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Abstract: We propose an engineered reservoir

inducing the relaxation of a cavity field towards

non-classical states. It is made up of two-level

atoms crossing the cavity one at a time. Each

atom-cavity interaction is first dispersive, then

resonant, then dispersive again. The reservoir

pointer states are those produced by a fictitious

Kerr Hamiltonian acting on a coherent field. We

thereby stabilize squeezed states and quantum

superpositions of multiple coherent components in

a cavity having a finite damping time. This robust

method could be implemented in state-of-the-art

experiments and lead to interesting insights into

mesoscopic quantum state superpositions.

Non-classical states of the radiation field are the focus
of a considerable interest. Squeezed states (SS), with re-
duced fluctuations on one field quadrature, are interesting
for high precision quantum measurements [1]. Mesoscopic
field state superpositions (MFSS), involving coherent com-
ponents with different classical properties, are reminiscent
of the famous Schrödinger cat [2], in a superposition of
the “dead” and “alive” states. Their environment-induced
decoherence sheds light on the quantum-classical bound-
ary [3]. Our aim is to generate and even stabilize such
states using reservoir engineering

Many experiments on MFSS have been proposed or re-
alized, particularly with trapped ions [4] (whose harmonic
motion is equivalent to a field mode) or cavity quantum
electrodynamics (CQED) [3], with a single atom coupled
to a single field mode. Introducing the atom in a state
superposition and finally detecting it leads to the prepa-
ration of a MFSS, conditionned by the atomic detection
outcome [3, 5, 6, 7, 8, 9, 10, 11].

Deterministic preparation of MFSS could, in principle,
be achieved by propagation of a coherent field in a Kerr
medium [12], described by the Hamiltonian:

HK = ζK N + γK N2 , (1)

(N: photon number operator ; ζK is proportional to the
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linear index ; γK : Kerr frequency; units are chosen such
that ~ = 1 throughout the paper). An initial coherent
state |α〉 evolves with the interaction time tK through a
sequence of nonclassical states e−i tKHK |α〉 distributed in
phase space along the circle with radius |α| [3, 7.2]. For
tKγK ≪ π, the field is in a quadrature-squeezed state |sα〉
with a nearly Gaussian Wigner function W . For tKγK =
π/k, we get a MFSS |kα〉 of k equally spaced coherent
components. For tKγK = π/2, a “Schrödinger cat” state
|cα〉 = (|αeiϕα〉 + i |-αeiϕα〉)/

√
2 is reached (with ϕα =

−ζKtK). Note that the collisional interaction Hamiltonian
for an atomic sample in an optical lattice is similar to
HK [13].

The unconditional preparation, protection and long-
term stabilization of SS and MFSS is an essential goal for
the study and practical use of these states. We envision
in this Letter a reservoir engineering setup in CQED that
would drive to e.g. |cα〉 any initial state.

Reservoir engineering [14, 15] protects target quantum
states by coupling the system to an “engineered” bath
whose pointer states [16] include the target. The system
is effectively decoupled from its standard environment by
its much stronger coupling with the engineered bath.

For trapped ions, reservoirs composed of laser fields can
stabilize a subspace containing superpositions of coherent
vibrations [14, 11]. However, they do not prevent mixing
of states belonging to the stabilized subspace, making it
impossible to protect a specific MFSS [3, pp. 487-488]. A
reservoir stabilizing the components on n vibration states
with n + 2 lasers is proposed in [15]. In CQED propos-
als, reservoirs protect squeezed states [17] and entangle-
ment of two field modes [18]. In [19], a reservoir made up
of a stream of atoms crossing the cavity stabilizes MFSS
(cotangent states). However, the scheme is based on the
trapping state condition [20] (a resonant atom entering the
cavity in its upper state undergoes a 2pπ quantum Rabi
pulse in an n-photon field), very sensitive to finite cavity
temperature.

We propose a robust method to stabilize SS and MFSS
in a CQED experiment. The engineered reservoir is made
up of a stream of 2-level atoms undergoing a tailored
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Figure 1: Scheme of the ENS CQED experiment.

composite interaction with the cavity, combining reso-
nant and dispersive parts. The reservoir pointer states
are ≈ e−i tKHK |α〉, in which α and γKtK can be chosen at
will. It stabilizes the states |sα〉, |kα〉 and |cα〉.

For the sake of definiteness, we consider the ENS CQED
set-up (Fig. 1, details in [3, 7]). The microwave field is
trapped in the cavity C (resonance frequency ωc/2π =
51 GHz), made up of highly reflecting superconducting
mirrors cooled at 0.8 K (mean number of blackbody pho-
tons per mode nt = 0.05). The photon lifetime in C is
Tc = 0.13 s.

The field in C is controlled through its interaction with
circular Rydberg states. Atomic samples are produced at
regular time intervals in box B out of a rubidium atomic
beam. They have an adjustable velocity v. The probabil-
ity for having one atom in a sample, pat ≃ 0.3, is kept low
to avoid simultaneous interaction of two atoms with C.
The transition between circular Rydberg states of princi-
pal quantum number 50 (|g〉) and 51 (|e〉) at frequency
ω0/2π is nearly resonant with C. The atom-cavity detun-
ing δ = ω0 − ωc ≪ ωc can be controlled with an excellent
time resolution by ways of the Stark effect produced by a
static field applied across cavity mirrors.

Atoms undergo a Ramsey pulse in zone R1, prepar-
ing them in an adjustable state |(u, η)at〉 = cos(u/2)|g〉 +
eiη sin(u/2)|e〉. They then interact with C and generally
get entangled with its field. The atomic state is finally
measured in an arbitrary basis by a combination of a sec-
ond Ramsey zone R2 and a state-resolving field-ionization
detector D. For reservoir operation, the final atomic de-
tection is not important. However, it is essential for a
complete cavity field quantum state reconstruction [7],
performed at the end of the experiment to assess the en-
gineered reservoir action.

Atom-cavity interaction is ruled by the Jaynes-
Cummings Hamiltonian:

HJC =
δ

2
(|e〉〈e|− |g〉〈g|)+ i

Ω(s)

2
( |g〉〈e|a†−|e〉〈g|a ) (2)

(in a proper interaction representation, a photon annihi-
lation operator). The atom-field coupling is measured by
Ω(s) at position s along the atomic trajectory. In the

Gaussian mode of C at time t, Ω(s) = Ω0 e
−s2/w2

with

s = vt, Ω0/2π = 50 kHz and w = 6 mm (the origin of
space and time is when the atom crosses cavity axis).

The engineered reservoir uses atoms performing a com-
bination of resonant (δ = 0) and dispersive (|δ| > Ω0)
interactions. The corresponding unitary evolution oper-
ators (under adiabatic approximation for |δ| > Ω0) are,
within irrelevant phases [3]:

Ur (Θ) = |g〉〈g| cos(Θ
√

N/2) + |e〉〈e| cos(Θ
√

N+1/2)

−|e〉〈g| sin(Θ
√

N+1/2)
√

N+1

a + |g〉〈e|a† sin(Θ
√

N+1/2)
√

N+1

(3)

Ud (φ(N)) = |g〉〈g| e−i φ(N) + |e〉〈e| e+i φ(N+1) , (4)

where Θ =
∫

(Ω(s)/v) ds is the integrated quantum Rabi
pulsation in vacuum. The dispersive phase φ(N) is di-
agonal in the Fock state basis {|n〉}, with components
φ(n) = −δ/(2v)

∫

(
√

1 + n (Ω(s)/δ)2 − 1)ds, reducing to
φ(n) = −n/(4v δ)

∫

Ω2(s)ds in the |δ| ≫ Ω limit.
Atoms entering C in |g〉 and undergoing resonant in-

teraction with it constitute a reservoir stabilizing the vac-
uum state |0〉. Similarly, atoms entering C in |(u, η)at〉,
u ≪ 1, for a resonant interaction with Θ ≪ 1, stabi-
lize in very good approximation a coherent state |α〉 with
α = 2ueiη/Θ, provided u/Θ is of the order of 1 [21]. The
cavity is then a ‘micromaser’ fed by atoms in a coherent su-
perposition [19, 22]. The resulting field has a well-defined
phase and a finite amplitude, even if C is undamped, since
the atomic medium excitation is below population inver-
sion.

Our key observation is that sandwiching the resonant
interaction between two opposite dispersive interactions
can be viewed as a basis change on the field, giving access
to non-classical pointer states:

Ud(φ(N))Ur(Θ)Ud(−φ(N)) = e−i h(N)Ur(Θ)ei h(N) , (5)

where h(N) is a discrete integral of the phase φ(N), de-
fined by the recurrence relation

h(N + 1) − h(N) = 2φ(N + 1) . (6)

We associate h(0) = 0 to Eq.(6) without loss of generality,
since a nonzero value only reflects on a global phase for the
field state. Since the resonant interaction Ur(Θ) stabilizes
the coherent state |α〉, then Ud(φ(N))Ur(Θ)Ud(−φ(N))
stabilizes e−i h(N)|α〉. For large detuning [3], |δ| ≫ Ω0,
φ(N) is linear over the relevant photon numbers: φ(N) ≈
ξ01 + ξ1N. Then e−i h(N) is the evolution operator gener-
ated by the Kerr Hamiltonian HK [Eq.(1)] acting during
a time tK , such that γKtK = ξ1 and ζKtK = 2ξ0 + ξ1.
In particular, for ξ1 = π/2, the pointer state e−i h(N)|α〉
is, up to an irrelevant phase, the MFSS |cα〉 = (|αeiϕα〉 +
i |-αeiϕα〉)/

√
2, with ϕα = −2ξ0 − π/2. Any non-classical
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state produced by e−i tKHK can be stabilized by adjusting
ξ1, i.e. δ.

Let us give an intuitive insight into the stabilization of
the ‘cat’ state |cα〉. We take η = 0, hence α real pos-
itive. Let us assume φ(N) = (π/2)N i.e. ϕα = −π/2
and an initial cat state |ψ0〉 = (|-iα0〉 + i |iα0〉)/

√
2 with

α0 < α [23]. The first dispersive interaction entangles
the atom and the field, correlating two π-phase shifted
atomic dipoles |(u, 0)at〉 and |(−u, 0)at〉 ≡ |(u, π)at〉 with
coherent states |α0〉 and | − α0〉 respectively. Note that
this entangled atom-field state is still a mesoscopic quan-
tum superposition. During the resonant interaction, each
dipole state amplifies the correlated coherent component
from ±α0 to ±α̃ (α0 < α̃ < α). The second disper-
sive interaction disentangles the atom and cavity by re-
versing the initial entangling operation. The final cavity
state is thus independent upon the atomic one and writes
|ψt〉 = (|-iα̃〉 + i |iα̃〉)/

√
2, a ‘larger’ MFSS. Similarly, if

α0 > α, the atomic interaction reduces the cat amplitude.
Altogether, the atoms stabilize a sizeable MFSS in the
steady state.

We have performed numerical simulations of the field
evolution in realistic experimental conditions. The com-
posite interaction is implemented with a ladder of Stark
shifts during cavity crossing by each atomic sample. The
atom-field interaction starts when s = −1.5w (corre-
sponding to a dispersive coupling equal to ∼ 1% of its
maximum value) and ends when s = 1.5w, the total in-
teraction time being ti = 3w/v. During ti, δ is first set at
δ = ∆ > 0 (first dispersive interaction), then at δ = 0 for a
short time span tr centered on cavity center crossing time,
and finally δ = −∆ for the second dispersive interaction.
The evolution operators corresponding to resonant and
dispersive interactions are computed exactly from HJC

[Eq. (2)], using the quantum optics package for MAT-
LAB [24] (Hilbert space is truncated to the 60 first Fock
states). Cavity relaxation towards thermal equilibrium is
taken into account. The atom is finally discarded by trac-
ing the global density matrix over its state. We compute
in this way the density matrix ρ describing the field state
after each atomic sample. The interaction with the next
sample starts immediately after the previous one has left
C. Thus, smaller ti implies more frequent atom-cavity in-
teraction, that is an engineered reservoir dominating more
strongly the standard environment.

The steady state is reached after a few tens of inter-
actions only. Figure 2(a)-(f) presents the Wigner func-
tions W (ξ) of the cavity field after its interaction with
200 atomic samples. The (irrelevant) initial field state is
the vacuum. Top panels present the results for an ideal
experiment, with exactly one atom per sample (pat = 1),
no cavity damping and no residual thermal field. Bot-
tom panels present the more realistic case of finite cavity
damping (Tc = 0.13 s, nt = 0.05), with pat = 0.3.

Panels (a) and (b) correspond to the two-component
MFSS generation, i.e. to the largest Kerr interaction time.
To achieve large dispersive interactions with reasonable
∆ values (∆ = 2.2 Ω0), we choose slow atomic velocity
v = 70 m/s still compatible with the horizontal atomic
beam in the ENS set-up. This velocity could easily be
reached with moderate laser slowing of the atomic beam
and yields ti = 257µs. With tr = 5 µs i.e. Θ ≈ π/2, and
u = 0.45π, we get a MFSS with strong negativities in its
Wigner function. In the ideal case [panel (a)], the final ρ is
a pure state with an average photon number n = 2.89 pho-
tons. We estimate its fidelity F with respect to a MFSS
of two coherent states with opposite phases, optimized by
adjusting in the reference state the phase and amplitude of
the coherent components and their relative quantum phase
in the superposition. F maximizes at 98% for a reference
with n = 2.8 photons. With relaxation [panel (b)], we get
n = 2.72 photons. The purity P = Tr(ρ2) is reduced by
cavity relaxation down to 51.1%. The fidelity with respect
to an ideal cat with n = 2.4 is 69% and the Wigner func-
tion still exhibits negativities revealing non-classical fea-
tures. We propose to quantify the “quantumness” of this
state by Q = (Wigi − Wigc)/(3Wigc), where Wigi is the
maximum total amplitude of the fringe pattern between
the classical components in W , and Wigc is the maximum
of W on the classical components. Then Q = 1 for a
MFSS |kα〉 and Q = 0 for a statistical mixture. For the
cats presented in panels (a) and (b), Q reaches 89% and
76% respectively. In conclusion, we are able to realistically
stabilize in the steady state a large ‘cat’ which would be
damped within a decoherence time Td = Tc/(2n) = 27 ms
without the engineered reservoir.

For a slightly larger detuning, ∆ = 3.7 Ω0 (all other pa-
rameters unchanged), we obtain a three-component MFSS
|kα〉 with k = 3 [panels (c) and (d)]. In the ideal case, the
final pure state has n = 2.86 photons and fidelity 99%
with respect to an ideal MFSS of three coherent compo-
nents and same energy; quantumness Q = 91%. Adding
relaxation, we get a field with n = 2.70 photons, P = 56%,
F = 73% and Q = 86%.

In the Kerr dynamics, squeezed states are obtained in
the early stages of the initial coherent state phase spread-
ing. For large coherent state amplitude and small phase
spread, we obtain nearly Gaussian minimal uncertainty
states for the Heisenberg relations between orthogonal
field quadratures. In our composite pulse simulations,
with v = 300 m/s so ti = 60µs, tr = 1.7 µs i.e. Θ ≈ 0.17π,
u = π/2 and ∆ = 70Ω0, we generate ideally a pure field
with n = 32.7 and a 2.6 dB squeezing. With relaxation,
the squeezing is still 1.5 dB and P = 85%, while n drops to
21. For larger phase spreads, the Wigner function takes
a banana shape. These non-minimal uncertainty states
present non-classical negativities. As an example, pan-
els (e) and (f) are obtained with v = 150 m/s hence
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Figure 2: Wigner functions of non-classical states obtained after 200 steps of reservoir-atom interactions, without
(top) and with (bottom) coupling to a thermal environment inducing decoherence. (a) and (b): state close to |cα〉.
(c) and (d): state close to |kα〉 with k = 3. (e) and (f): state close to |sα〉. See the text for detailed conditions.

ti = 120µs, tr = 5 µs i.e. Θ ≈ π/2, u = π/2 and ∆ = 7 Ω0.
The ideal situation results in a pure field with n = 3.64,
whereas the realistic steady state [panel (f)] has n = 3.52
and P = 91%. Clearly, the influence of relaxation is re-
duced with the fast and thus more frequent atoms used
here. All these settings are within reach of the present
ENS set-up.

We have checked that this scheme is not sensitive to ex-
perimental imperfections (a few % variation of the inter-
action parameters does not appreciably modify the steady
state). It does not require recording the final atomic
states, unlike quantum feedback experiments, which can
also stabilize non-classical states [25]. Feedback could in
fact be used in addition to improve the performance of
the engineered reservoir, using atomic detection results to
detect and react to environment-induced jumps of field
state, or to post-select time intervals when a cat is stabi-
lized with high probability [26].

In conclusion, we have shown that the composite atom-
cavity interaction scheme realizes an engineered envi-
ronment for the cavity field, driving it deterministically
towards non-classsical field states including the MFSS
Schrödinger cat-like states. The scheme is simple and ro-
bust enough to be amenable to experiment with a state-
of-the-art CQED or circuit QED set-up.

The engineered reservoir, driving any initial cavity state
to the desired mesoscopic field state superposition and sta-

bilizing these quantum resources for arbitrarily long times,
opens interesting perspectives for fundamental studies of
non-classicality and decoherence.
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