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Abstract. Reynolds-averaged Navier–Stokes (RANS) turbulence models (such as k-ε models) are 

still widely used for engineering applications because of their relatively simplicity and robustness. 

In fully developed plane channel flow (i.e. the flow between two infinitely large plates), even if 

available models and near-wall treatments provide adequate mean flow velocities, they fail to 

predict suitable turbulent kinetic energy “TKE” profiles near walls. TKE is involved in 

determination of eddy viscosity/diffusivity and could therefore provide inaccurate concentrations 

and temperatures. In order to improve TKE a User Define Function “UDF” based on an analytical 

profile for TKE was developed and implemented in Fluent. Mean streamwise velocity and turbulent 

kinetic energy “TKE” profiles were compared to DNS data for friction Reynolds number Reτ = 150. 

Simulation results for TKE show accurate profiles. Simulation results for horizontal heated channel 

flows obtained with Fluent are presented. Numerical results are validated by DNS data for Reτ = 

150.  

Introduction 

Turbulent flow with heat transfer mechanism is of great importance from both scientific and 

engineering field because it occurs frequently in many industrial applications, such as heat 

exchangers, gas turbine cooling systems, nuclear reactors ... To simplify the geometry and to 

understand the mechanism of transport, the flow in a channel, has been studied extensively from 

both experimental and numerical approaches.  

During last years, the performance of turbulence and heat transfer models in predicting the 

profiles of velocity and temperature in industrial flows has become increasingly important, 

especially with recent progress in the CFD “Computational Fluid Dynamics” field. Consequently, 

several researchers preferred the use of the numerical approaches because they are simpler and less 

expensive than the experimental approaches. The direct numerical simulation (DNS) is a robust 

method where several researchers developed their investigations. Kim and Moin [1] studied the heat 

transfer in two dimensional forced convection channel flow for different Prandtl numbers. Kasagi et 

al. [2] revisited the problems employing a constant time-averaged heat flux boundary condition on 

the walls, for a mild Reynolds number of 4580. Kawamura et al. [3] analyzed the effects due to the 

change of Reynolds and Prandtl numbers on the heat turbulent transport; they also compared 

various boundary conditions for velocity and temperature. Tiselj et al. [5] took into account the 

fluctuation of temperature close to walls whereas in previous studies, the flow of heat was taken as 

constant (ideal case).  

Turbulence models are widely used for simulating complex heat transfer and flow phenomena in 

many engineering applications because of their simplicity and effectiveness. The most popular is 

the standard k- model (High-Reynolds model, High-Re) proposed by Launder and Spalding [6]. 
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However, the disadvantage of the standard k- model with standard wall functions is the inability to 

predict accurate near wall flow characteristics. To solve the near-wall effect, a number of Low-

Reynolds-Number models (LRN model) have been developed, such as special treatment in this 

region. 

The first LRN k- model was developed by Jones and Launder [7] and subsequently modified by 

many researchers. To get a better understanding of the near wall effect, many LRN models were 

proposed by introducing damping functions and other additional terms. Most of LRN models were 

developed based on the High-Re k-  model (Lam and Bremhorst [8], Chien [9], Abe et al., [10], 

Chang et al., [11]). Some other new LRN two-equation models have been proposed as alternatives 

to the LRN k-  models, e.g., the standard k– ω model and its LRN variant by Wilcox [12]. Menter 

[13] proposed SST k- ω model to resolve the free-stream dependency by blending the standard 

Wilcox model and the standard k- model.  

The aim of our study is to improve the prediction of the flow in the near wall region. A near-wall 

function for TKE will be implemented in Fluent through a UDF. Three turbulent model will be 

tested with DNS data: k-  standard with enhanced wall treatment [14], SST k-ω and k- models 

with low Reynolds (model of Chang et al.).  

Simulation procedures  

Test case. A fully developed forced convection flow in a parallel channel is numerically 

simulated. The steady turbulent Navier-Stokes and energy equations are numerically solved 

together with the continuity equation using the finite volume method.  Physical properties are 

considered as constants and evaluated for air at the inlet temperature T0 = 20°C with a density ρ = 

1.205 kg/m3, molecular dynamic viscosity μ= 1.8210
−5

 Kg/ms, specific heat Cp= 1005 J/Kg°C, 

and thermal conductivity λ= 0.0258W/m°C. 

Flow at the inlet section of the channel is considered to be isothermal (T0=20°C), with a uniform 

streamwise velocity component (u). The other velocity component (v) is set to be equal to zero at 

that inlet section. Periodic boundary conditions were used in the streamwise and spanwise 

directions and no-slip boundary conditions were imposed at the solid walls. 

We considerate two case: (1) the walls is supposed isothermal (2) the walls were with uniform 

heat flux (qw=500 W/m2). 

 

 

 

 

 

 

 

 

 

 

 

 
(Case: 1) isothermal                                                            (Case: 2) anisotherm 

 

Figure 1. Sketch of channel flows 

 

Tools. A commercial code Fluent 6.3 was used, with a fine mesh near the wall. The number of 

mesh is (41 100). A second order scheme is used to discretize the diffusion terms. The solution is 

obtained in primitive variable P-V, where the coupled pressure and velocity equations are solved by 

the simple algorithm. The convergence criterion was based on a maximum error less than a 

prescribed value, taken equal to 10
 -8 

for energy, and 10
 -6 

for the other equations. 



 

Results and discussion 

To study the flow near the wall, we tested three turbulent model compared to DNS of Iwamato et 

al.and DNS of Kasagi et al.: k-  standard with enhanced wall treatment [14], SST k-ω and k- 
models with low Reynolds (model of Chang et al.). These models are able to predict the flow near a 

wall. 
 

Isothermal case. According to Figure 3, the k- model with enhanced wall Standard Treatment and 

the SST k-ω model provides good velocity profile throughout the wall on the other side the low 

Reynolds model gives good results except in the region y 
+
> 30. The turbulent kinetic energy is well 

provided by k- standard with enhanced wall Treatment in the region y 
+
 ≤ 30, and by SST k-ω and 

low Reynolds model in the region y 
+
> 50, compared to the DNS. So to improve the velocity and 

the turbulent kinetic energy profiles in the region y 
+
 ≤ 30 we will implemente a function [15] Eq.1 

in Fluent through a UDF [16]: 

 
 

Where A and B are two parameters, A=8 and B is dependent on friction Reynolds number Reτ 

(defined by friction velocity uτ , kinematic viscosity ν and the channel half-width δ) and given by B 

= CB1 ln(Reτ) + CB2 [17].  

 

Table 1. Values of coefficient B (Reτ) obtained from Eq.1 and DNS 

 

 

 

 

Table 1 gives values of B (Reτ) obtained from Eq.1 implemented in Fluent with DNS data [18, 2].  

Our calibration of B with Fluent gives CB1 = 0.0219 and CB2 = -0.0113 (Fig.2). 

 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Dependency of the coefficient B on the Reynolds number Reτ. 

values obtained from DNS data and Fluent, curve, proposed function 
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     (a)                                                                                          (b) 

Figure 3. Comparison of (a) velocity (b) turbulent kinetic energy profiles models for Reτ = 150 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                            (a)                                                                                                    (b) 

Figure 4 : Improved velocity (a) and turbulent kinetic energy (b) profiles with UDF implemented in Fluent 

             

Figure 4 shows the improvement that can make the implementation of the function (1) in Fluent in 

the region y + ≤ 30 for the velocity and turbulent kinetic energy profiles. 

 

Anisotherm case. Eq. (1) is designed to improve flow for an isothermal case, but it may also 

improve the flow in the anisothermal case because the error from the DNS is 3% (Fig. 5).  
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Figure 5 : Comparison of Eq. (1) to DNS Re=150 

 

The three turbulence models: k-  standard with enhanced wall treatment , SST k-ω and low 

Reynolds model of Chang et al. predict in the same way the heat transfer in the region y 
+
 ≤ 10. for 

the other values of y
+
, the low Reynolds model of Chang et al. over-predicts DNS (Fig. 7.b ).  The 

implementation of the UDF (Fig. 7b) leads to a decrease in the prediction of heat transfer. For low 

Reynolds model of Chang et al., this decrease of the temperature profile makes the best prediction.  
 

 

 

 

 

 

 

 

 

  

 

 

 

                                              

 

 

 

 

 

   (a)                                                                                          (b) 

Figure 7 : Choice of turbulence model for heat transfer  

Conclusion 

Numerical simulations of isothermal and anisothermal channel flows are studied. A near-wall 

function for TKE is implemented in Fluent through a UDF to improve the prediction of velocity, 

turbulent kinetic energy and temperature profiles.  

Three turbulent models: k-  standard with enhanced wall treatment, SST k-ω and low Reynolds 

model of Chang et al. were tested.  
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Results show that the implementation of this function in Fluent allows to improve the low Reynolds 

model of Chang et al. for velocity and temperature profiles.  
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