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Periodic points and homoclinic classes
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Abstract

We prove that there is a residual subset I of Diff1(M) such that any homoclinic class of a
diffeomorphism f ∈ I having saddles of indices α and β contains a dense subset of saddles of
index τ for every τ ∈ [α, β] ∩ N. We also derive some consequences from this result about the
Lyapunov exponents of periodic points and the sort of bifurcations inside homoclinic classes of
generic diffeomorphisms.
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1 Introduction

Hyperbolic periodic points play a key role in the study of the dynamics of diffeomorphisms. Naively
speaking, one tries to structure the dynamics using these points as a spine. This strategy is sup-
ported by the Closing Lemma of Pugh ([Pu]), which claims that, for generic C1-diffeomorphisms
(i.e., diffeomorphisms in a residual subset of Diff1(M), that is, a set containing a countable intersec-
tion of open and dense subsets of Diff1(M)), hyperbolic periodic points form a dense subset of the
limit set of f . Using hyperbolic periodic points one attempts to split the dynamics of C1-generic
diffeomorphisms into elementary pieces (whose archetypal models are the basic sets of the Smale’s
theory [Sm]). Ideally, these elementary pieces should be pairwise disjoint, indecomposable (i.e.,
each piece is in some sense a dynamical unity) and not contained in bigger pieces (this corresponds
to the notion of maximality).

Recently, in the C1-generic context, substantial progress has been made in the direction of
finding good candidates for the role of these elementary pieces. The results in [BC] state that,
for generic diffeomorphisms of Diff1(M), these elementary pieces are the chain recurrence classes.
Moreover, every chain recurrence class containing a periodic point p is the homoclinic class of p.
See also some preliminary results in [Ab, Ar, GW, We1]. Furthermore, due to the closing lemma
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mentioned above and the results in [CMP], the homoclinic classes constitute a partition of a dense
part of the limit set of generic diffeomorphisms. Furthermore, [Cr] states that chain recurrence
classes of generic diffeomorphisms are Hausdorff limits of homoclinic classes. These results evidence
the importance of the homoclinic classes in dynamics. For a discussion of the notion of elementary
piece of dynamics and a survey on recent progress in the study of C1-generic dynamics we refer to
[BDV, Chapter 10].

The previous results motivate our interest in obtaining as complete as possible description of
homoclinic classes, especially in the non-hyperbolic context. Homoclinic classes were introduced by
Newhouse in [Ne1] as a generalization of the basic sets in the Smale Decomposition Theorem (see
[Sm]). The homoclinic class of a (hyperbolic) saddle p of a diffeomorphism f , denoted by H(p, f),
is the closure of the transverse intersections of the invariant manifolds (stable and unstable ones)
of the orbit of p. A homoclinic class can be also (equivalently) defined as the closure of the set of
(hyperbolic) saddles q homoclinically related to p (the stable manifold of the orbit of q transversely
meets the unstable one of the orbit of p and vice-versa). This implies that the saddles having the
same index (dimension of the stable bundle) as p form a dense subset of the whole class H(p, f).

Every homoclinic class H(p, f) is f -invariant and transitive (in fact, the points of H(p, f) whose
orbits are dense in the whole class form a residual subset of it): the homoclinic class is the ω-limit
set of some z ∈ H(p, f) (see for instance, [Ne4]). But a homoclinic class may fail to be uniformly
hyperbolic (for instance, it may contain in a robust way hyperbolic saddles having different indices
as p, see the constructions in [Dı́1, Dı́2, DR] and the examples of non-hyperbolic robustly transitive
diffeomorphisms in [BD1, BV]) and locally maximal (for instance, a class can be contained with
some persistence in the closure of an infinite set of sinks or sources, see [BD2]).

Bearing in mind that homoclinic classes may fail to be hyperbolic and may indeed contain
hyperbolic periodic points having different indices in a robust way, it is natural to wonder whether
these indices form an interval in N. We give a positive answer to this question for homoclinic classes
of C1-generic diffeomorphisms. Our main result is the following:

Theorem 1. There is a residual subset I of Diff1(M) of diffeomorphisms f such that, for every
f ∈ I, any homoclinic class H(p, f) containing hyperbolic saddles of indices α and β contains a
dense subset of saddles of index τ for all τ ∈ [α, β] ∩ N.

This paper can be viewed as a continuation of [BDPR], where an analogous result was proved
for robustly transitive sets1: among the diffeomorphisms f ∈ Diff1(M) having a robustly transitive
set Λf , the property of the indices of the saddles of Λf forming an interval in N holds open and
densely. Our proof involves a lot of the C1-generic machinery developed recently. Moreover, as in
[BDPR], a key ingredient in our constructions is the notion of heterodimensional cycle (i.e., there
are saddles p and q of different indices such that the stable manifold of p intersects the unstable
one of q and vice-versa). We analyze the creation of new saddles (of intermediate indices) via
heterodimensional cycles associated to saddles of the homoclinic class (see Sections 3.2 and 3.3).

Let us briefly explain this point and summarize the main ingredients of our proof. Suppose
that a diffeomorphism f has a saddle pf of index α whose homoclinic class contains a saddle qf of
index β. In our generic context, we can assume that this property holds locally residually (i.e., in a

1Recall that an f -invariant compact set Λf is transitive if there is some x ∈ Λf whose forward orbit is dense in
the whole Λf . The set Λf is a robustly transitive set of the diffeomorphism f if there are an open neighborhood
U of Λf in the ambient manifold M and a neighborhood Uf of f in Diff1(M) such that, for every g ∈ Uf , the set
Λg(U) =

⋂
k∈Z

gk(U) is transitive, contained in U , and Λf (U) = Λf .
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residual set of an open neighborhood of f in Diff1(M)) and that, in fact, the homoclinic classes of pf
and qf locally residually coincide (this follows from [CMP], see Section 2.2). Using the Connecting
Lemma of Hayashi (see Lemma 2.7), this allows us to create heterodimensional cycles associated
to the continuations of pf and qf (see Section 2.4). We then show that the unfolding of these
heterodimensional cycles leads to diffeomorphisms g having saddles rg of any index τ in between
α and β (Section 3.2). In principle, this new saddle rg might not belong to the homoclinic class
H(pg, g) = H(qg, g). Let us point out that in the context of robustly transitive sets in [BDPR] this
problem does not appear: the new saddle rg automatically belongs to the robustly transitive set.
So an extra difficulty of this paper is to see that the saddle rg, obtained after a perturbation, can
be taken inside the homoclinic class.

We see that, after an appropriate perturbation, the new saddle rg can be taken in H(pg, g).
Generically, this implies that H(rg, g) = H(pg, g). This is done in two steps. We first see that
the new saddle can be obtained in such a way W u(pg, g) transversely meets W s(rg, g) and that
W u(rg, g) transversely meets W s(qg, g) (this is done in Section 3.3). We see that this implies
that the three saddles pg, rg and qg are in the same chain recurrence class (see Section 2.1 for the
precise definition). Finally, a genericity argument we borrow from [BC] assures that, for generic
diffeomorphisms, any chain recurrence class containing a periodic point is the homoclinic class
of that point. This guarantees that generically H(pg, g) = H(qg, g) = H(rg, g), which implies
Theorem 1 (see Section 4 for details).

The proof of Theorem 1 allows us to obtain the following property about Lyapunov exponents
of the saddles inside the homoclinic classes of generic diffeomorphisms. Let us define the Lyapunov
exponent vector of a hyperbolic point p of period π(p) by

v =

(
log(|µ1|)

π(p)
, . . . ,

log(|µn|)

π(p)

)

,

where µ1, . . . , µn are the eigenvalues of Dfπ(p)(p) ordered by their moduli.

Corollary 2. Let I be the residual subset of Diff1(M) in Theorem 1. For every f ∈ I and any
homoclinic class H(p, f) of f , the closure of the set of Lyapunov vectors of the saddles of H(p, f)
is convex.

Using Markov partitions, it is easy to see that this result holds for any hyperbolic homoclinic
class.

We now derive further consequences from our main result and state some related problems.
We first study the sort of bifurcations associated to a homoclinic class in terms of its dominated
splitting. A dominated splitting of an f -invariant set K is a Df -invariant splitting

TKM = E1 ⊕ · · · ⊕ Ek

over K such that the dimensions of the fibers Ei(x) of Ei do not depend on the base point x ∈ K,
and the expansion rate of Df on Ei is uniformly smaller than the expansion rate on Ei+1, that is,
there are C > 0 and λ > 1 such that for any integer n > 0, any x ∈ K, one has:

‖Dfn(u)‖

‖Dfn(v)‖
< Cλ−n, for every unitary vectors u ∈ Ei(x), v ∈ Ej(x) with i < j.
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In this case one writes E1 ≺ · · · ≺ Ek.
Let us recall two results relating dominated splitting and homoclinic tangencies. Consider a

diffeomorphism f and an f -invariant compact set K contained in the closure of a set of periodic
saddles having the same index τ . [We2] proved that if the natural splitting over this set of periodic
orbits given by the stable and unstable bundles cannot be extended to a dominated splitting over
the wholeK, then there is g arbitrarily C1-close to f having a homoclinic tangency (in an arbitrarily
small neighborhood of K).

The second result deals with robustly transitive sets. First, every robustly transitive set Λf (U)
has a finest dominated splitting TΛf (U)M = E1⊕· · ·⊕Em, (see [BDP]): that is, a dominated splitting
whose bundles cannot be split in a dominated way. Let now Λf (U) be a robustly transitive set
defined for any f in an open set U of Diff1(M). Then, open and densely in U , the maximum β
and the minimum α of the indices of the saddles in Λf (U) are locally constant functions. Now, if
for some k the dimension of E = E1 ⊕ · · · ⊕ Ek is less than or equal to α then this bundle E is
uniformly contracting. Similarly, if the dimension of F = Em−k ⊕ · · · ⊕Em is less than or equal to
(dim(M) − β) then the bundle F is uniformly expanding. Finally, suppose that j ∈ [α, β] ∩ N is
such that there is k ∈ {1, . . . ,m− 1} with

dim(E1 ⊕ · · · ⊕ Ek) < j < dim(E1 ⊕ · · · ⊕ Ek+1).

Then there exists g arbitrarily close to f with a homoclinic tangency associated to a saddle of index
j of Λg(U). This result is stated in [BDPR, Theorem F].

These two results motivate the following conjecture2:

Conjecture 1. For every C1-generic diffeomorphism f and every homoclinic class H(pf , f) of f
there is the following dichotomy:

• either there is g arbitrarily C1-close to f having a homoclinic tangency associated to the
continuation of some saddle of H(pf , f);

• or there is a dominated splitting

TH(pf ,f)M = Es ⊕ Ec
1 ⊕ · · · ⊕ Ec

k ⊕ Eu,

where Es is uniformly contracting, Eu is uniformly expanding, and every Ec
i is not hyperbolic

and has dimension one.

Let us observe that the arguments in [BDPR] in fact prove this conjecture for isolated homoclinic
classes. For non-isolated homoclinic classes one of the main difficulties comes from the fact that the
homoclinic class is necessarily accumulated by periodic saddles which do not belong to the class.
Moreover, the indices of some of these saddles may not belong to the interval of indices of the
saddles of the class. Thus one of the difficulties for proving this conjecture is that the homoclinic
tangency that one obtains may correspond to a saddle outside of the homoclinic class. This difficulty
illustrates the importance of the periodic saddles in a neighborhood of the homoclinic class.

As a direct consequence of Theorem 1 and the result in [We2] above we obtain a partial answer
to this conjecture:

2 This conjecture was proposed by the second author during the Second Latin American Conference of Mathe-
maticians (Cancún, Mexico, 2004).
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Corollary 3. Let I be the residual subset of Diff1(M) in Theorem 1 and f a diffeomorphism in I
having a homoclinic class H(pf , f) which contains hyperbolic saddles of indices α and β. Then at
least one of the two following possibilities holds:

1. For any neighborhood U of H(pf , f) and any C1-neighborhood U of f there is a diffeomorphism
g ∈ U with a homoclinic tangency associated to a periodic orbit contained in U .

2. There is a dominated splitting

T
H(pf ,f)

M = E ⊕ F1 ⊕ · · · ⊕ Fβ−α ⊕G,

with dim(E) = α and dim(Fi) = 1 for all i.

A result recently announced by Gourmelon implies that the homoclinic tangency in the first
item of the corollary is associated to a saddle of the homoclinic class H(pf , f) having an index
in between α and β; this implies in particular that the two cases of the conjecture cannot occur
simultaneously.

Let us state some questions related to Theorem 1 and to the conjecture, in the broader setting
of chain recurrence classes, which we now briefly recall.

A point x is chain recurrent if for any ε > 0, there are periodic ε-pseudo-orbits containing x. The
set of chain recurrent points is denoted by R(f). This set admits a natural partition into invariant
compact sets called the chain recurrence classes: two points x, y ∈ R(f) are in the same class if, for
any ε > 0, there are ε-pseudo-orbits going from x to y and from y to x. The Conley theory, [Co, Ro],
associates a filtration to this partition. [BC] proved that, for C1-generic diffeomorphisms, the chain
recurrent set R(f) is the closure of the hyperbolic periodic orbits. Furthermore, for C1-generic f ,
there are two types of chain recurrence classes: those containing periodic points (which are the
homoclinic classes), and those without periodic orbits (called therefore aperiodic classes).

Moreover, [Cr] proved that any chain recurrence class of a generic diffeomorphisms is the Haus-
dorff limit of a sequence of periodic orbits. This result, however, does not yield any information
on the indices of these periodic orbits. One may ask many questions regarding chain recurrence
classes, indices of saddles, Hausdorff limits of periodic orbits, and the closure of periodic points
of a prescribed index. Let us propose two such questions. First, we do not know whether chain
recurrence classes Σ of generic diffeomorphisms are index complete, that is, whether if whenever Σ
is the Hausdorff limit of periodic points of indices α and β, α < β, then it is also the Hausdorff
limit of periodic points of index τ for any τ ∈ [α, β] ∩ N.

Question 1. Are all the chain recurrence classes of C1-generic diffeomorphism index complete?

The next question relates the local dynamics (the dynamics around an invariant compact set of
the class) and the global dynamics in the whole class:

Question 2. Let f be a C1-generic diffeomorphism and Σ any chain recurrence class of f such
that every neighborhood of the whole set Σ contains periodic orbits of index τ .

Is Σ the Hausdorff limit of periodic orbits of index τ? Or a weaker question: is Σ contained in
the closure of the saddles of index τ?

5



We observe that these two questions have positive answers in the case of isolated chain recurrence
classes (which are also the isolated homoclinic classes). On the other hand, they are open for non-
isolated homoclinic classes.

Let us explain briefly how the previous questions are related to the conjecture and why positive
answers to both of them would imply a weaker version of the conjecture: in this weaker version, the
first case involves the creation of some tangency associated to a saddle near – but not necessarily
inside – the homoclinic class H(pf , f).

Let us assume that we are not in the first case: that is, that there are no homoclinic tangencies
associated to saddles whose orbit is contained in a neighborhood of the class H(pg, g), for g close
to f . We consider the set of indices of periodic points arbitrarily close to the class. By Question 2,
the class is the Hausdorff limit of periodic orbits of these indices. By Question 1 this set of indices
is an interval {α,α + 1, . . . , α+ k}). By [We2] this implies a dominated splitting of the form

TH(pf ,f)M = E ⊕ Ec
1 ⊕ · · · ⊕ Ec

k ⊕ F,

where E has dimension α and every Ec
i is not hyperbolic and has dimension one. It now follows,

essentially from Mañé’s Ergodic Closing Lemma, [Ma], (see also [BDPR, Theorem B and Section 4]
and [We3]), that E is uniformly contracting (the argument for F is similar); the crucial assumption
here is that it is forbidden to decrease the index of a periodic point of index α by perturbation.
This means that we are in the second case of the conjecture, as claimed.

We finish this introduction discussing briefly how homoclinic classes may be accumulated by
periodic orbits.

Non-isolated homoclinic classes of C1-generic diffeomorphisms are accumulated by infinitely
many disjoint homoclinic classes and are called wild homoclinic classes. There are no known
examples of C1-wild homoclinic classes for surface diffeomorphisms (there are, however, examples
of C2-wild classes associated to homoclinic tangencies, see [Ne2, Ne3]). Moreover, the only known
examples of C1-wild homoclinic classes occur in dimension equal to or higher than three. In such
examples the classes are either (a) contained in the closure of an infinite set of sinks or sources, or else
(b) obtained by considering the product of a three dimensional diffeomorphism f exhibiting a wild
class accumulated by (say) sinks by a strong expansion. In case (b) one obtains a diffeomorphism
F having a normally hyperbolic wild homoclinic class accumulated by saddles (in this case the
dimension of the ambient manifold is at least 4), see [BD2, BDP, CM]. But the existence of
wild homoclinic classes accumulated only by infinitely many true saddles (i.e., not obtained via a
product) remains an open problem. As the nature of this problem is three dimensional (and to
avoid tricky solutions considering multiplications by a strong expansion/contraction), we formulate
the following question:

Question 3. Let M be a closed manifold of dimension 3. Do there exist locally generic diffeo-
morphisms f ∈ Diff1(M) having wild homoclinic classes which are (a) not contained in a normally
hyperbolic locally invariant submanifold and (b) disjoint from the closure of the set of sinks and
sources?

Finally, there is a special type of non-isolated homoclinic classes, which we call pelliculaire
classes: those classes which are accumulated by true periodic saddles whose indices do not belong
to the index interval corresponding to the class given by Theorem 1. We do not know whether
these classes exist locally generically. The archetypal model of a pellicular class in dimension 3
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is the following: suppose that the index interval of the class H(pf , f) is {1} but that the class is
accumulated simultaneously by saddles of index 2. In fact, this type of homoclinic classes needs to
be considered when trying to solving the questions we posed above.

We close this introduction by explaining the organization of this paper and giving an outline
of the proof of Theorem 1. This paper is organized as follows. In Section 2.1 we summarize
the basic properties of homoclinic and chain recurrence classes of generic diffeomorphisms we use
throughout the paper. In Section 2.2, we state a generic dichotomy result: generically homoclinic
class either persistently coincide or are persistently disjoint. In Section 2.4, we explain how saddles
of a homoclinic class having different indices can be related via a heterodimensional cycle. In
Section 2.3, we state a key technical result (Proposition 2.3): for homoclinic classes of generic
diffeomorphisms, the saddles having positive real multipliers of multiplicity one form a dense subset
of the class. The importance of this proposition is the following: the saddles of intermediate indices
are obtained through heterodimensional cycles associated to saddles in the homoclinic class. But the
creation of such saddles is only well understood when the saddles in the cycle have real multipliers
with multiplicity one. This is the reason we need this preparatory step. In fact, in Section 3.1, we
show how heterodimensional cycles can be perturbed to create new cycles along which the dynamics
is essentially affine. This allows us to analyze the dynamics in a heterodimensional cycle in a rather
simple way. Using these affine heterodimensional cycles we obtain the saddles having intermediate
indices in Section 3.2. In Sections 3.3 and 4, we see that these saddles of intermediate indices can
be taken inside the original homoclinic class. This ends the proof of Theorem 1.

2 Homoclinic and chain recurrence classes of C
1-generic diffeo-

morphisms

In this section we collect some properties of homoclinic and chain recurrence classes of C1-generic
diffeomorphisms.

2.1 Summary of generic properties of C1-diffeomorphisms

The results in [Ku, Sm1, Pu, CMP] give a residual subset G of Diff1(M) of diffeomorphisms f
verifying the following properties:

(G1) f is Kupka-Smale (hyperbolicity of the periodic points and general position of the invariant
manifolds);

(G2) the periodic points of f are dense in the non-wandering set of f ;

(G3) for any pair of saddles p and q of f , either H(p, f) = H(q, f) or H(p, f) ∩H(q, f) = ∅; and

(G4) for every saddle p of f , the homoclinic class H(pg, g) depends continuously on g ∈ G, where
pg is the continuation of the saddle p of f for g close to f .

To state the generic conditions (G5) and (G6) we need the notion of chain recurrence class.
A point y is f -chain attainable from the point x if for every ε > 0 there is an ε-pseudo-orbit
going from x to y (i.e., there is a finite sequence (xi)

m
i=0, m ≥ 1, such that x0 = x, xm = y, and

dist(f(xi), xi+1) < ε for all i = 0, . . . , (m − 1)). The points x and y are f -bi-chain attainable if
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x is chain attainable from y and vice-versa. An f -invariant set Λ is chain recurrent if every pair
of points of Λ are bi-chain attainable. The bi-chain attainability relation defines an equivalence
relation on the chain recurrent set R(f) of f (i.e., the set of points x which are chain attainable
from themselves). The chain recurrence classes are the equivalence classes of R(f) for the bi-chain
attainability relation. These sets are the maximal recurrent sets.

We also have the following two generic properties:

(G5) The chain recurrence classes of f form a partition of the chain recurrent set of f (i.e., they
are pairwise disjoint and cover R(f))3.

(G6) Every chain recurrence class Λ containing a (hyperbolic) periodic point p satisfies Λ =
H(p, f), see [BC, Remarque 1.10].

2.2 Coincidence of homoclinic classes

It is well-known that any hyperbolic periodic point pf of f has a unique continuation: there are
a neighborhood U of the orbit of pf in the ambient manifold M and a neighborhood U of f in
Diff1(M) such that every g in U has a unique periodic point pg close to pf whose orbit is contained
in U . The point pg is called the continuation of pf .

The next lemma is perhaps well-known in C1-dynamics. We include its proof for completeness.

Lemma 2.1. There is a residual subset G0 ⊂ G of Diff1(M) such that, for every diffeomorphism
f ∈ G0 and every pair of saddles pf and qf of f , there is a neighborhood Uf of f in G0 such that
either H(pg, g) = H(qg, g) for all g ∈ Uf , or H(pg, g) ∩H(qg, g) = ∅ for all g ∈ Uf .

Proof: We first fix some integer N ≥ 1. Given f ∈ G let PerN (f) be the (finite) set of periodic
points of f of period less than N . This set varies continuously in a C1-neighborhood UN (f) of f :

let PerN (f) = {p1f , . . . , p
k(N)
f }, then for every g ∈ UN (f) one has PerN (g) = {p1g, . . . , p

k(N)
g } (each

pig is the continuation of pif ).
We now fix f ∈ G and its neighborhood UN (f). For each i, j ∈ {1, . . . , k(N)} let

• Vi,j = {g ∈ UN (f) ∩ G : H(pig, g) ∩H(pjg, g) = ∅};

• Bi,j = (UN (f) \ Vi,j) ∩ G.

Claim 2.2. The set Vi,j is open in G.

We postpone the proof of the claim and finish the proof of the lemma. First, note that for every
g ∈ Bi,j the homoclinic classes H(pig, g) and H(pjg, g) have non-empty intersection so that, by (G3),
the two homoclinic classes coincide.

By Claim 2.2, the set Vi,j∪Bi,j is open and dense in UN (f). Let ON (f) be the finite intersection
ON (f) = ∩i,j(Vi,j ∪ Bi,j). By construction, this set is open and dense in UN (f).

Observe that for every diffeomorphism g ∈ ON (f) we have the conclusions of the lemma for the
saddles of period less than N of g. Let now ON be the union of all the sets ON (f), f ∈ G. The
set ON is open and dense in G. Finally, the set G0 is the intersection of the open and dense sets
ON . By construction, this set is residual in Diff1(M) and every g ∈ G0 satisfies the conclusions in
the lemma.

3In fact, by the Conley Theory, see [Co, Ro], this property holds for all C1 diffeomorphisms.
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Proof of the claim: Let g ∈ Vi,j. By (G6) the disjoint homoclinic classes H(pig, g) and H(pjg, g)
are also disjoint chain recurrence classes. By the Conley Theory, these sets are separated by a
filtration (see [Co, Ro]): there is an open set U of M with g(U ) ⊂ U , such that one of the classes,
say H(pig, g), is contained in U , and the other one is contained in M \U . Clearly, for every h close

to g it holds h(U ) ⊂ U . Therefore U contains the stable manifold of the orbit of pih. Similarly,

M \ U contains the unstable manifold of the orbit of pjh. Thus, by definition of homoclinic class,

H(pih, h) ⊂ U and H(pjh, h) ⊂ (M \ U). Hence H(pih, h) ∩H(pjh, h) = ∅. This ends the proof of the
claim. 2

The proof of the lemma is now complete. 2

2.3 Saddles of homoclinic classes

Given a homoclinic class H(p, f), denote by Perh(H(p, f)) the set of hyperbolic saddles q homo-
clinically related to p, and by PerR(H(p, f)) the subset of Perh(H(p, f)) of points q such that all
the eigenvalues of the derivative Dfπ(q)(q) are real, positive, and have multiplicity one; here π(q)
denotes the period of q.

Proposition 2.3. There is a residual subset G1 of Diff1(M) consisting of diffeomorphisms f such
that PerR(H(pf , f)) is dense in H(pf , f) for every nontrivial homoclinic class H(pf , f) of f .

Proof of the proposition: This proposition is just a translation of the results in [BDP] for
periodic linear systems (cocycles) with transitions to the context of homoclinic classes. Recall that
a periodic linear system is a 4-uple P = (Σ, f, E , A), where f is a diffeomorphism, Σ is an infinite
set of periodic points of f , E an Euclidean vector bundle defined over Σ, and A ∈ GL(Σ, f, E) is
such that A(x) : Ex → Ef(x) is a linear isomorphism for each x (Ex is the fiber of E at x). We refer
to [BDP, Section 1] for the precise definition (we do not need it here). Naively speaking, such
systems are cocycles where the extra structure of the transitions allows us to compose linear maps
at different points. In a rough terms, this guarantees the existence of new periodic orbits visiting
certain prescribed different periodic orbits of the system (i.e., there is a shadowing-like property in
the bundle). Let us now explain how Proposition 2.3 follows:

Lemma 2.4. ([BDP, Lemma 1.9]) Let H(pf , f) be a nontrivial homoclinic class. Then the
derivative Df of f induces a periodic linear system with transitions over Perh(H(pf , f)).

We say that a periodic linear system with transitions P = (Σ, f, E , A) is diagonalizable at the
point x ∈ Σ if the linear map

MA(x) : Ex → Ex, MA(x) = A(fπ(x)−1(x)) ◦ · · · ◦ A(f2(x)) ◦ A(x),

only has positive real eigenvalues of multiplicity one.

Lemma 2.5. ([BDP, Lemma 4.16]) For every periodic linear system with transitions P =
(Σ, f, E , A) and every ε > 0 there is a dense subset Σ′ of Σ and an ε-perturbation A′ of A defined
on Σ′ which is diagonalizable, that is, MA′(x) has positive real eigenvalues of multiplicity one for
every x ∈ Σ′.

The next result allows us to perform dynamically the perturbations of a cocycle:
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Lemma 2.6. (Franks, [Fr]). Consider a diffeomorphism f and an f -invariant finite set Σ. Let
A be an ε-perturbation of the derivative of f in Σ (i.e., the linear maps Df(x) and A(x) are ε-close
for all x ∈ Σ). Then, for every neighborhood U of Σ, there is g ε-C1-close to f such that

• f(x) = g(x) for every x ∈ Σ and every x /∈ U ,

• Dg(x) = A(x) for all x ∈ Σ.

We are now ready to prove the proposition. By Lemma 2.4, the derivative of f induces a
periodic linear system with transitions over Σ = Perh(H(pf , f)). Applying Lemma 2.5 to such a
system, we get that fixing any ε > 0 there is a dense subset Σ′ of Perh(H(pf , f)) such that for
every rf ∈ Σ′ there is an ε-perturbation A of Df throughout the orbit of rf such that

MA(rf ) = A(fπ(rf )−1(rf )) ◦ A(f
π(rf )−2(r)) ◦ · · · ◦A(f(rf )) ◦ A(rf )

has positive real eigenvalues of multiplicity one. Applying Lemma 2.6 to the orbit of rf and the
perturbation A of Df , we get g close to f such that rf = rg is a periodic point of g (of period
π(rf )) and Dgπ(rf )(rg) = MA(rf ). Thus, rg is a periodic point of g having real positive eigenvalues
of multiplicity one.

Note that, from the proof of [BDP, Lemma 4.16], the orbit of rf can be taken arbitrarily close
in the Hausdorff metric to the orbit of a transverse homoclinic point x of pf . More precisely, let
Λ = {O(pf ) ∪ O(x)}, then the orbit of rf can be taken arbitrarily close to Λ in the Hausdorff
metric. Since Λ is a hyperbolic set of f , there is δ > 0 such that for any rf whose orbit O(rf , f)
is Hausdorff δ-close to Λ and any g that is C1-ǫ close to f , rg and pg are homoclinically related.
Thus rg ∈ H(pg, g).

The proof of the proposition concludes as follows. For each n, take a finite covering Bn of
H(pf , f) by open balls Bi of radius 1/n (each ball intersecting H(pf , f)). Arguing as above, in
each ball Bi we will obtain, after a small C1-perturbation, g ∈ G with a saddle rg ∈ Perg(H(pg, g))
in Bi having only positive real eigenvalues of multiplicity one.

Considering perturbations at each ball Bi (there are finitely many) and recalling condition (G4)
(in G the homoclinic classes depend continuously), we get g ∈ G close to f such that PerR(H(pg, g))
is 2/n-dense in H(pg, g) (by continuity, H(Pg, g) is contained in the union of the balls Bi). This
also implies that PerR(H(ph, h)) is 2/n-dense in H(ph, h) for all h close to g in G. Thus there are a
neighborhood Uf of f in G and an open and dense subset Dn of Uf of diffeomorphisms g such that
PerR(H(pg, g)) is 2/n-dense in H(pg, g). The proof of the proposition now follows using a genericity
argument identical to the one in Lemma 2.1. The proof of the proposition is now complete. 2

2.4 Creation of intersections between invariant manifolds

Let G2 = G0 ∩ G1, where G0 and G1 are the residual subsets of Diff1(M) in Lemma 2.1 and Propo-
sition 2.3. Consider f in G2 having a homoclinic class H(pf , f) and a saddle qf of different index
from that of pf with qf ∈ H(pf , f). In particular, H(pf , f) is nontrivial. Without loss of generality
we can assume that the indices of pf and qf are α and β, with α < β. By Lemma 2.1, there is a
neighborhood Uf of f in G2 such that H(pg, g) = H(qg, g) for all g ∈ Uf .

By hypotheses, recall Proposition 2.3, there is a saddle p1g (resp. q1g) homoclinically related to

pg (resp. qg) such that Dgπ(p
1
g)(p1g) (resp. Dgπ(q

1
g)(q1g)) has positive real eigenvalues of multiplicity

one. Observe that the indices of p1g and q1g are α and β.
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We need the following lemma about the creation of cycles:

Lemma 2.7. (Hayashi’s Connecting Lemma, [Ha]) Let af and bf be a pair of saddles of a
diffeomorphism f such that there are sequences of points yn and of natural numbers kn such that

• yn → y ∈ W u
loc(af , f), y 6= af , and

• fkn(yn) → z ∈ W s
loc(bf , f), z 6= bf .

Then there is a diffeomorphism g arbitrarily C1-close to f such that W u(ag, g) and W s(bg, g) have
an intersection arbitrarily close to y.

Lemma 2.8. Consider a homoclinic class H(af , f), any saddle bf ∈ H(af , f), and any transverse
homoclinic point y of af . Then there is g arbitrarily C1-close to f such that W u(ag, g) and W s(bg, g)
have an intersection arbitrarily close to y.

Proof: Recall that H(af , f) is the ω-limit set of some w ∈ H(af , f). Thus the forward orbit of w
passes arbitrarily close to af , bf and y and it accumulates to some z ∈ W s

loc(bf ). Hence there are
sequences fmn(w) converging to some z ∈ W s

loc(bf ) and f rn(w) → y, where mn > rn and mn → ∞.
Taking yn = f rn(w) and kn = mn − rn we obtain the hypotheses of Lemma 2.7, which implies the
result. 2

By Lemma 2.8 (taking af = pf , bf = qf and any homoclinic point y of af ), there is g arbitrarily
C1-close to f such that W s(qg, g) and W u(pg, g) have some intersection close to y. Observe that

dim(W s(qg, g)) + dim(W u(pg, g)) = β + (n− α) > β + (n− β) = n.

Thus we can assume (after a perturbation) that the previous intersection between W u(pg, g) and
W s(qg, g) is transverse. Since the property of having a transverse intersection is open, using a Baire
argument similar to the one in the proof of Lemma 2.1, one immediately obtains:

Lemma 2.9. There is a residual subset G3 of Diff1(M) of diffeomorphisms f such that for every
pair of saddles pf and qf of f of indices α and β, α < β, with H(pf , f) = H(qf , f) it holds that
W u(pf , f) and W s(qf , f) have some transverse intersection.

3 Heterodimensional cycles and creation of periodic orbits

Let us recall that, by convention, the index of a hyperbolic periodic point x is the dimension of its
stable manifold. Given a pair of hyperbolic points p and q we write p <us q if the unstable manifold
W u(Op) of the orbit Op of p intersects transversally the stable manifold W s(Oq) of the orbit Oq of
q: there exists a point x ∈ W u(Op) ∩W s(Oq) such that TxM = TxW

u(Op) + TyW
s(Oq).

Remark 3.1. The property <us is open in Diff1(M): let pf and qf be hyperbolic periodic points
of a diffeomorphism f with pf <us qf , then there is a neighborhood Uf of f in Diff1(M) such that
pg <us qg for every g ∈ Uf (here pg and qg are the continuations of pf and qf).

Recall that a diffeomorphism f has a heterodimensional cycle associated to the saddles p and q
if p and q have different indices and both intersections W s(Op) ∩W u(Oq) and W s(Oq) ∩W u(Op)
are non-empty.

We say that a periodic point p of period π(p) of a diffeomorphism f has real eigenvalues if every
eigenvalue of the linear isomorphism Dfπ(p)(p) : TpM → TpM is real.
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Theorem 3.2. Let f be a diffeomorphism having a heterodimensional cycle associated to periodic
saddles pf and qf , of indices α and β with α < β − 1, with real eigenvalues. Then, for any C1-
neighborhood U of f and for any integer τ with α ≤ τ ≤ β, there exists g ∈ U having a periodic
point rg of index τ such that pg <us rg <us qg (pg and qg are the continuations of pf and qf).

In fact, we will see that under some additional hypotheses (in our case, H(pf , f) = H(qf , f)),
the saddle rg can be taken such that rg ∈ H(pg, q) = H(qg, g), see Propositions 3.10 and 4.1.

The proof of Theorem 3.2 is the aim of this whole section.

3.1 Affine heterodimensional cycles

Definition 3.3 (Affine heterodimensional cycle). Let f be a diffeomorphism having a heterodimen-
sional cycle associated to periodic points p, q of indices α and β, α < β, and to heteroclinic points
x ∈ W u(Op) ∩ W s(Oq) and y ∈ W s(Op) ∩ W u(Oq). We say that the heterodimensional cycle is
affine if all the following properties are satisfied:

(A1) The eigenvalues associated to the saddles p and q are all real and different in modulus and
have multiplicity one: denote the eigenvalues of Dfπ(p)(p) and Dfπ(q)(q) by λ1, . . . , λn and
σ1, . . . , σn, respectively, so that we have 0 < |λ1| < · · · < |λα| < 1 < |λα+1| < · · · < |λn| and
0 < |σ1| < · · · < |σβ | < 1 < |σβ+1| < · · · < |σn|.

(A2) There are local charts ϕp : Up → R
n and ϕq : Uq → R

n centered at the points p and q such
that the open sets Up, f(Up), . . . , f

π(p)−1(Up), Uq, f(Uq), . . . , f
π(q)−1(Uq) are pairwise disjoint.

Moreover, these charts linearize the dynamics locally: in these local coordinates, the maps

fπ(p) : Up ∩ f−π(p)(Up) → Up and fπ(q) : Uq ∩ f−π(q)(Uq) → Uq

are the diagonal linear maps whose kth diagonal entries are λk and σk, respectively.

Furthermore, ϕp

(
Up ∩ f−π(p)(Up)

)
and ϕq

(
Uq ∩ f−π(q)(Uq)

)
contain the cube [−2, 2]n of Rn.

(A3) The heteroclinic point x ∈ W u(Op) ∩ W s(Oq) has two iterates x− = fn−
x (x) ∈ Up and

x+ = fn+
x (x) ∈ Uq, where n−

x < n+
x , whose local coordinates are

x− = (0, . . . , 0
︸ ︷︷ ︸

α

, 1, 0 . . . , 0
︸ ︷︷ ︸

n−α−1

), and x+ = (0, . . . , 0
︸ ︷︷ ︸

β−1

, 1, 0 . . . , 0
︸ ︷︷ ︸

n−β

).

(A4) There is a neighborhood U−
x ⊂ Up of x− such that the neighborhood U+

x = fnx(U−
x ) of x+

is contained in Uq, where nx = n+
x − n−

x . Furthermore, in the correspondig local coordinates,
U−
x and U+

x are contained in the cube [−2, 2]n, the map Tx = fnx : U−
x → U+

x is affine and
its linear part Tx is diagonal. We denote the diagonal entries of Tx by (tx,1, . . . , tx,n). Note
that by definition of Tx one has

Tx(0, . . . , 0
︸ ︷︷ ︸

α

, 1, 0 . . . , 0
︸ ︷︷ ︸

n−α−1

) = (0, . . . , 0
︸ ︷︷ ︸

β−1

, 1, 0 . . . , 0
︸ ︷︷ ︸

n−β

).
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Figure 1: An affine heterodimensional cycle

(A5) The heteroclinic point y ∈ W s(Op) ∩ W u(Oq) has two iterates y− = fn−
y (y) ∈ Uq and

y+ = fn+
y (y) ∈ Up, where n−

y < n+
y , whose local coordinates are

y− = (0, . . . , 0
︸ ︷︷ ︸

β

, 1, 0 . . . , 0
︸ ︷︷ ︸

n−β−1

) and y+ = (0, . . . , 0
︸ ︷︷ ︸

α−1

, 1, 0 . . . , 0
︸ ︷︷ ︸

n−α

).

(A6) There is a neighborhood U−
y ⊂ Uq of y− such that the neighborhood U+

y = fny(U−
y ) of y+ is

contained in Up, where ny = n+
y − n−

y . Moreover, in the corresponding local coordinates, U−
y

and U+
y are contained in the cube [−2, 2]n, the map Ty = fny : U−

y → U+
y is affine and its

linear part Ty is diagonal. We denote the diagonal entries of Ty by (ty,1, . . . , ty,n). Observe
that by definition of Ty,

Ty(0, . . . , 0
︸ ︷︷ ︸

β

, 1, 0 . . . , 0
︸ ︷︷ ︸

n−β−1

) = (0, . . . , 0
︸ ︷︷ ︸

α−1

, 1, 0 . . . , 0
︸ ︷︷ ︸

n−α

).

Lemma 3.4. Let f be a diffeomorphism having a heterodimensional cycle associated to the saddles
p and q, having real eigenvalues and indices α and β, α < β, and to the heteroclinic points x ∈
W u(Op) ∩ W s(Oq) and y ∈ W s(Op) ∩ W u(Oq). Then, for any C1-neighborhood U of f , there
is g ∈ U having an affine heterodimensional cycle associated to the saddles p and q and to the
heteroclinic points x and y.

Proof: The proof is essentially the same as that of [BDPR, Lemma 3.2], so we just sketch it. We
first note that, after an arbitrarily small C1-perturbation, we can assume that f is linearizable in
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some small neighborhoods of the saddles p and q, while keeping the heteroclinic points x and y.
Moreover, we can also suppose that all the eigenvalues of Dfπ(p)(p) and of Dfπ(q)(q) have different
moduli. In this way we obtain local coordinates verifying (A1) and (A2) above.

Next, by a local perturbation in the neighborhood of the heteroclinic points x and y, one makes
the intersection W u(Op)∩W

s(Oq) at x transverse and the intersection W s(Op)∩W
u(Oq) at y quasi-

transverse (i.e., TyW
s(Op) ∩ TyW

u(Oq) = 0̄). Furthermore, one may prevent these intersections
from belonging to the strong stable or strong unstable manifolds, so that the heteroclinic intersec-
tions belong to the weak stable and the weak unstable manifolds. Let us explain this point more
precisely. In the linearizing local coordinates we define local weak unstable and stable manifolds
by

W cu
loc(Oq) = {(0, . . . , 0

︸ ︷︷ ︸

β

, s, 0, . . . , 0
︸ ︷︷ ︸

n−β−1

), s ∈ [−2, 2]}, W cs
loc(Op) = {(0, . . . , 0

︸ ︷︷ ︸

α−1

, s, 0, . . . , 0
︸ ︷︷ ︸

n−α

), s ∈ [−2, 2]}.

Considering iterations by f we obtain a global invariant weak unstable manifoldW cu(Oq). Similarly,
iterating by f−1 we obtain a weak stable manifold W cs(Op).

Analogously, we first define local strong unstable and stable manifolds by

W uu
loc (Oq) = {(0, . . . , 0

︸ ︷︷ ︸

β+1

)} × [−2, 2]n−β−1, W ss
loc(Op) = [−2, 2]α−1 × {(0, . . . , 0

︸ ︷︷ ︸

n−α+1

)}.

We next extend these manifolds by iterations of f±1 to global strong unstable and strong stable
manifolds W uu(Oq) and W ss(Op).

After a new perturbation, we can assume that y 6∈ W ss(Op), therefore (using domination) its
forward iterates accumulate to W cs(Op). Therefore, after a new arbitrarily small perturbation, we
can assume that y ∈ W cs(Op). Using similar arguments, but now considering backward iterations,
we can assume that (after an arbitrarily small perturbation) y ∈ W cu(Oq). Hence y ∈ W cs(Op) ∩
W cu(Oq). This implies (A5) above. To obtain (A3) one proceeds analogously.

A more subtle point consists in perturbing f in such a way that the differential of f along the
heteroclinic orbits preserves the ordered eigenspaces. This was done in [BDPR, Lemma 3.2], so we
will just sketch this point. One first shows (using domination) that (after an arbitrarily small per-
turbation) it is possible to preserve the one-dimensional bundles corresponding to the strong stable
eigenvalues λ1 and σ1 (say E1(p) and E1(q)) and the (n − 1)-dimensional bundles corresponding
to the remainder eigenvalues λ2, . . . , λn and σ2, . . . , σn (say En−1

1 (p) and En−1
1 (q)). Now, a new

perturbation, keeping invariant the previous bundles E1(p), E1(q), E
n−1
1 (p) and En−1

1 (q) but now
focusing on En−1

1 (p) and En−1
1 (q), allows us to preserve the one-dimensional bundles corresponding

to λ2 and σ2 (say E2(p) and E2(q)) and the (n − 2)-dimensional bundles corresponding to the
remaining eigenvalues λ3, . . . , λn and σ3, . . . , σn (say En−2

2 (p) and En−2
2 (q)). This step is identical

to the first one and also involves domination. The proof now follows inductively.
In this way we obtain a diffeomorphism having a cycle verifying (A1)–(A6) above, ending the

proof of the lemma. 2

3.2 Creation of saddles of intermediate indices

Consider a diffeomorphism f with an affine heterodimensional cycle associated to the saddles p
and q, of indices α and β, α < β, and the heteroclinic points x ∈ W u(Op) ∩ W s(Oq) and y ∈
W s(Op) ∩W u(Oq). We use the notations introduced in Section 3.1.
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Consider a sequence of points (rℓ,m)ℓ,m∈N having local coordinates in Up as follows:

rℓ,m = (

α−1
︷ ︸︸ ︷

0, . . . , 0, 1, λ−ℓ
α+1, 0, . . . , 0

︸ ︷︷ ︸

β

, λ−ℓ
β+1 t

−1
x,β+1 σ

−m
β+1, 0, . . . , 0︸ ︷︷ ︸

n−β−1

).

We next define the points

sℓ,m = fπℓ,m(rℓ,m), where πℓ,m = ℓ π(p) + nx +mπ(q) + ny.

We perturb f in a small neighborhood D+
y of y+ = fn+

y (y) which is relatively compact in U+
y . We

can assume that D+
y is disjoint from the cube fπ(p)([−1 − ε, 1 + ε]n) ⊂ Up, where ε > 0 is a small

constant: this is possible because fπ(p)([−1− ε, 1 + ε]n) is a small neighborhood of the cube whose
expression in the coordinates of Up is [−|λ1|, |λ1|]× · · ·× [−|λn|, |λn|] and because |λα| < 1 and D+

y

is a small neighborhood of the point y+ = (0, . . . , 0
︸ ︷︷ ︸

α−1

, 1, 0 . . . , 0
︸ ︷︷ ︸

n−α

). Moreover, we can also choose D+
y

disjoint from the orbits (fk(x−)), k ∈ {0, . . . , nx − 1}, and fk(y−), k ∈ {0, . . . , ny − 1} and from
the open sets f(Up), . . . , f

π(p)−1(Up), Uq, f(Uq), . . . , f
π(q)−1(Uq).

Proposition 3.5. For every ℓ and m large enough, the points rℓ,m and sℓ,m are well-defined,

belong to Up, and the sequences (rℓ,m) and (sℓ,m) converge to the point y+ = fn+
y (y) as ℓ,m → ∞.

Moreover, the intermediate iterates fk(rℓ,m), k ∈ {1, . . . , πℓ,m − 1}, do not intersect the set D+
y .

Proof: As |λα+1|, |λβ+1| and |σβ+1| are greater than 1, the sequence (rℓ,m) converges to the point
y+ = (0, . . . , 0

︸ ︷︷ ︸

α−1

, 1, 0 . . . , 0). In particular, the point rℓ,m is well-defined for ℓ,m large, and belongs

to Up. Now, for ℓ,m large, f ℓ π(p)(rℓ,m) is the point in Up whose coordinates are

f ℓπ(p)(rℓ,m) = (

α−1
︷ ︸︸ ︷

0, . . . , 0, λℓ
α, 1, 0, . . . , 0

︸ ︷︷ ︸

β

, t−1
x,β+1 σ

−m
β+1, 0, . . . , 0︸ ︷︷ ︸

n−β−1

).

The intermediate points fk(rℓ,m), k ∈ {1, . . . , ℓ π(p)}, do not belong to Up when k is different from
0 modulo π(p) (just note that the sets Up, . . . , f

π(p)−1(Up) are pairwise disjoint) and belong to
fπ(p)([−1 − ε, 1 + ε]n) when k is equal to 0 modulo π(p). In all these cases, these iterates do not
meet D+

y .

Thus, for ℓ and m large enough, the point f ℓ π(p)(rℓ,m) is very close to x− = (0, . . . , 0
︸ ︷︷ ︸

α

, 1, 0, . . . , 0).

Hence Tx

(
f ℓ π(p)(rℓ,m)

)
is well-defined and close to x+ = (0, . . . , 0

︸ ︷︷ ︸

β−1

, 1, 0, . . . , 0) ∈ Uq. Moreover, by

the definition of Tx in (A4), in the local coordinates we have

Tx

(

f ℓ π(p)(rℓ,m)
)

= (

α−1
︷ ︸︸ ︷

0, . . . , 0, tx,α λ
ℓ
α, , 0, . . . , 0

︸ ︷︷ ︸

β−1

, 1, σ−m
β+1, 0, . . . , 0︸ ︷︷ ︸

n−β−1

).
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Moreover, the points fk
(
f ℓ π(p)(rℓ,m)

)
, k ∈ {0, . . . , nx}, are very close to the points fk(x−) and are

disjoint from D+
y .

Repeating these arguments, one shows that, for ℓ,m large enough, fk
(
Tx ◦ f

ℓ π(p)(rℓ,m)
)
, k ∈

{0, . . . ,mπ(q)}, is disjoint from D+
y and fmπ(q)

(
Tx ◦ f

ℓ π(p)(rℓ,m)
)
∈ Uq and has coordinates

fmπ(q)
(

Tx ◦ f
ℓ π(p)(rℓ,m)

)

= (

α−1
︷ ︸︸ ︷

0, . . . , 0, σm
α tx,α λ

ℓ
α, 0, . . . , 0

︸ ︷︷ ︸

β−1

, σm
β , 1, 0, . . . , 0

︸ ︷︷ ︸

n−β−1

).

As |σβ|, |σα|, |λα| < 1, this point is arbitrarily close to y− = (0, . . . , 0
︸ ︷︷ ︸

β

, 1, 0, . . . , 0) if m is large

enough. So, the points

sℓ,m = Ty

(

fmπ(q) ◦ Tx ◦ f
ℓ π(p)(rℓ,m)

)

are well-defined and close to y+ ∈ Up. Finally, they belong to D+
y and their local coordinates are:

sℓ,m = (

α−1
︷ ︸︸ ︷

0, . . . , 0, 1 + ty,α σ
m
α tx,α λ

ℓ
α, 0, . . . , 0

︸ ︷︷ ︸

β−1

, ty,β σ
m
β , 0, . . . , 0

︸ ︷︷ ︸

n−β

).

Moreover, the intermediate points fk
(
fmπ(q) ◦ Tx ◦ f

ℓπ(p)(rℓ,m)
)
, k ∈ {0, . . . , ny − 1}, are close to

the points fk(y−) and do not meet D+
y .

As |λα|, |σα|, σβ | < 1, one easily checks that, when m → ∞, the sequence (sℓ,m) converges to
y+ = (0, . . . , 0

︸ ︷︷ ︸

α−1

, 1, 0, . . . , 0). This completes the proof of the proposition. 2

For ℓ,m large enough, we use the coordinates of the chart ϕp to define the vector θℓ,m ∈ R
n by

rℓ,m = sℓ,m + θℓ,m. We denote by Θℓ,m the local diffeomorphism defined on D+
y whose expression

in the local coordinates of Up is the translation z 7→ z + θℓ,m.
We fix a neighborhood Vy of y+, relatively compact in the interior of D+

y . The following lemma
yields a sequence (gℓ,m) of local C1-perturbations of f , gℓ,m → f as ℓ,m → ∞, each one closing the
orbit of the corresponding point rℓ,m.

Lemma 3.6. For any C1-neighborhood U of f and for every ℓ,m large enough, there is a diffeo-
morphism hℓ,m coinciding with Θℓ,m on Vy and with the identity map outside of D+

y , such that the
diffeomorphism gℓ,m = hℓ,m ◦ f belongs to U .

Proof: This comes from the fact that the vectors θℓ,m go to 0̄ as ℓ and m go to ∞. 2

One now obtains the announced periodic points for gℓ,m:

Proposition 3.7. For every ℓ,m large enough, the rℓ,m is a periodic point of gℓ,m whose period is
πℓ,m. Furthermore, the derivative Dgπℓ,m(rℓ,m) is

Dgπℓ,m(rℓ,m) = Ty ◦
(

Dfπ(q)(q)
)m

◦ Tx ◦
(

Dfπ(p)(p)
)ℓ

.

In other words, Dgπℓ,m(rℓ,m) is the diagonal linear map whose kth diagonal entry is

ty,k σ
m
k tx,k λ

ℓ
k.
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Proof: For ℓ and m large enough, the points rℓ,m and sℓ,m belong to Vy so that Θℓ,m(sℓ,m) = rℓ,m.
As rℓ,m and sℓ,m = fπℓ,m(rℓ,m) are the only points of the segment of orbit rℓ,m, f(rℓ,m), . . . , fπℓ,m(rℓ,m)
in the support D+

y of the perturbation hℓ,m, the point rℓ,m is πℓ,m-periodic for gℓ,m.

In the local coordinates, the derivative Dfπℓ,m(rℓ,m) is Ty ◦
(
Dfπ(q)(q)

)m
◦Tx ◦

(
Dfπ(p)(p)

)ℓ
. In

the coordinates of Vy ⊂ Up, the map hℓ,m is a translation, hence, one obtains the same expression
for the derivative of Dgπℓ,m(rℓ,m). 2

By choosing carefully the integers ℓ and m, one obtains any index τ between α and β:

Corollary 3.8. For any integer τ ∈ {α, . . . , β}, there exists a sequence (ℓk,mk), with limk→+∞ ℓk =
limk→+∞mk = +∞ such that, for every k, the point rℓk,mk

is a hyperbolic saddle of gℓk,mk
having

index τ .

Proof: Let us assume that τ belongs to {α + 1, . . . , β}, the case τ = α follows similarly. As
|στ | < 1 < |λτ |, one can choose ℓ and m arbitrarily large such that the modulus of the τ th

eigenvalue of rℓ,m, which is |ty,τ σ
m
τ tx,τ λ

ℓ
τ |, belongs to [|σ2

τ |, |στ |], in particular is less than one. On
the other hand, the ratio between the moduli of the (τ + 1)th and (τ)th eigenvalues of rℓ,m is

|ty,τ+1 tx,τ+1|

|ty,τ ty,τ |

(
|λτ+1|

|λτ |

)m(
|στ+1|

|στ |

)ℓ

.

Since |λτ+1| > |λτ | and |στ+1| > |στ |, if ℓ and m are big enough, the ratio between the (τ + 1)th

and the (τ)th eigenvalues above is strictly bigger than |σ−3
τ |. This implies that the modulus of the

(τ + 1)th eigenvalue of rℓ,m is greater that |σ−1
τ | > 1. This shows that the index of rℓ,m is exactly

τ , ending the proof of the lemma. 2

Remark 3.9. The arguments in the proof of Corollary 3.8 imply the following: for every ε > 0
and every ρ ∈ (0, 1), there is a saddle r = rℓ,m of g = gℓ,m (for some appropriate large ℓ and m)
whose Lyapunov exponents (log |µ1|/π(r)), . . . , (log |µn|/π(r)) (here the µi are the eigenvalues of
Dgπ(r)(r)) verify

∣
∣
∣
∣

log |µi|

π(r)
−

(

ρ
log |λi|

π(p)
+ (1− ρ)

log |σi|

π(q)

)∣
∣
∣
∣
< ε.

This remark and Theorem 1 immediately imply Corollary 2.

3.3 Control of the heteroclinic intersections

In this section we will complete the proof of Theorem 3.2.
Note that the diffeomorphisms gℓ,m coincide with f in the neighborhood of the orbits of p and

q, thus the orbits of p and q by f and gℓ,m coincide. Thus, according to Corollary 3.8, to prove
Theorem 3.2 it is enough to see the following:

Proposition 3.10. For ℓ and m large enough, the diffeomorphism gℓ,m satisfies

p <us rℓ,m <us q.
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Proof: Given ℓ and m big enough, denote by ∆s
ℓ,m the α-dimensional disk contained in Up defined

in the corresponding local coordinates by

∆s
ℓ,m = [−1− ε, 1 + ε]α × (λ−ℓ

α+1, 0, . . . , 0︸ ︷︷ ︸

β−α−1

, λ−ℓ
β+1 t

−1
x,β+1 σ

−m
β+1, 0, . . . , 0︸ ︷︷ ︸

n−β−1

).

Similarly, consider the (n− β)-dimensional cube ∆u
ℓ,m defined in the local coordinates of Uq by

∆u
ℓ,m = (0, . . . , 0

︸ ︷︷ ︸

α−1

, tx,α λ
ℓ
α σ

m
α , 0, . . . , 0

︸ ︷︷ ︸

β−α−1

, σm
β )× [−1− ε, 1 + ε]n−β .

Note that the disks ∆s
ℓ,m and ∆u

ℓ,m contain the points rℓ,m and fmπ(q)◦Tx◦f
ℓ π(p)(rℓ,m) = T−1

y (rℓ,m),
respectively.

Lemma 3.11. For every ℓ,m large enough,

• ∆s
ℓ,m ⊂ W s(rℓ,m, gℓ,m);

• ∆u
ℓ,m ⊂ W u(T−1

y (rℓ,m)).

Before proving this lemma let us complete the proof of the proposition assuming it. Observe
that when ℓ and m go to +∞, the disks ∆s

ℓ,m converge (in the C1 topology) to the disk

∆s
p = [−1− ε, 1 + ε]α × {0}n−α,

which is a local stable manifold of p. This implies that ∆s
ℓ,m intersects transversally the unstable

manifold of p when ℓ and m are large enough. Lemma 3.11 implies that the unstable manifold of p
transversally intersects the stable one of rℓ,m, thus p <us rℓ,m. In the same way, one shows that the
disk ∆u

ℓ,m, containing fmπ(q) ◦Tx ◦f
ℓ π(p)(rℓ,m) = T−1

y (rℓ,m), intersects transversally the local stable
manifold of q. Therefore rℓ,m <us q. Thus to complete the proof of the proposition it remains to
prove Lemma 3.11.

Proof of the lemma: We just prove the first item of the lemma, the second one follows similarly
by considering backward iterates of f .

The images of ∆s
ℓ,m by fk, k ∈ {1, . . . , ℓ π(p)}, are disjoint from D+

y : when k is different from
0 modulo π(p), the image is disjoint from Up and, when k is equal to 0 modulo π(p), the image

is a disk contained in the cube fπ(p)([−1 − ε, 1 + ε]n) ⊂ Up. In particular, this shows that g
ℓ π(p)
ℓ,m

coincides with f ℓ π(p) on ∆s
ℓ,m and that g

ℓ π(p)
ℓ,m (∆s

ℓ,m) is an α-dimensional disk contained in U−
x of size

less than |(λα)
ℓ(1+ ε)| containing g

ℓ π(p)
ℓ,m (rℓ,m) = f ℓπ(p)(rℓ,m). As the diameter of this disk tends to

0 when ℓ goes to +∞, one has that g
ℓ π(p)
ℓ,m (∆s

ℓ,m) ⊂ U−
x , so that Tx is defined on g

ℓ π(p)
ℓ,m (∆s

ℓ,m) and

Tx◦g
ℓ π(p)
ℓ,m (∆s

ℓ,m) = g
ℓ π(p)+nx

ℓ,m (∆s
ℓ,m) is an arbitrarily small disk containing the point Tx◦f

ℓ π(p)(rℓ,m)

in U+
x .

In the same way, one verifies that g
mπ(q)
ℓ,m ◦ Tx ◦ g

ℓ π(p)
ℓ,m (∆s

ℓ,m) is a very small disk that contains

fmπ(q) ◦ Tx ◦ f
ℓ π(p)(rℓ,m) in U−

y . So (for ℓ,m large enough) g
mπ(q)
ℓ,m ◦ Tx ◦ g

ℓ π(p)
ℓ,m (∆s

ℓ,m) is contained

in the small neighborhood T−1
y (Vy) of y−. As a consequence, g

ny

ℓ,m coincides with Θℓ,m ◦ Ty on

g
mπ(q)
ℓ,m ◦ Tx ◦ g

ℓ π(p)
ℓ,m (∆s

ℓ,m).
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The previous arguments show that g
πℓ,m

ℓ,m (∆s
ℓ,m) is an α-dimensional disk containing rℓ,m =

g
πℓ,m

ℓ,m (rℓ,m) and whose diameter tends to 0 as ℓ,m tend to +∞. So for ℓ,m large enough, the map

g
πℓ,m

ℓ,m maps ∆s
ℓ,m into itself and is a linear contraction on this disk, having rℓ,m as a fixed point.

This concludes the proof of the lemma. 2

The proof of Proposition 3.10 is now complete. 2

4 Heterodimensional cycles and periodic points. Proof of Theo-

rem 1

In this section we finish the proof of Theorem 1, which follows immediately from the proposition
below: just note that if rf is a saddle of index τ then the saddles of index τ in H(rf , f) constitute
a dense subset of H(rf , f).

Proposition 4.1. There is a residual subset G4 of Diff1(M) with the following property: for every
f ∈ G4 and every pair of saddles pf and qf of f having indices α and β, α < β, such that
H(pf , f) = H(qf , f), given any τ ∈ (α, β) ∩ N there is a hyperbolic periodic saddle rf of index τ
such that

H(pf , f) = H(qf , f) = H(rf , f).

The proposition immediately follows from a standard Baire argument (analogous to the one in
the proof of Lemma 2.1) and the lemma below.

Lemma 4.2. Let U be an open subset of G3 (the residual subset of Diff1(M) in Lemma 2.9) such
that for every f ∈ U there are saddles pf and qf of indices α and β, α < β, depending continuously
on f such that H(pf , f) = H(qf , f). Then for every τ ∈ (α, β)∩N there is an open and dense subset
Vτ of U such that every g ∈ Vτ has a saddle rg of index τ with H(pg, g) = H(qg, g) = H(rg, g).

Proof: Let f ∈ U . By Proposition 2.3, we can assume (after replacing the initial saddles by saddles
homoclinically related to them) that pf and qf both have real positive eigenvalues of multiplicity
one (i.e., pf , qf ∈ PerR(H(pf , f))). As f ∈ G3, one has that W u(pf , f) and W s(qf , f) have some
non-empty transverse intersection. This property holds for every g close to f . Using Lemma 2.8,
we get h close to f having a heterodimensional cycle associated to ph and qh.

Fix now τ ∈ (α, β) ∩ N. Using Theorem 3.2 we obtain some g close to h, thus close to f ,
having a saddle rg of index τ with pg <us rg <us qg. By Remark 3.1 this relation persists under
C1-perturbations. This gives an open and dense subset Vτ of U such that every g ∈ Vτ has a saddle
rg of index τ with pg <us rg <us qg.

Claim 4.3. Let g ∈ Vτ . For every ε > 0 there is a closed ε-pseudo-orbit containing pg, rg and qg.

This claim implies that the saddles pg, qg and rg are in the same chain recurrence class Λ of g.
By (G6),

Λ = H(pg, g), Λ = H(rg, g), Λ = H(qg, g).

Thus the three homoclinic classes coincide. To end the proof of the lemma it remains only to prove
the claim.
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Proof of the claim: Fix any ε > 0. SinceH(pg, g) = H(qg, g) is a transitive set, there is a (finite)
segment Sq,p of ε-pseudo-orbit going from qg to pg. On the other hand, since W u(pg, g) intersects
W s(rg, g) there is an orbit going from pg to rg. Thus there is is a (finite) segment Sp,r of ε-pseudo-
orbit going from pg to rg. Similarly, as W u(rg, g) intersects W s(qg, g) there is a (finite) segment
Sr,q of ε-pseudo-orbit going from rg to qg. The announced pseudo-orbit is obtained concatenating
the segments of ε-pseudo-orbits Sq,p, Sp,r and Sr,q. 2

The proof of Lemma 4.2 is now complete. 2
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