustly transitive set Λ f (U ) has a finest dominated splitting [BDP]): that is, a dominated splitting whose bundles cannot be split in a dominated way. Let now Λ f (U ) be a robustly transitive set defined for any f in an open set U of Diff 1 (M). Then, open and densely in U , the maximum β and the minimum α of the indices of the saddles in Λ f (U ) are locally constant functions. Now, if for some k the dimension of

T Λ f (U ) M = E 1 ⊕• • •⊕E m , (see
E = E 1 ⊕ • • • ⊕ E k is less than or equal to α then this bundle E is uniformly contracting. Similarly, if the dimension of F = E m-k ⊕ • • • ⊕ E m is less than or equal to (dim(M ) -β) then the bundle F is uniformly expanding. Finally, suppose that j ∈ [α, β] ∩ N is such that there is k ∈ {1, . . . , m -1} with dim(E 1 ⊕ • • • ⊕ E k ) < j < dim(E 1 ⊕ • • • ⊕ E k+1 ).
Then there exists g arbitrarily close to f with a homoclinic tangency associated to a saddle of index j of Λ g (U ). This result is stated in [BDPR, Theorem F].

These two results motivate the following conjecture2 :

Conjecture 1. For every C 1 -generic diffeomorphism f and every homoclinic class H(p f , f ) of f there is the following dichotomy:

• either there is g arbitrarily C 1 -close to f having a homoclinic tangency associated to the continuation of some saddle of H(p f , f );

• or there is a dominated splitting

T H(p f ,f ) M = E s ⊕ E c 1 ⊕ • • • ⊕ E c k ⊕ E u ,
where E s is uniformly contracting, E u is uniformly expanding, and every E c i is not hyperbolic and has dimension one.

Let us observe that the arguments in [BDPR] in fact prove this conjecture for isolated homoclinic classes. For non-isolated homoclinic classes one of the main difficulties comes from the fact that the homoclinic class is necessarily accumulated by periodic saddles which do not belong to the class. Moreover, the indices of some of these saddles may not belong to the interval of indices of the saddles of the class. Thus one of the difficulties for proving this conjecture is that the homoclinic tangency that one obtains may correspond to a saddle outside of the homoclinic class. This difficulty illustrates the importance of the periodic saddles in a neighborhood of the homoclinic class.

As a direct consequence of Theorem 1 and the result in [We 2 ] above we obtain a partial answer to this conjecture: Corollary 3. Let I be the residual subset of Diff 1 (M) in Theorem 1 and f a diffeomorphism in I having a homoclinic class H(p f , f ) which contains hyperbolic saddles of indices α and β. Then at least one of the two following possibilities holds:

1. For any neighborhood U of H(p f , f ) and any C 1 -neighborhood U of f there is a diffeomorphism g ∈ U with a homoclinic tangency associated to a periodic orbit contained in U .

2. There is a dominated splitting

T H(p f ,f ) M = E ⊕ F 1 ⊕ • • • ⊕ F β-α ⊕ G,
with dim(E) = α and dim(F i ) = 1 for all i.

A result recently announced by Gourmelon implies that the homoclinic tangency in the first item of the corollary is associated to a saddle of the homoclinic class H(p f , f ) having an index in between α and β; this implies in particular that the two cases of the conjecture cannot occur simultaneously.

Let us state some questions related to Theorem 1 and to the conjecture, in the broader setting of chain recurrence classes, which we now briefly recall.

A point x is chain recurrent if for any ε > 0, there are periodic ε-pseudo-orbits containing x. The set of chain recurrent points is denoted by R(f ). This set admits a natural partition into invariant compact sets called the chain recurrence classes: two points x, y ∈ R(f ) are in the same class if, for any ε > 0, there are ε-pseudo-orbits going from x to y and from y to x. The Conley theory, [Co, Ro], associates a filtration to this partition. [BC] proved that, for C 1 -generic diffeomorphisms, the chain recurrent set R(f ) is the closure of the hyperbolic periodic orbits. Furthermore, for C 1 -generic f , there are two types of chain recurrence classes: those containing periodic points (which are the homoclinic classes), and those without periodic orbits (called therefore aperiodic classes).

Moreover, [Cr] proved that any chain recurrence class of a generic diffeomorphisms is the Hausdorff limit of a sequence of periodic orbits. This result, however, does not yield any information on the indices of these periodic orbits. One may ask many questions regarding chain recurrence classes, indices of saddles, Hausdorff limits of periodic orbits, and the closure of periodic points of a prescribed index. Let us propose two such questions. First, we do not know whether chain recurrence classes Σ of generic diffeomorphisms are index complete, that is, whether if whenever Σ is the Hausdorff limit of periodic points of indices α and β, α < β, then it is also the Hausdorff limit of periodic points of index τ for any τ ∈ [α, β] ∩ N.

Question 1. Are all the chain recurrence classes of C 1 -generic diffeomorphism index complete?

The next question relates the local dynamics (the dynamics around an invariant compact set of the class) and the global dynamics in the whole class: Question 2. Let f be a C 1 -generic diffeomorphism and Σ any chain recurrence class of f such that every neighborhood of the whole set Σ contains periodic orbits of index τ .

Is Σ the Hausdorff limit of periodic orbits of index τ ? Or a weaker question: is Σ contained in the closure of the saddles of index τ ?

We observe that these two questions have positive answers in the case of isolated chain recurrence classes (which are also the isolated homoclinic classes). On the other hand, they are open for nonisolated homoclinic classes.

Let us explain briefly how the previous questions are related to the conjecture and why positive answers to both of them would imply a weaker version of the conjecture: in this weaker version, the first case involves the creation of some tangency associated to a saddle near -but not necessarily inside -the homoclinic class H(p f , f ).

Let us assume that we are not in the first case: that is, that there are no homoclinic tangencies associated to saddles whose orbit is contained in a neighborhood of the class H(p g , g), for g close to f . We consider the set of indices of periodic points arbitrarily close to the class. By Question 2, the class is the Hausdorff limit of periodic orbits of these indices. By Question 1 this set of indices is an interval {α, α + 1, . . . , α + k}). By [We 2 ] this implies a dominated splitting of the form

T H(p f ,f ) M = E ⊕ E c 1 ⊕ • • • ⊕ E c k ⊕ F,
where E has dimension α and every E c i is not hyperbolic and has dimension one. It now follows, essentially from Mañé's Ergodic Closing Lemma, [Ma], (see also [START_REF] Ch | Robustly transitive sets and heterodimensional cycles[END_REF]Theorem B and Section 4] and [We 3 ]), that E is uniformly contracting (the argument for F is similar); the crucial assumption here is that it is forbidden to decrease the index of a periodic point of index α by perturbation. This means that we are in the second case of the conjecture, as claimed.

We finish this introduction discussing briefly how homoclinic classes may be accumulated by periodic orbits.

Non-isolated homoclinic classes of C 1 -generic diffeomorphisms are accumulated by infinitely many disjoint homoclinic classes and are called wild homoclinic classes. There are no known examples of C 1 -wild homoclinic classes for surface diffeomorphisms (there are, however, examples of C 2 -wild classes associated to homoclinic tangencies, see [Ne 2 , Ne 3 ]). Moreover, the only known examples of C 1 -wild homoclinic classes occur in dimension equal to or higher than three. In such examples the classes are either (a) contained in the closure of an infinite set of sinks or sources, or else (b) obtained by considering the product of a three dimensional diffeomorphism f exhibiting a wild class accumulated by (say) sinks by a strong expansion. In case (b) one obtains a diffeomorphism F having a normally hyperbolic wild homoclinic class accumulated by saddles (in this case the dimension of the ambient manifold is at least 4), see [BD 2 , BDP, CM]. But the existence of wild homoclinic classes accumulated only by infinitely many true saddles (i.e., not obtained via a product) remains an open problem. As the nature of this problem is three dimensional (and to avoid tricky solutions considering multiplications by a strong expansion/contraction), we formulate the following question: Question 3. Let M be a closed manifold of dimension 3. Do there exist locally generic diffeomorphisms f ∈ Diff 1 (M ) having wild homoclinic classes which are (a) not contained in a normally hyperbolic locally invariant submanifold and (b) disjoint from the closure of the set of sinks and sources?

Finally, there is a special type of non-isolated homoclinic classes, which we call pelliculaire classes: those classes which are accumulated by true periodic saddles whose indices do not belong to the index interval corresponding to the class given by Theorem 1. We do not know whether these classes exist locally generically. The archetypal model of a pellicular class in dimension 3 is the following: suppose that the index interval of the class H(p f , f ) is {1} but that the class is accumulated simultaneously by saddles of index 2. In fact, this type of homoclinic classes needs to be considered when trying to solving the questions we posed above.

We close this introduction by explaining the organization of this paper and giving an outline of the proof of Theorem 1. This paper is organized as follows. In Section 2.1 we summarize the basic properties of homoclinic and chain recurrence classes of generic diffeomorphisms we use throughout the paper. In Section 2.2, we state a generic dichotomy result: generically homoclinic class either persistently coincide or are persistently disjoint. In Section 2.4, we explain how saddles of a homoclinic class having different indices can be related via a heterodimensional cycle. In Section 2.3, we state a key technical result (Proposition 2.3): for homoclinic classes of generic diffeomorphisms, the saddles having positive real multipliers of multiplicity one form a dense subset of the class. The importance of this proposition is the following: the saddles of intermediate indices are obtained through heterodimensional cycles associated to saddles in the homoclinic class. But the creation of such saddles is only well understood when the saddles in the cycle have real multipliers with multiplicity one. This is the reason we need this preparatory step. In fact, in Section 3.1, we show how heterodimensional cycles can be perturbed to create new cycles along which the dynamics is essentially affine. This allows us to analyze the dynamics in a heterodimensional cycle in a rather simple way. Using these affine heterodimensional cycles we obtain the saddles having intermediate indices in Section 3.2. In Sections 3.3 and 4, we see that these saddles of intermediate indices can be taken inside the original homoclinic class. This ends the proof of Theorem 1.

Homoclinic and chain recurrence classes of C 1 -generic diffeomorphisms

In this section we collect some properties of homoclinic and chain recurrence classes of C 1 -generic diffeomorphisms.

Summary of generic properties of C 1 -diffeomorphisms

The results in [START_REF] Kupka | Contributions à la théorie des champs génériques[END_REF]Sm 1 ,[START_REF] Pugh | The closing lemma[END_REF][START_REF] Carballo | Homoclinic classes for C 1 -generic vector fields[END_REF] give a residual subset G of Diff 1 (M) of diffeomorphisms f verifying the following properties:

(G1) f is Kupka-Smale (hyperbolicity of the periodic points and general position of the invariant manifolds);

(G2) the periodic points of f are dense in the non-wandering set of f ;

(G3) for any pair of saddles p and q of f , either

H(p, f ) = H(q, f ) or H(p, f ) ∩ H(q, f ) = ∅; and
(G4) for every saddle p of f , the homoclinic class H(p g , g) depends continuously on g ∈ G, where p g is the continuation of the saddle p of f for g close to f .

To state the generic conditions (G5) and (G6) we need the notion of chain recurrence class. A point y is f -chain attainable from the point x if for every ε > 0 there is an ε-pseudo-orbit going from x to y (i.e., there is a finite sequence (x i ) m i=0 , m ≥ 1, such that x 0 = x, x m = y, and dist(f (x i ), x i+1 ) < ε for all i = 0, . . . , (m -1)). The points x and y are f -bi-chain attainable if

x is chain attainable from y and vice-versa. An f -invariant set Λ is chain recurrent if every pair of points of Λ are bi-chain attainable. The bi-chain attainability relation defines an equivalence relation on the chain recurrent set R(f ) of f (i.e., the set of points x which are chain attainable from themselves). The chain recurrence classes are the equivalence classes of R(f ) for the bi-chain attainability relation. These sets are the maximal recurrent sets.

We also have the following two generic properties:

(G5) The chain recurrence classes of f form a partition of the chain recurrent set of f (i.e., they are pairwise disjoint and cover R(f ))3 .

(G6) Every chain recurrence class Λ containing a (hyperbolic) periodic point p satisfies Λ = H(p, f ), see [START_REF] Ch | Récurrence et généricité[END_REF]Remarque 1.10].

Coincidence of homoclinic classes

It is well-known that any hyperbolic periodic point p f of f has a unique continuation: there are a neighborhood U of the orbit of p f in the ambient manifold M and a neighborhood U of f in Diff 1 (M) such that every g in U has a unique periodic point p g close to p f whose orbit is contained in U . The point p g is called the continuation of p f . The next lemma is perhaps well-known in C 1 -dynamics. We include its proof for completeness.

Lemma 2.1. There is a residual subset G 0 ⊂ G of Diff 1 (M) such that, for every diffeomorphism f ∈ G 0 and every pair of saddles p f and q f of f , there is a neighborhood

U f of f in G 0 such that either H(p g , g) = H(q g , g) for all g ∈ U f , or H(p g , g) ∩ H(q g , g) = ∅ for all g ∈ U f .
Proof: We first fix some integer N ≥ 1. Given f ∈ G let Per N (f ) be the (finite) set of periodic points of f of period less than N . This set varies continuously in a

C 1 -neighborhood U N (f ) of f : let Per N (f ) = {p 1 f , . . . , p k(N ) f }, then for every g ∈ U N (f ) one has Per N (g) = {p 1 g , . . . , p k(N ) g } (each p i
g is the continuation of p i f ). We now fix f ∈ G and its neighborhood U N (f ). For each i, j ∈ {1, . . . , k(N )} let

• V i,j = {g ∈ U N (f ) ∩ G : H(p i g , g) ∩ H(p j g , g) = ∅}; • B i,j = (U N (f ) \ V i,j ) ∩ G. Claim 2.2. The set V i,j is open in G.
We postpone the proof of the claim and finish the proof of the lemma. First, note that for every g ∈ B i,j the homoclinic classes H(p i g , g) and H(p j g , g) have non-empty intersection so that, by (G3), the two homoclinic classes coincide.

By Claim 2.2, the set

V i,j ∪ B i,j is open and dense in U N (f ). Let O N (f ) be the finite intersection O N (f ) = ∩ i,j (V i,j ∪ B i,j ). By construction, this set is open and dense in U N (f ).
Observe that for every diffeomorphism g ∈ O N (f ) we have the conclusions of the lemma for the saddles of period less than N of g. Let now O N be the union of all the sets O N (f ), f ∈ G. The set O N is open and dense in G. Finally, the set G 0 is the intersection of the open and dense sets O N . By construction, this set is residual in Diff 1 (M) and every g ∈ G 0 satisfies the conclusions in the lemma.

Proof of the claim: Let g ∈ V i,j . By (G6) the disjoint homoclinic classes H(p i g , g) and H(p j g , g) are also disjoint chain recurrence classes. By the Conley Theory, these sets are separated by a filtration (see [Co, Ro]): there is an open set U of M with g(U ) ⊂ U , such that one of the classes, say H(p i g , g), is contained in U , and the other one is contained in M \ U . Clearly, for every h close to g it holds h(U ) ⊂ U . Therefore U contains the stable manifold of the orbit of p i h . Similarly, M \ U contains the unstable manifold of the orbit of p j h . Thus, by definition of homoclinic class,

H(p i h , h) ⊂ U and H(p j h , h) ⊂ (M \ U ). Hence H(p i h , h) ∩ H(p j h , h) = ∅.
This ends the proof of the claim.

2

The proof of the lemma is now complete. 2

Saddles of homoclinic classes

Given a homoclinic class H(p, f ), denote by Per h (H(p, f )) the set of hyperbolic saddles q homoclinically related to p, and by Per R (H(p, f )) the subset of Per h (H(p, f )) of points q such that all the eigenvalues of the derivative Df π(q) (q) are real, positive, and have multiplicity one; here π(q) denotes the period of q.

Proposition 2.3. There is a residual subset

G 1 of Diff 1 (M) consisting of diffeomorphisms f such that Per R (H(p f , f )) is dense in H(p f , f ) for every nontrivial homoclinic class H(p f , f ) of f .
Proof of the proposition: This proposition is just a translation of the results in [BDP] for periodic linear systems (cocycles) with transitions to the context of homoclinic classes. Recall that a periodic linear system is a 4-uple P = (Σ, f, E, A), where f is a diffeomorphism, Σ is an infinite set of periodic points of f , E an Euclidean vector bundle defined over Σ, and

A ∈ GL(Σ, f, E) is such that A(x) : E x → E f (x)
is a linear isomorphism for each x (E x is the fiber of E at x). We refer to [START_REF] Ch | A C 1 -generic dichotomy for diffeomorphisms: Weak forms of hyperbolicicity or infinitely many sinks or sources[END_REF]Section 1] for the precise definition (we do not need it here). Naively speaking, such systems are cocycles where the extra structure of the transitions allows us to compose linear maps at different points. In a rough terms, this guarantees the existence of new periodic orbits visiting certain prescribed different periodic orbits of the system (i.e., there is a shadowing-like property in the bundle). Let us now explain how Proposition 2.3 follows:

Lemma 2.4. ([BDP, Lemma 1.9]) Let H(p f , f ) be a nontrivial homoclinic class. Then the derivative Df of f induces a periodic linear system with transitions over Per h (H(p f , f )).

We say that a periodic linear system with transitions

P = (Σ, f, E, A) is diagonalizable at the point x ∈ Σ if the linear map M A (x) : E x → E x , M A (x) = A(f π(x)-1 (x)) • • • • • A(f 2 (x)) • A(x),
only has positive real eigenvalues of multiplicity one.

Lemma 2.5. ( [START_REF] Ch | A C 1 -generic dichotomy for diffeomorphisms: Weak forms of hyperbolicicity or infinitely many sinks or sources[END_REF]Lemma 4.16]) For every periodic linear system with transitions P = (Σ, f, E, A) and every ε > 0 there is a dense subset Σ ′ of Σ and an ε-perturbation A ′ of A defined on Σ ′ which is diagonalizable, that is, M A ′ (x) has positive real eigenvalues of multiplicity one for every x ∈ Σ ′ .

The next result allows us to perform dynamically the perturbations of a cocycle: Lemma 2.6. (Franks, [Fr]). Consider a diffeomorphism f and an f -invariant finite set Σ. Let A be an ε-perturbation of the derivative of f in Σ (i.e., the linear maps Df (x) and A(x) are ε-close for all x ∈ Σ). Then, for every neighborhood U of Σ, there is g ε-C 1 -close to f such that

• f (x) = g(x)
for every x ∈ Σ and every x / ∈ U ,

• Dg(x) = A(x) for all x ∈ Σ.

We are now ready to prove the proposition. By Lemma 2.4, the derivative of f induces a periodic linear system with transitions over Σ = Per h (H(p f , f )). Applying Lemma 2.5 to such a system, we get that fixing any ε > 0 there is a dense subset Σ ′ of Per h (H(p f , f )) such that for every r f ∈ Σ ′ there is an ε-perturbation A of Df throughout the orbit of r f such that

M A (r f ) = A(f π(r f )-1 (r f )) • A(f π(r f )-2 (r)) • • • • • A(f (r f )) • A(r f )
has positive real eigenvalues of multiplicity one. Applying Lemma 2.6 to the orbit of r f and the perturbation A of Df , we get g close to f such that r f = r g is a periodic point of g (of period π(r f )) and Dg π(r f ) (r g ) = M A (r f ). Thus, r g is a periodic point of g having real positive eigenvalues of multiplicity one.

Note that, from the proof of [START_REF] Ch | A C 1 -generic dichotomy for diffeomorphisms: Weak forms of hyperbolicicity or infinitely many sinks or sources[END_REF]Lemma 4.16], the orbit of r f can be taken arbitrarily close in the Hausdorff metric to the orbit of a transverse homoclinic point x of p f . More precisely, let Λ = {O(p f ) ∪ O(x)}, then the orbit of r f can be taken arbitrarily close to Λ in the Hausdorff metric. Since Λ is a hyperbolic set of f , there is δ > 0 such that for any r f whose orbit O(r f , f ) is Hausdorff δ-close to Λ and any g that is C 1 -ǫ close to f , r g and p g are homoclinically related. Thus r g ∈ H(p g , g).

The proof of the proposition concludes as follows. For each n, take a finite covering B n of H(p f , f ) by open balls B i of radius 1/n (each ball intersecting H(p f , f )). Arguing as above, in each ball B i we will obtain, after a small C 1 -perturbation, g ∈ G with a saddle r g ∈ Per g (H(p g , g)) in B i having only positive real eigenvalues of multiplicity one.

Considering perturbations at each ball B i (there are finitely many) and recalling condition (G4) (in G the homoclinic classes depend continuously), we get g ∈ G close to f such that Per R (H(p g , g)) is 2/n-dense in H(p g , g) (by continuity, H(P g , g) is contained in the union of the balls B i ). This also implies that Per R (H(p h , h)) is 2/n-dense in H(p h , h) for all h close to g in G. Thus there are a neighborhood U f of f in G and an open and dense subset D n of U f of diffeomorphisms g such that Per R (H(p g , g)) is 2/n-dense in H(p g , g). The proof of the proposition now follows using a genericity argument identical to the one in Lemma 2.1. The proof of the proposition is now complete. 2

Creation of intersections between invariant manifolds

Let G 2 = G 0 ∩ G 1 , where G 0 and G 1 are the residual subsets of Diff 1 (M) in Lemma 2.1 and Proposition 2.3. Consider f in G 2 having a homoclinic class H(p f , f ) and a saddle q f of different index from that of p f with q f ∈ H(p f , f ). In particular, H(p f , f ) is nontrivial. Without loss of generality we can assume that the indices of p f and q f are α and β, with α < β. By Lemma 2.1, there is a neighborhood U f of f in G 2 such that H(p g , g) = H(q g , g) for all g ∈ U f . By hypotheses, recall Proposition 2.3, there is a saddle p 1 g (resp. q 1 g ) homoclinically related to p g (resp. q g ) such that Dg π(p 1 g ) (p 1 g ) (resp. Dg π(q 1 g ) (q 1 g )) has positive real eigenvalues of multiplicity one. Observe that the indices of p 1 g and q 1 g are α and β.

We need the following lemma about the creation of cycles:

Lemma 2.7. (Hayashi's Connecting Lemma, [Ha]) Let a f and b f be a pair of saddles of a diffeomorphism f such that there are sequences of points y n and of natural numbers k n such that

• y n → y ∈ W u loc (a f , f ), y = a f , and • f kn (y n ) → z ∈ W s loc (b f , f ), z = b f .
Then there is a diffeomorphism g arbitrarily C 1 -close to f such that W u (a g , g) and W s (b g , g) have an intersection arbitrarily close to y.

Lemma 2.8. Consider a homoclinic class H(a f , f ), any saddle b f ∈ H(a f , f ), and any transverse homoclinic point y of a f . Then there is g arbitrarily C 1 -close to f such that W u (a g , g) and W s (b g , g) have an intersection arbitrarily close to y.

Proof: Recall that H(a f , f ) is the ω-limit set of some w ∈ H(a f , f ). Thus the forward orbit of w passes arbitrarily close to a f , b f and y and it accumulates to some z ∈ W s loc (b f ). Hence there are sequences f mn (w) converging to some z ∈ W s loc (b f ) and f rn (w) → y, where m n > r n and m n → ∞. Taking y n = f rn (w) and k n = m nr n we obtain the hypotheses of Lemma 2.7, which implies the result.
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By Lemma 2.8 (taking a f = p f , b f = q f and any homoclinic point y of a f ), there is g arbitrarily C 1 -close to f such that W s (q g , g) and W u (p g , g) have some intersection close to y. Observe that dim(W s (q g , g))

+ dim(W u (p g , g)) = β + (n -α) > β + (n -β) = n.
Thus we can assume (after a perturbation) that the previous intersection between W u (p g , g) and W s (q g , g) is transverse. Since the property of having a transverse intersection is open, using a Baire argument similar to the one in the proof of Lemma 2.1, one immediately obtains: Lemma 2.9. There is a residual subset G 3 of Diff 1 (M) of diffeomorphisms f such that for every pair of saddles p f and q f of f of indices α and β, α < β, with H(p f , f ) = H(q f , f ) it holds that W u (p f , f ) and W s (q f , f ) have some transverse intersection.

Heterodimensional cycles and creation of periodic orbits

Let us recall that, by convention, the index of a hyperbolic periodic point x is the dimension of its stable manifold. Given a pair of hyperbolic points p and q we write p < us q if the unstable manifold W u (O p ) of the orbit O p of p intersects transversally the stable manifold W s (O q ) of the orbit O q of q: there exists a point

x ∈ W u (O p ) ∩ W s (O q ) such that T x M = T x W u (O p ) + T y W s (O q ).
Remark 3.1. The property < us is open in Diff 1 (M): let p f and q f be hyperbolic periodic points of a diffeomorphism f with p f < us q f , then there is a neighborhood U f of f in Diff 1 (M) such that p g < us q g for every g ∈ U f (here p g and q g are the continuations of p f and q f ).

Recall that a diffeomorphism f has a heterodimensional cycle associated to the saddles p and q if p and q have different indices and both intersections W s (O p ) ∩ W u (O q ) and W s (O q ) ∩ W u (O p ) are non-empty.

We say that a periodic point p of period π(p) of a diffeomorphism f has real eigenvalues if every eigenvalue of the linear isomorphism Df π(p) (p) : T p M → T p M is real.

Theorem 3.2. Let f be a diffeomorphism having a heterodimensional cycle associated to periodic saddles p f and q f , of indices α and β with α < β -1, with real eigenvalues. Then, for any C 1neighborhood U of f and for any integer τ with α ≤ τ ≤ β, there exists g ∈ U having a periodic point r g of index τ such that p g < us r g < us q g (p g and q g are the continuations of p f and q f ).

In fact, we will see that under some additional hypotheses (in our case, H(p f , f ) = H(q f , f )), the saddle r g can be taken such that r g ∈ H(p g , q) = H(q g , g), see Propositions 3.10 and 4.1.

The proof of Theorem 3.2 is the aim of this whole section.

Affine heterodimensional cycles

Definition 3.3 (Affine heterodimensional cycle). Let f be a diffeomorphism having a heterodimensional cycle associated to periodic points p, q of indices α and β, α < β, and to heteroclinic points

x ∈ W u (O p ) ∩ W s (O q ) and y ∈ W s (O p ) ∩ W u (O q ).
We say that the heterodimensional cycle is affine if all the following properties are satisfied:

(A1) The eigenvalues associated to the saddles p and q are all real and different in modulus and have multiplicity one: denote the eigenvalues of Df π(p) (p) and Df π(q) (q) by λ 1 , . . . , λ n and σ 1 , . . . , σ n , respectively, so that we have 0

< |λ 1 | < • • • < |λ α | < 1 < |λ α+1 | < • • • < |λ n | and 0 < |σ 1 | < • • • < |σ β | < 1 < |σ β+1 | < • • • < |σ n |.
(A2) There are local charts ϕ p : U p → R n and ϕ q : U q → R n centered at the points p and q such that the open sets U p , f (U p ), . . . , f π(p)-1 (U p ), U q , f (U q ), . . . , f π(q)-1 (U q ) are pairwise disjoint. Moreover, these charts linearize the dynamics locally: in these local coordinates, the maps

f π(p) : U p ∩ f -π(p) (U p ) → U p and f π(q) : U q ∩ f -π(q) (U q ) → U q
are the diagonal linear maps whose k th diagonal entries are λ k and σ k , respectively.

Furthermore, ϕ p U p ∩ f -π(p) (U p ) and ϕ q U q ∩ f -π(q) (U q ) contain the cube

[-2, 2] n of R n . (A3) The heteroclinic point x ∈ W u (O p ) ∩ W s (O q ) has two iterates x -= f n - x (x) ∈ U p and x + = f n + x (x) ∈ U q , where n - x < n + x , whose local coordinates are x -= (0, . . . , 0 α , 1, 0 . . . , 0 n-α-1
), and x + = (0, . . . , 0

β-1 , 1, 0 . . . , 0 n-β
).

(A4) There is a neighborhood

U - x ⊂ U p of x -such that the neighborhood U + x = f nx (U - x ) of x + is contained in U q , where n x = n + x -n - x . Furthermore, in the correspondig local coordinates, U - x and U + x are contained in the cube [-2, 2] n , the map T x = f nx : U - x → U +
x is affine and its linear part T x is diagonal. We denote the diagonal entries of T x by (t x,1 , . . . , t x,n ). Note that by definition of T x one has ) and y + = (0, . . . , 0

T x (0, . . . , 0 α , 1, 0 . . . , 0 n-α-1 ) = (0, . . . , 0 β-1 , 1, 0 . . . , 0 n-β ). q p W u (p) W s (q) W u (q) W u (q) W s (p) x + x - x y T x f n + x f n - x T y f n + y f n - y y + y - U p U q Figure 1: An affine heterodimensional cycle (A5) The heteroclinic point y ∈ W s (O p ) ∩ W u (O q ) has two iterates y -= f n - y (y) ∈ U q and y + = f n + y (y) ∈ U p ,
α-1 , 1, 0 . . . , 0 n-α
).

(A6) There is a neighborhood U - y ⊂ U q of y -such that the neighborhood U + y = f ny (U - y ) of y + is contained in U p , where n y = n + yn - y . Moreover, in the corresponding local coordinates, U - y and U + y are contained in the cube [-2, 2] n , the map T y = f ny : U - y → U + y is affine and its linear part T y is diagonal. We denote the diagonal entries of T y by (t y,1 , . . . , t y,n ). Observe that by definition of T y ,

T y (0, . . . , 0 β , 1, 0 . . . , 0 n-β-1 ) = (0, . . . , 0 α-1 , 1, 0 . . . , 0 n-α ).
Lemma 3.4. Let f be a diffeomorphism having a heterodimensional cycle associated to the saddles p and q, having real eigenvalues and indices α and β, α < β, and to the heteroclinic points x ∈ W u (O p ) ∩ W s (O q ) and y ∈ W s (O p ) ∩ W u (O q ). Then, for any C 1 -neighborhood U of f , there is g ∈ U having an affine heterodimensional cycle associated to the saddles p and q and to the heteroclinic points x and y.

Proof: The proof is essentially the same as that of [START_REF] Ch | Robustly transitive sets and heterodimensional cycles[END_REF]Lemma 3.2], so we just sketch it. We first note that, after an arbitrarily small C 1 -perturbation, we can assume that f is linearizable in some small neighborhoods of the saddles p and q, while keeping the heteroclinic points x and y. Moreover, we can also suppose that all the eigenvalues of Df π(p) (p) and of Df π(q) (q) have different moduli. In this way we obtain local coordinates verifying (A1) and (A2) above.

Next, by a local perturbation in the neighborhood of the heteroclinic points x and y, one makes the intersection W u (O p )∩W s (O q ) at x transverse and the intersection W s (O p )∩W u (O q ) at y quasitransverse (i.e., T y W s (O p ) ∩ T y W u (O q ) = 0). Furthermore, one may prevent these intersections from belonging to the strong stable or strong unstable manifolds, so that the heteroclinic intersections belong to the weak stable and the weak unstable manifolds. Let us explain this point more precisely. In the linearizing local coordinates we define local weak unstable and stable manifolds by

W cu loc (O q ) = {(0, . . . , 0 β , s, 0, . . . , 0 n-β-1 ), s ∈ [-2, 2]}, W cs loc (O p ) = {(0, . . . , 0 α-1 , s, 0, . . . , 0 n-α ), s ∈ [-2, 2]}.
Considering iterations by f we obtain a global invariant weak unstable manifold W cu (O q ). Similarly, iterating by f -1 we obtain a weak stable manifold W cs (O p ). Analogously, we first define local strong unstable and stable manifolds by

W uu loc (O q ) = {(0, . . . , 0 β+1 )} × [-2, 2] n-β-1 , W ss loc (O p ) = [-2, 2] α-1 × {(0, . . . , 0 n-α+1
)}.

We next extend these manifolds by iterations of f ±1 to global strong unstable and strong stable manifolds W uu (O q ) and W ss (O p ).

After a new perturbation, we can assume that y ∈ W ss (O p ), therefore (using domination) its forward iterates accumulate to W cs (O p ). Therefore, after a new arbitrarily small perturbation, we can assume that y ∈ W cs (O p ). Using similar arguments, but now considering backward iterations, we can assume that (after an arbitrarily small perturbation) y ∈ W cu (O q ). Hence y ∈ W cs (O p ) ∩ W cu (O q ). This implies (A5) above. To obtain (A3) one proceeds analogously.

A more subtle point consists in perturbing f in such a way that the differential of f along the heteroclinic orbits preserves the ordered eigenspaces. This was done in [START_REF] Ch | Robustly transitive sets and heterodimensional cycles[END_REF]Lemma 3.2], so we will just sketch this point. One first shows (using domination) that (after an arbitrarily small perturbation) it is possible to preserve the one-dimensional bundles corresponding to the strong stable eigenvalues λ 1 and σ 1 (say E 1 (p) and E 1 (q)) and the (n -1)-dimensional bundles corresponding to the remainder eigenvalues λ 2 , . . . , λ n and σ 2 , . . . , σ n (say E n-1 1 (p) and E n-1 1 (q)). Now, a new perturbation, keeping invariant the previous bundles E 1 (p), E 1 (q), E n-1 1 (p) and E n-1 1 (q) but now focusing on E n-1 1 (p) and E n-1 1 (q), allows us to preserve the one-dimensional bundles corresponding to λ 2 and σ 2 (say E 2 (p) and E 2 (q)) and the (n -2)-dimensional bundles corresponding to the remaining eigenvalues λ 3 , . . . , λ n and σ 3 , . . . , σ n (say E n-2 2 (p) and E n-2 2 (q)). This step is identical to the first one and also involves domination. The proof now follows inductively.

In this way we obtain a diffeomorphism having a cycle verifying (A1)-(A6) above, ending the proof of the lemma. 2

Creation of saddles of intermediate indices

Consider a diffeomorphism f with an affine heterodimensional cycle associated to the saddles p and q, of indices α and β, α < β, and the heteroclinic points

x ∈ W u (O p ) ∩ W s (O q ) and y ∈ W s (O p ) ∩ W u (O q )
. We use the notations introduced in Section 3.1.

Consider a sequence of points (r ℓ,m ) ℓ,m∈N having local coordinates in U p as follows:

r ℓ,m = ( α-1 0, . . . , 0, 1, λ -ℓ α+1 , 0, . . . , 0 β , λ -ℓ β+1 t -1 x,β+1 σ -m β+1 , 0, . . . , 0 n-β-1
).

We next define the points s ℓ,m = f π ℓ,m (r ℓ,m ), where π ℓ,m = ℓ π(p) + n x + m π(q) + n y .

We perturb f in a small neighborhood D + y of y + = f n + y (y) which is relatively compact in U + y . We can assume that ). Moreover, we can also choose D + y disjoint from the orbits (f k (x -)), k ∈ {0, . . . , n x -1}, and f k (y -), k ∈ {0, . . . , n y -1} and from the open sets f (U p ), . . . , f π(p)-1 (U p ), U q , f (U q ), . . . , f π(q)-1 (U q ). Proposition 3.5. For every ℓ and m large enough, the points r ℓ,m and s ℓ,m are well-defined, belong to U p , and the sequences (r ℓ,m ) and (s ℓ,m ) converge to the point y , 1, 0 . . . , 0). In particular, the point r ℓ,m is well-defined for ℓ, m large, and belongs to U p . Now, for ℓ, m large, f ℓ π(p) (r ℓ,m ) is the point in U p whose coordinates are

D + y is disjoint from the cube f π(p) ([-1 -ε, 1 + ε] n ) ⊂ U p , where ε > 0 is a small constant: this is possible because f π(p) ([-1 -ε, 1 + ε] n ) is a small neighborhood of the cube whose expression in the coordinates of U p is [-|λ 1 |, |λ 1 |] × • • • × [-|λ n |,
+ = f n + y (y) as ℓ, m → ∞. Moreover, the intermediate iterates f k (r ℓ,m ), k ∈ {1, . . . , π ℓ,m -1},
f ℓ π(p) (r ℓ,m ) = ( α-1 0, . . . , 0, λ ℓ α , 1, 0, . . . , 0 β , t -1 x,β+1 σ -m β+1 , 0, . . . , 0 n-β-1
).

The intermediate points f k (r ℓ,m ), k ∈ {1, . . . , ℓ π(p)}, do not belong to U p when k is different from 0 modulo π(p) (just note that the sets U p , . . . , f π(p)-1 (U p ) are pairwise disjoint) and belong to f π(p) ([-1ε, 1 + ε] n ) when k is equal to 0 modulo π(p). In all these cases, these iterates do not meet D + y . Thus, for ℓ and m large enough, the point f ℓ π(p) (r ℓ,m ) is very close to x -= (0, . . . , 0 α , 1, 0, . . . , 0). Hence T x f ℓ π(p) (r ℓ,m ) is well-defined and close to x + = (0, . . . , 0 β-1 , 1, 0, . . . , 0) ∈ U q . Moreover, by the definition of T x in (A4), in the local coordinates we have

T x f ℓ π(p) (r ℓ,m ) = ( α-1 0, . . . , 0, t x,α λ ℓ α , , 0, . . . , 0 β-1 , 1, σ -m β+1 , 0, . . . , 0 n-β-1
).

Moreover, the points f k f ℓ π(p) (r ℓ,m ) , k ∈ {0, . . . , n x }, are very close to the points f k (x -) and are disjoint from D + y . Repeating these arguments, one shows that, for ℓ, m large enough, f k T x • f ℓ π(p) (r ℓ,m ) , k ∈ {0, . . . , m π(q)}, is disjoint from D + y and f m π(q) T x • f ℓ π(p) (r ℓ,m ) ∈ U q and has coordinates

f m π(q) T x • f ℓ π(p) (r ℓ,m ) = ( α-1 0, . . . , 0, σ m α t x,α λ ℓ α , 0, . . . , 0 β-1 , σ m β , 1, 0, . . . , 0 n-β-1
).

As

|σ β |, |σ α |, |λ α | < 1, this point is arbitrarily close to y -= (0, . . . , 0 β , 1, 0, . . . , 0) if m is large enough. So, the points s ℓ,m = T y f m π(q) • T x • f ℓ π(p) (r ℓ,m )
are well-defined and close to y + ∈ U p . Finally, they belong to D + y and their local coordinates are:

s ℓ,m = ( α-1 0, . . . , 0, 1 + t y,α σ m α t x,α λ ℓ α , 0, . . . , 0 β-1 , t y,β σ m β , 0, . . . , 0 n-β
).

Moreover, the intermediate points , 1, 0, . . . , 0). This completes the proof of the proposition.

f k f m π(q) • T x • f ℓ π(p) (
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For ℓ, m large enough, we use the coordinates of the chart ϕ p to define the vector θ ℓ,m ∈ R n by r ℓ,m = s ℓ,m + θ ℓ,m . We denote by Θ ℓ,m the local diffeomorphism defined on D + y whose expression in the local coordinates of U p is the translation z → z + θ ℓ,m .

We fix a neighborhood V y of y + , relatively compact in the interior of D + y . The following lemma yields a sequence (g ℓ,m ) of local C 1 -perturbations of f , g ℓ,m → f as ℓ, m → ∞, each one closing the orbit of the corresponding point r ℓ,m . Lemma 3.6. For any C 1 -neighborhood U of f and for every ℓ, m large enough, there is a diffeomorphism h ℓ,m coinciding with Θ ℓ,m on V y and with the identity map outside of D + y , such that the diffeomorphism g ℓ,m = h ℓ,m • f belongs to U .

Proof: This comes from the fact that the vectors θ ℓ,m go to 0 as ℓ and m go to ∞.

2

One now obtains the announced periodic points for g ℓ,m :

Proposition 3.7. For every ℓ, m large enough, the r ℓ,m is a periodic point of g ℓ,m whose period is π ℓ,m . Furthermore, the derivative Dg π ℓ,m (r ℓ,m ) is

Dg π ℓ,m (r ℓ,m ) = T y • Df π(q) (q) m • T x • Df π(p) (p) ℓ .
In other words, Dg π ℓ,m (r ℓ,m ) is the diagonal linear map whose k th diagonal entry is

t y,k σ m k t x,k λ ℓ k .
Proof: For ℓ and m large enough, the points r ℓ,m and s ℓ,m belong to V y so that Θ ℓ,m (s ℓ,m ) = r ℓ,m . As r ℓ,m and s ℓ,m = f π ℓ,m (r ℓ,m ) are the only points of the segment of orbit r ℓ,m , f (r ℓ,m ), . . . , f π ℓ,m (r ℓ,m ) in the support D + y of the perturbation h ℓ,m , the point r ℓ,m is π ℓ,m -periodic for g ℓ,m . In the local coordinates, the derivative Df

π ℓ,m (r ℓ,m ) is T y • Df π(q) (q) m • T x • Df π(p) (p) ℓ .
In the coordinates of V y ⊂ U p , the map h ℓ,m is a translation, hence, one obtains the same expression for the derivative of Dg π ℓ,m (r ℓ,m ). 2

By choosing carefully the integers ℓ and m, one obtains any index τ between α and β: 

,τ σ m τ t x,τ λ ℓ τ |, belongs to [|σ 2 τ |, |σ τ |],
in particular is less than one. On the other hand, the ratio between the moduli of the (τ + 1) th and (τ ) th eigenvalues of r ℓ,m is

|t y,τ +1 t x,τ +1 | |t y,τ t y,τ | |λ τ +1 | |λ τ | m |σ τ +1 | |σ τ | ℓ . Since |λ τ +1 | > |λ τ | and |σ τ +1 | > |σ τ |, if ℓ 
and m are big enough, the ratio between the (τ + 1) th and the (τ ) th eigenvalues above is strictly bigger than |σ -3 τ |. This implies that the modulus of the (τ + 1) th eigenvalue of r ℓ,m is greater that |σ -1 τ | > 1. This shows that the index of r ℓ,m is exactly τ , ending the proof of the lemma. 2

Remark 3.9. The arguments in the proof of Corollary 3.8 imply the following: for every ε > 0 and every ρ ∈ (0, 1), there is a saddle r = r ℓ,m of g = g ℓ,m (for some appropriate large ℓ and m) whose Lyapunov exponents (log |µ 1 |/π(r)), . . . , (log |µ n |/π(r)) (here the µ i are the eigenvalues of Dg π(r) (r)) verify

log |µ i | π(r) -ρ log |λ i | π(p) + (1 -ρ) log |σ i | π(q) < ε.
This remark and Theorem 1 immediately imply Corollary 2.

Control of the heteroclinic intersections

In this section we will complete the proof of Theorem 3.2. Note that the diffeomorphisms g ℓ,m coincide with f in the neighborhood of the orbits of p and q, thus the orbits of p and q by f and g ℓ,m coincide. Thus, according to Corollary 3.8, to prove Theorem 3.2 it is enough to see the following: Proposition 3.10. For ℓ and m large enough, the diffeomorphism g ℓ,m satisfies p < us r ℓ,m < us q.

Proof: Given ℓ and m big enough, denote by ∆ s ℓ,m the α-dimensional disk contained in U p defined in the corresponding local coordinates by

∆ s ℓ,m = [-1 -ε, 1 + ε] α × (λ -ℓ α+1 , 0, . . . , 0 β-α-1 , λ -ℓ β+1 t -1 x,β+1 σ -m β+1 , 0, . . . , 0 n-β-1
).

Similarly, consider the (nβ)-dimensional cube ∆ u ℓ,m defined in the local coordinates of U q by ∆ u ℓ,m = (0, . . . , 0

α-1 , t x,α λ ℓ α σ m α , 0, . . . , 0 β-α-1 , σ m β ) × [-1 -ε, 1 + ε] n-β .
Note that the disks ∆ s ℓ,m and ∆ u ℓ,m contain the points r ℓ,m and f m π(q) •T

x •f ℓ π(p) (r ℓ,m ) = T -1 y (r ℓ,m ), respectively.
Lemma 3.11. For every ℓ, m large enough,

• ∆ s ℓ,m ⊂ W s (r ℓ,m , g ℓ,m ); • ∆ u ℓ,m ⊂ W u (T -1 y (r ℓ,m )).
Before proving this lemma let us complete the proof of the proposition assuming it. Observe that when ℓ and m go to +∞, the disks ∆ s ℓ,m converge (in the C 1 topology) to the disk

∆ s p = [-1 -ε, 1 + ε] α × {0} n-α ,
which is a local stable manifold of p. This implies that ∆ s ℓ,m intersects transversally the unstable manifold of p when ℓ and m are large enough. Lemma 3.11 implies that the unstable manifold of p transversally intersects the stable one of r ℓ,m , thus p < us r ℓ,m . In the same way, one shows that the disk ∆ u ℓ,m , containing f m π(q) • T x • f ℓ π(p) (r ℓ,m ) = T -1 y (r ℓ,m ), intersects transversally the local stable manifold of q. Therefore r ℓ,m < us q. Thus to complete the proof of the proposition it remains to prove Lemma 3.11.

Proof of the lemma: We just prove the first item of the lemma, the second one follows similarly by considering backward iterates of f .

The images of ∆ s ℓ,m by f k , k ∈ {1, . . . , ℓ π(p)}, are disjoint from D + y : when k is different from 0 modulo π(p), the image is disjoint from U p and, when k is equal to 0 modulo π(p), the image is a disk contained in the cube f π(p) ([-1ε, 1 + ε] n ) ⊂ U p . In particular, this shows that g (∆ s ℓ,m ) is an arbitrarily small disk containing the point T x •f ℓ π(p) (r ℓ,m ) in U +

x .

In the same way, one verifies that g m π(q) ℓ,m

• T x • g ℓ π(p) ℓ,m (∆ s ℓ,m ) is a very small disk that contains f m π(q) • T x • f ℓ π(p) (r ℓ,m ) in U - y . So (for ℓ, m large enough) g m π(q) ℓ,m

• T x • g ℓ,m (r ℓ,m ) and whose diameter tends to 0 as ℓ, m tend to +∞. So for ℓ, m large enough, the map g π ℓ,m ℓ,m maps ∆ s ℓ,m into itself and is a linear contraction on this disk, having r ℓ,m as a fixed point. This concludes the proof of the lemma.

2

The proof of Proposition 3.10 is now complete. 2

4 Heterodimensional cycles and periodic points. Proof of Theorem 1

In this section we finish the proof of Theorem 1, which follows immediately from the proposition below: just note that if r f is a saddle of index τ then the saddles of index τ in H(r f , f ) constitute a dense subset of H(r f , f ).

Proposition 4.1. There is a residual subset G 4 of Diff 1 (M) with the following property: for every f ∈ G 4 and every pair of saddles p f and q f of f having indices α and β, α < β, such that H(p f , f ) = H(q f , f ), given any τ ∈ (α, β) ∩ N there is a hyperbolic periodic saddle r f of index τ such that H(p f , f ) = H(q f , f ) = H(r f , f ).

The proposition immediately follows from a standard Baire argument (analogous to the one in the proof of Lemma 2.1) and the lemma below. Lemma 4.2. Let U be an open subset of G 3 (the residual subset of Diff 1 (M ) in Lemma 2.9) such that for every f ∈ U there are saddles p f and q f of indices α and β, α < β, depending continuously on f such that H(p f , f ) = H(q f , f ). Then for every τ ∈ (α, β)∩N there is an open and dense subset V τ of U such that every g ∈ V τ has a saddle r g of index τ with H(p g , g) = H(q g , g) = H(r g , g).

Proof: Let f ∈ U . By Proposition 2.3, we can assume (after replacing the initial saddles by saddles homoclinically related to them) that p f and q f both have real positive eigenvalues of multiplicity one (i.e., p f , q f ∈ Per R (H(p f , f ))). As f ∈ G 3 , one has that W u (p f , f ) and W s (q f , f ) have some non-empty transverse intersection. This property holds for every g close to f . Using Lemma 2.8, we get h close to f having a heterodimensional cycle associated to p h and q h . Fix now τ ∈ (α, β) ∩ N. Using Theorem 3.2 we obtain some g close to h, thus close to f , having a saddle r g of index τ with p g < us r g < us q g . By Remark 3.1 this relation persists under C 1 -perturbations. This gives an open and dense subset V τ of U such that every g ∈ V τ has a saddle r g of index τ with p g < us r g < us q g . Claim 4.3. Let g ∈ V τ . For every ε > 0 there is a closed ε-pseudo-orbit containing p g , r g and q g . This claim implies that the saddles p g , q g and r g are in the same chain recurrence class Λ of g. By (G6), Λ = H(p g , g), Λ = H(r g , g), Λ = H(q g , g).

Thus the three homoclinic classes coincide. To end the proof of the lemma it remains only to prove the claim.

Proof of the claim: Fix any ε > 0. Since H(p g , g) = H(q g , g) is a transitive set, there is a (finite) segment S q,p of ε-pseudo-orbit going from q g to p g . On the other hand, since W u (p g , g) intersects W s (r g , g) there is an orbit going from p g to r g . Thus there is is a (finite) segment S p,r of ε-pseudoorbit going from p g to r g . Similarly, as W u (r g , g) intersects W s (q g , g) there is a (finite) segment S r,q of ε-pseudo-orbit going from r g to q g . The announced pseudo-orbit is obtained concatenating the segments of ε-pseudo-orbits S q,p , S p,r and S r,q . 2

The proof of Lemma 4.2 is now complete. 2

  Theorem 1 allows us to obtain the following property about Lyapunov exponents of the saddles inside the homoclinic classes of generic diffeomorphisms. Let us define the Lyapunov exponent vector of a hyperbolic point p of period π(p) by v = log(|µ 1 |) π(p) , . . . , log(|µ n |) π(p) , where µ 1 , . . . , µ n are the eigenvalues of Df π(p) (p) ordered by their moduli. Corollary 2. Let I be the residual subset of Diff 1 (M) in Theorem 1. For every f ∈ I and any homoclinic class H(p, f ) of f , the closure of the set of Lyapunov vectors of the saddles of H(p, f ) is convex.

  |λ n |] and because |λ α | < 1 and D + y is a small neighborhood of the point y + = (0, . . . , 0 α-1 , 1, 0 . . . , 0 n-α

  do not intersect the set D + y . Proof: As |λ α+1 |, |λ β+1 | and |σ β+1 | are greater than 1, the sequence (r ℓ,m ) converges to the point y + = (0, . . . , 0 α-1

  r ℓ,m ) , k ∈ {0, . . . , n y -1}, are close to the points f k (y -) and do not meet D + y . As |λ α |, |σ α |, σ β | < 1, one easily checks that, when m → ∞, the sequence (s ℓ,m ) converges to y + = (0, . . . , 0 α-1

  ) is an α-dimensional disk contained in U - x of size less than |(λ α ) ℓ (1 + ε)| containing g ℓ π(p) ℓ,m (r ℓ,m ) = f ℓ π(p) (r ℓ,m ).As the diameter of this disk tends to 0 when ℓ goes to +∞, one has that gℓ π(p) ℓ,m (∆ s ℓ,m ) ⊂ U -x , so that T x is defined on g

  ) is contained in the small neighborhood T -1 y (V y ) of y -. As a consequence, g ny ℓ,m coincides with Θ ℓ,m • T y on g m π(q) ℓ,m • T x • g ℓ π(p) ℓ,m (∆ s ℓ,m ).The previous arguments show that gπ ℓ,m ℓ,m (∆ s ℓ,m ) is an α-dimensional disk containing r ℓ,m = g π ℓ,m

  Corollary 3.8. For any integer τ ∈ {α, . . . , β}, there exists a sequence (ℓ k , m k ), with lim k→+∞ ℓ k = lim k→+∞ m k = +∞ such that, for every k, the point r ℓ k ,m k is a hyperbolic saddle of g ℓ k ,m k having index τ .Proof: Let us assume that τ belongs to {α + 1, . . . , β}, the case τ = α follows similarly. As |σ τ | < 1 < |λ τ |, one can choose ℓ and m arbitrarily large such that the modulus of the τ th eigenvalue of r ℓ,m , which is |t y

Recall that an f -invariant compact set Λ f is transitive if there is some x ∈ Λ f whose forward orbit is dense in the whole Λ f . The set Λ f is a robustly transitive set of the diffeomorphism f if there are an open neighborhood U of Λ f in the ambient manifold M and a neighborhood U f of f in Diff 1 (M) such that, for every g ∈ U f , the set Λg(U ) = k∈Z g k (U ) is transitive, contained in U , and Λ f (U ) = Λ f .

This conjecture was proposed by the second author during the Second Latin American Conference of Mathematicians(Cancún, Mexico, 2004).

In fact, by the Conley Theory, see[Co, Ro], this property holds for all C 1 diffeomorphisms.
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