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BOOTSTRAP GOODNESS–OF–FIT TESTS WITH ESTIMATED

PARAMETERS BASED ON EMPIRICAL TRANSFORMS 1

Simos Meintanis, Jan Swanepoel

Department of Economics, National and Kapodistrian University of Athens

8 Pesmazoglou Street, 105 59 Athens, Greece

and

Department of Statistics, North–West University, Potchefstroom

South Africa

Abstract. Several test statistics have been proposed recently which employ a weighted distance

that depends on an empirical transform, as well as on estimated parameters. The empirical charac-

teristic function is a typical example, but alternative empirical transforms have also been employed,

such as the empirical Laplace transform when dealing with non–negative random variables or the em-

pirical probability generating function corresponding to discrete observations. We propose a general

formulation that covers most of the transform–based test statistics which have appeared in the litera-

ture. Under this formulation, the asymptotic properties of the test statistics, such as the limiting null

distribution and the consistency under general alternatives, are derived. Since large–sample critical

values are extremely complicated (if not impossible) to compute, two effective bootstrap versions of

the test procedures are derived, which can be used to approximate the critical values, for any given

sample size, and to calculate the power under contiguous alternatives. The validity of these bootstrap

procedures is shown analytically.

Keywords. Empirical characteristic function, Empirical Laplace transform, Empirical probability

generating function, Asymptotic distribution, Consistency.

AMS 2000 classification numbers: 62G10, 62G20

1Proposed running head: BOOTSTRAP GOODNESS–OF–FIT TESTS
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1 Introduction

Let X1, X2, . . . , Xn be independent and identically distributed (i.i.d.) random variables, with

unspecified distribution function (DF) F (x) = P(X1 ≤ x). It is often the case that a DF

depends on a parameter–vector ϑ. Then it will be denoted by Fϑ. If ϑ is unknown, a

parametric class FΘ = {Fϑ : ϑ ∈ Θ} of distributions is formed over ϑ ∈ Θ, where Θ is an

open subset of IRk. The Glivenko–Cantelli theorem asserts that supx |Fn(x) − Fϑ(x)| → 0

almost surely (a.s.) as n →∞, where Fn(x) is the empirical DF. Hence, classical consistent

tests for the composite null hypothesis,

H0 : F ∈ FΘ, for some ϑ ∈ Θ,

are derived by defining appropriate test statistics in terms of certain distance measures be-

tween Fn and Fϑ̂n
, where ϑ̂n denotes a consistent estimator of ϑ. This gives rise to well-known

tests, such as the Kolmogorov–Smirnov, the Cramér–von Mises and the Anderson–Darling

tests (e.g., see D’Agostino and Stephens, 1986).

An alternative way to tackle the composite goodness–of–fit problem is to consider a

transform of the DF of the type

K(t) =
∫ ∞

−∞
k(t, x)dF (x),

and the empirical version

Kn(t) =
∫ ∞

−∞
k(t, x)dFn(x).

The function k(t, x) will be referred to as the kernel of the transform. Because of the Glivenko–

Cantelli theorem,

sup
t
|Kn(t)−K(t)| → 0, almost surely,

where t belongs to a subinterval of the interval of convergence of K(·). Hence, assuming that

the transform K(·) uniquely determines the law of X1, a goodness–of–fit approach utilizing the

distance |Kn(t)−K(t)| over such a subinterval, will typically yield consistent tests for the null

hypothesis H0. A standard transform is the characteristic function (CF) and the empirical CF

for k(t, x) = exp (itx). The empirical CF is historically the first type of transform employed

in testing problems by Heathcote (1972). While the empirical CF is appropriate for arbitrary

random variables, the Laplace transform (LT) and the empirical LT for k(t, x) = exp (−tx),

are most appropriate when X1 ≥ 0. Again when dealing with count variables, the choice

k(t, x) = tx results in the probability generating function (PGF) and the empirical PGF. The
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weak convergence of the process
√

n(Kn(·) − K(·)) is of utmost importance for statistical

inference. For the empirical CF, weak convergence has been established in the fundamental

paper of Csörgő (1981), for the empirical moment generating function (and the empirical

LT) by Feuerverger (1989), while Rémillard and Theodorescu (2000) treat the case of the

empirical PGF.

The rest of the paper is organized as follows. In Section 2 a general formulation is

provided for the transform–based test statistics, and some cases of special interest are reported

as examples. In Section 3 we study the limiting distribution of the test statistic, both under

the null and alternative hypotheses, and establish its consistency against general alternatives.

In Section 4 effective bootstrap procedures are proposed to calculate approximate critical

values and to help in the computation of power under contiguous alternatives.

2 Goodness–of–fit tests

Let X1, X2, . . . , Xn, be independent observations with DF, F (x). A general transform–based

test statistic admits the representation

Tn,β(ϑ) =
∫ ∞

−∞

 1√
n

n∑
j=1

g(Yj , ϑ2; t)

2

β(t)dt,(2.1)

where β denotes a finite measure (often termed weight function), and Yj = h(Xj , ϑ1), j =

1, 2, ..., n, with the parameter vector ϑ = (ϑ1, ϑ2)T having being decomposed into two sub-

vectors ϑ1 and ϑ2. For each specific empirical transform, the function g contains elements of

the corresponding kernel, and we will write g(x; t) instead of g(x, ϑ2; t), whenever there is no

parameter ϑ2 involved.

Examples

1. Symmetric location–scale families on the real line: Let ϑ = (ϑ1, ϑ2)T with ϑ1 = (θ1, θ2)T ∈

IR × IR+, and assume that the DF of X1 may be written as F (x;ϑ) = G((x − θ1)/θ2), for

some function G. Then, if Y1 = h(X1, ϑ1), with h(x, ϑ1) = (x−θ1)/θ2, the CF of Y1 coincides

with the CF of X1, with (θ1, θ2) = (0, 1). Denote this CF by ϕ(t). An empirical CF–based

test statistic may be written as

Tn,β(ϑ) = n

∫ ∞

−∞
|Dn(t)|2β(t)dt,

where Dn(t) denotes some distance involving the empirical CF ϕn(t) of Yj , j = 1, 2, ..., n,

and, perhaps, ϕ(t). The ‘direct approach’ of letting Dn(t) = (ϕn(t)− ϕ(t)), was followed by

Epps and Pulley (1983), Gürtler and Henze (2000a) (see also Matsui and Takemura, 2006),
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Meintanis (2004a) and Meintanis(2004b) in testing for the normal, the Cauchy, the Laplace

and the logistic distribution, respectively. If the weight function satisfies β(t) = β(−t), t ∈ IR,

straightforward algebra leads to the representation (2.1) with g(x; t) = sin(tx)+cos(tx)−ϕ(t).

Although employing the function ϕn(t)− ϕ(t) is apparently the most natural approach,

certain modifications may be preferable for specific problems. Such modifications where

adopted by Meintanis (2004c) and Meintanis (2005), in testing for the skew normal dis-

tribution and symmetric stability, respectively. The test statistics corresponding to these

modifications may also be written as in (2.1).

2. Scale families on the positive real line: Assume that the DF of X1 may be written as

F (x;ϑ) = G(x/θ1), for some function G and some constant θ1 > 0. Then, if Y1 = h(X1, ϑ1),

with h(x, ϑ1) = x/θ1, ϑ1 = θ1, the LT of Y1 coincides with the LT of X1 with θ1 = 1. Denote

this LT by L(t). An empirical LT–based test statistic may be written as

Tn,β(ϑ) = n

∫ ∞

0
D2

n(t)β(t)dt,

where Dn(t) denotes some distance involving the empirical LT Ln(t) of Yj , j = 1, 2, ..., n,

and, perhaps, L(t). Several test statistics based on the empirical LT may be formulated as

(2.1). In particular, when testing for exponentiality, the straightforward approach of letting

Dn(t) = Ln(t)−L(t) was taken up by Henze (1993), and Henze and Meintanis (2002a). This

approach leads to representation (2.1) with g(x; t) = exp (−tx) − (1 + t)−1. On the other

hand, and motivated by the differential equation (1 + t)L′(t) + L(t) = 0 which is satisfied by

the LT of the unit exponential distribution, Baringhaus and Henze (1991) employed Dn(t) =

(1 + t)L′n(t) + Ln(t), which in turn leads to (2.1) with g(x; t) = e−tx(1− x(1 + t)).

Modifications of the above LT–based methods may be found in Henze and Klar (2002),

Henze and Meintanis (2002b), Meintanis and Iliopoulos (2003), Henze and Meintanis (2004),

and Meintanis (2006), corresponding to goodness–of–fit tests for the inverse Gaussian, the

exponential, the Rayleigh, the Gamma, and the strictly positive stable, distributions, respec-

tively.

3. Discrete families: Suppose Y1 = h(X1, ϑ1) ≡ X1, the identity function. Let P (t) denote

the PGF of X1. A transform–based test statistic for discrete distributions is typically written

as

Tn,β(ϑ) = n

∫ ∞

0
D2

n(t)β(t)dt,

where Dn(t) denotes some distance involving the empirical PGF Pn(t) of Xj , j = 1, 2, ..., n,
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and, perhaps, P (t). Several PGF–based tests which can be formulated as in (2.1) were

developed for the Poisson distribution with mean θ. In particular, Rueda et al. (1991) followed

the straightforward approach of letting Dn(t) = Pn(t) − P (t), with weight function β ≡ 1.

Their statistic was later generalized by Gürtler and Henze (2000b), by taking β(t) = tb, b ≥ 0.

In both cases we are led to representation (2.1), with g(x, ϑ2; t) = tx− exp (θ(t− 1)), ϑ2 = θ.

Motivated by the differential equation P ′(t) − θP (t) = 0, satisfied by the PGF of the

Poisson distribution, Baringhaus and Henze (1992) employed Dn(t) = P ′
n(t) − θPn(t), with

β ≡ 1. This statistic is a special case of the test of Gürtler and Henze (2000b), in which

β(t) = tb is employed as a weight function. The differential equation approach leads in both

cases to (2.1), with g(x, ϑ2; t) = θtx − xtx−1, ϑ2 = θ.

Apart from the Poisson distribution, Rueda and O’Reilly (1999) developed statistics

for testing the negative binomial distribution, but the most general PGF–based test was

proposed by Meintanis and Bassiakos (2005). It corresponds to the family of invariant under

convolutions count distributions, with finite variance. Members of this class are the Poisson

distribution and the generalized Hermite distribution.

Remark 2.1 The proposed test statistics depend on the value of the parameter ϑ. In com-

posite goodness–of–fit problems however, the parameter ϑ needs to be estimated. In what

follows we will consider the asymptotic properties of the test statistic T̂n,β, which results from

Tn,β(ϑ) by replacing ϑ with a consistent estimator ϑ̂n.

Remark 2.2 The transform Kn(·) involved in Tn,β(ϑ) is computed over an interval of the

real line. In this sense the proposed test statistics may be viewed as analogous to classical

continuous type tests based on the empirical DF, such as the Crámer–von Mises or the

Anderson–Darling statistic (see D’Agostino and Stephens, 1986) . Tests where Kn(·) is

computed over a finite grid of points have also been developed. These tests are of the discrete

type and rely on the χ2 principle. Hence they may be viewed as analogous to the classical χ2

test, and as such, do not possess the feature of being consistent under general alternatives.

For a general formulation of goodness–of–fit procedures of the χ2 type based on transforms,

the reader is referred to Luong and Thompson (1987).

3 Large–sample results

A convenient setting for asymptotic distribution theory is the separable Hilbert space H =

L2(IR,B, β(t)dt) of (equivalence classes of) measurable functions f : IR → IR, with ‖f‖2 =

5
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∫
f2(t)β(t)dt < ∞, where β(·) denotes a finite measure. Notice that in the Hilbert space

framework,

T̂n,β = ‖Zn‖2, with Zn(t) =
1√
n

n∑
j=1

g(Ŷj , ϑ̂2n; t),(3.1)

where Ŷj = h(Xj , ϑ̂1n), and ϑ̂n = (ϑ̂1n, ϑ̂2n)T denotes a consistent estimator of ϑ. Here and

in what follows, the notation D−→ means convergence in distribution of random elements and

random variables, P−→ means convergence in probability, oP (1) stands for convergence in

probability to 0, OP (1) denotes boundedness in probability.

Naturally, asymptotic properties of the test statistic will depend on the estimator ϑ̂n of

the parameter involved, and on the assumptions regarding the functions g and h in (2.1), as

well as on certain properties of the measure β. In particular, for the asymptotic results of

the test statistic T̂n,β we rely on the following assumptions:

(A.1) Under H0, for some (true) value ϑ0 = (ϑ10, ϑ20)T ∈ Θ,

√
n(ϑ̂n − ϑ0) =

1√
n

n∑
j=1

l(Xj ;ϑ0) + oP (1),

where l denotes a measurable column vector valued function of dimension k, such that

Eϑ0 [l(X1;ϑ0)] = 0 and Eϑ0 [l(X1;ϑ0)l(X1;ϑ0)T] < ∞; here oP (1) is a vector consisting of

k oP (1) elements.

(A.2) For all x ∈ IR, the function h(x, ϑ1) is continuous at ϑ10. Furthermore,

g(h(x, ϑ1), ϑ2; ·) ∈ H for x ∈ IR and ϑ = (ϑ1, ϑ2)T ∈ Θ0 ⊂ Θ, and each component of the

k-dimensional column vector

q(x, ϑ; ·) :=
∂

∂ϑ
g(h(x, ϑ1), ϑ2; ·)

is, for each x ∈ IR, continuous at ϑ0 = (ϑ10, ϑ20)T in H, where Θ0 is any open neighborhood

of the true value ϑ0 = (ϑ10, ϑ20)T ∈ Θ.

(A.3) Eϑ0 [g(Y10, ϑ20; t)] = 0, t ∈ IR, Eϑ0 [‖g(Y10, ϑ20; ·)‖2] < ∞, Eϑ0 [‖q(Y10, ϑ20; ·)‖2] < ∞,

where Y10 = h(X1, ϑ10).

In the following theorem, the asymptotic null distribution of the test statistic is derived.

Theorem 3.1 Let X1, X2, . . . , Xn be i.i.d. observations with DF, F ∈ FΘ. Assume that

representation (3.1) holds for the test statistic T̂n,β, ϑ̂n satisfies (A.1) and ϑ̂n → ϑ0 a.s. as

n →∞. Suppose the functions g and h, as well as the measure β in (2.1), satisfy (A.2) and

(A.3). Then

T̂n,β = ||Wn||2 + oP(1), as n →∞, where(3.2)

6
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Wn(t) =
1√
n

n∑
j=1

W 0
j (t), with(3.3)

W 0
j (t) = g(Yj0, ϑ20; t) + (Eϑ0 [q(Y10, ϑ20; t)])

T l(Xj ;ϑ0), and Yj0 = h(Xj , ϑ10).(3.4)

Moreover, as n →∞, there is a zero–mean continuous Gaussian process W = {W(t); t ∈ IR}

such that

Wn
D−→W, and(3.5)

T̂n,β
D−→ ‖W‖2 := Tβ .(3.6)

Proof. Our approximation will be accomplished in three consecutive steps, starting with

the process Zn(·) of (3.1) in the first step, and arriving at the process Wn(·) after the third

step. In each step a process Un will be replaced by a process Vn, provided that

Un(t) = Vn(t) + εn(t), with ‖εn‖2 = oP (1).(3.7)

By the mean–value theorem,

Zn(t) =
1√
n

n∑
j=1

g(Yj0, ϑ20; t) +

 1
n

n∑
j=1

q(Yj0, ϑ20; t)

T

√
n(ϑ̂n − ϑ0)

+

 1
n

n∑
j=1

(q(Ỹj0, ϑ̃20; t)− q(Yj0, ϑ20; t))

T

√
n(ϑ̂n − ϑ0),

where Yj0 = h(Xj , ϑ10), Ỹj0 = h(Xj , ϑ̃10), and ‖ϑ̃0 − ϑ0‖ ≤ ‖ϑ̂n − ϑ0‖ → 0 a.s. as n → ∞.

From (A.1), (A.2), the multivariate CLT and the Cauchy–Schwarz inequality it follows that
√

n(ϑ̂n − ϑ0) = OP (1), and 1
n

n∑
j=1

(
q(Ỹj0, ϑ̃20; ·)− q(Yj0, ϑ20; ·)

)T

√
n(ϑ̂n − ϑ0) = oP (1)

in H. Hence, (3.7) holds with Un replaced by Zn, and Vn replaced by

Z̃n(t) =
1√
n

n∑
j=1

g(Yj0, ϑ20; t) +

 1
n

n∑
j=1

q(Yj0, ϑ20; t)

T

√
n(ϑ̂n − ϑ0).

The second step consists of replacing Z̃n by the process

1√
n

n∑
j=1

g(Yj0, ϑ20; t) + (Eϑ0 [q(Y10, ϑ20; t)])
T √n(ϑ̂n − ϑ0),(3.8)
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where Y10 = h(X1, ϑ10). This is permissible because of assumption (A.3) and the Hilbert

Space Strong Law of Large Numbers. Thus (3.7) holds with Un replaced by Z̃n and Vn

replaced by the process in (3.8).

In the last approximation,
√

n(ϑ̂n − ϑ0) in (3.8) is replaced by the asymptotically non–

negligible part of the right–hand side of (A.1). Hence (3.7) holds with Un replaced by the

process in (3.8), and Vn replaced by the process Wn specified by (3.3)–(3.4). Then under the

standing assumptions, and from the previous steps, it follows that Zn(t) = Wn(t) + εn(t),

with εn(·) as in (3.7). Therefore by means of (3.1) one has,

T̂n,β = ‖Wn‖2 + ‖εn‖2 + 2 <Wn, εn >,(3.9)

with <f, g> =
∫

f(t)g(t)β(t)dt. In turn, an application of the Cauchy–Schwarz inequality

yields

<Wn, εn > ≤ (‖Wn‖2)1/2(‖εn‖2)1/2.(3.10)

Notice however that ‖εn‖2 = oP (1), and also that {Wn(t), t ∈ IR} is the sum of the zero–mean

i.i.d. random variables W 0
j (t), with Eϑ0 [‖W 0

1 ‖2] < ∞ (apply (A.1), (A.3) and Fubini’s Theo-

rem). Therefore assertion (3.5) is a consequence of the Hilbert Space Central Limit Theorem

for i.i.d. random elements (see, e.g., van der Vaart and Wellner 1996, §1.8). Moreover, the

Continuous Mapping Theorem implies that ‖Wn‖2 D−→ ‖W‖2, and hence ‖Wn‖2 = OP (1).

Then utilizing (3.9) and (3.10), (3.2) follows, which in turn implies (3.6), and the proof of

the theorem is completed.

Remark 3.1 Typically, the finite–sample as well as the asymptotic distribution of the test

statistic depends on the true value ϑ0 of the parameter ϑ = (ϑ1, ϑ2)T . In location–scale

families however the incorporation of a suitable estimator ϑ̂1n = (θ̂1n, θ̂2n)T , for the parameter

ϑ1 = (θ1, θ2)T , renders both distributions independent of the true value ϑ10. In particular

we employ an estimator, say θ̂1n = θ̂1n(X1, X2, ..., Xn), of the location parameter θ1 which is

location and scale equivariant, i.e., for each δ ∈ IR and c > 0 we have,

θ̂1n(δ + cX1, δ + cX2, ..., δ + cXn) = δ + c θ̂1n(X1, X2, ..., Xn).

Likewise, let θ̂2n = θ̂2n(X1, ..., Xn) be an estimator of the scale parameter θ2 which is location

invariant and scale equivariant, i.e., for each δ ∈ IR and c > 0, we have

θ̂2n(δ + cX1, δ + cX2, ..., δ + cXn) = c θ̂2n(X1, X2, ..., Xn).

8



Acc
ep

te
d m

an
usc

rip
t 

Then if the test statistic employs the data Yj = (Xj − θ̂1n)/θ̂2n, j = 1, 2, ..., n (or some

trasnsformation thereof), the law of T̂n,β, and consequently the corresponding law of Tβ, are

independent of the true value ϑ10 = (θ10, θ20)T . Therefore without loss of generality we may

assume that (θ10, θ20) = (0, 1).

Remark 3.2 The exact distribution of Tβ is complicated. It results from the theory of in-

tegral operators. Specifically, let ω(s, t) denote the covariance kernel of W which may be

calculated from (3.4). Then, the distribution of Tβ coincides with that of
∑

j≥1 λj(β)N2
j ,

where N1, N2, ..., are i.i.d. standard normal variates, and λj , j = 1, 2, ..., are the nonzero

eigenvalues of the integral equation
∫

ω(s, t)Gj(t)β(t)dt = λjGj(s) with corresponding eigen-

functions Gj(·).

There are several basic problems in computing percentiles of Tβ and perform a large–

sample test thereof. The first is to find the eigenvalues, and then write the CF of Tβ as an

infinite product involving λj , j = 1, 2, ... . Secondly, one has to approximate this infinite

product and invert the corresponding approximation to obtain the asymptotic distribution

of the test statistic. In classical goodness–of–fit tests with known parameter values (or with

unknown location and scale parameters), such as those based on the Cramér–von Mises or

the Anderson–Darling stastistic, the eigenvalues have in some cases been found, and the

corresponding CF was inverted to yield asymptotic percentiles. However, in most cases of

composite goodness–of–fit, the test has been performed by simulating the distribution of the

test statistic by Monte Carlo methods, particularly so when, apart from location and scale,

a shape parameter is involved. The interested reader is referred to D’Agostino and Stephens

(1986), and the references therein.

The problem of approximating the limit null distribution is even more complicated

for transform–based statistics. It is only very recently that Matsui and Takemura (2005)

presented sophisticated numerical techniques in determining percentage points for Tβ, for

composite goodness–of–fit with Cauchy distributions. These techniques have recently been

extended to cover the case of symmetric stable distributions with unspecified characteristic

exponent (Matsui and Takemura, 2006). In our view however, the best way to circumvent this

problem is to follow the line of approach taken in classical statistics based on the empirical

DF, and utilize Monte Carlo in determining the finite–sample critical points empirically. This

approach is in fact pretty much straightforward in location–scale families (see for instance

Epps, 2005, for a unified treatment), but the presence of an extra shape parameter necessi-

tates the use of the parametric bootstrap, and the consequent justification of this procedure
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on both theoretical and applied grounds.

In the rest of this section we will be concerned with the asymptotic behavior of the test

statistic under alternatives. To this end, recall from (3.1) that

T̂n,β

n
=
∫ ∞

−∞
D2

n(t)β(t)dt,

where Dn(t) = n−1
∑n

j=1 g(Ŷj , ϑ̂2n; t). Informally, it is often the case that since the function

g contains elements of the kernel k(t, x) which is bounded, g is also bounded so that D2
n(t) ≤

D̃2
n(t), with ‖D̃n‖2 < ∞. Then provided that for each t, Dn(t) converges almost surely

to a quantity that is not identically zero under a fixed alternative, a version of Lebesgue’s

Dominated Convergence Theorem yields the consistency of the test that rejects H0 for large

values of T̂n,β against such alternative distributions. In the following theorem, a stronger

result is proved.

Theorem 3.2 Suppose that for a specific fixed alternative (A.1)–(A.3) hold with ϑ0 replaced

by ϑ̃ = (ϑ̃1, ϑ̃2)T and l replaced by some l̃ (which often is of the same type as l). Assume that

g(h(x, ϑ1), ϑ2; ·) is continuous at ϑ̃ = (ϑ̃1, ϑ̃2)T in H, uniformly in x, and that ϑ̂n → ϑ̃ a.s.

as n → ∞. Let T̃β = ‖Eϑ̃[g(Ỹ1, ϑ̃2; ·)]‖2, with Ỹ1 = h(X1, ϑ̃1), and 0 < T̃β < ∞. Then, for

some 0 < σ2 < ∞,

√
n

(
T̂n,β

n
− T̃β

)
D−→ N(0, σ2), as n →∞.(3.11)

Proof. Let T̂n,β =
√

n(T̂n,β/n− T̃β), and write

T̂n,β = <
√

n(Dn − D̃), Dn + D̃ >,(3.12)

where D̃(t) = Eϑ̃[g(Ỹ1, ϑ̃2; t)]. Application of the Cauchy–Schwarz inequality, Fubini’s The-

orem, the Hilbert Space Strong Law of Large Numbers and the standing assumptions yield

that ‖Dn− D̃‖2 = oP (1) in H. Hence, it follows from (3.12) that the asymptotic distribution

of T̂n,β is the same as that of <
√

n(Dn − D̃), 2D̃ >. It remains to show that

√
n(Dn − D̃) D−→ D̃, as n →∞,(3.13)

where D̃ is a zero–mean Gaussian process. Then the Continuous Mapping Theorem would

give T̂n,β
D−→ < D̃, 2D̃ >. To prove (3.13) we proceed by using a completely analogous

reasoning as the one used in the proof of Theorem 3.1, and therefore the details are omitted.
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In particular, using the notation ≈ when (3.7) holds, it follows that under the standing

assumptions the process
√

n(Dn − D̃) is asymptotically equivalent to each of the following

processes (compare with the three–step approximation of Zn in the proof of Theorem 3.1),

1√
n

n∑
j=1

{g(Ỹj , ϑ̃2; t)− D̃(t)}+

 1
n

n∑
j=1

q(Ỹj , ϑ̃2; t)

T

√
n(ϑ̂n − ϑ̃)

≈ 1√
n

n∑
j=1

{g(Ỹj , ϑ̃2; t)− D̃(t)}+
(
Eϑ̃

[
q(Ỹ1, ϑ̃2; t)

])T √
n(ϑ̂n − ϑ̃)

≈ 1√
n

n∑
j=1

W̃j(t),

with Ỹj = h(Xj , ϑ̃1), j = 1, 2, ..., n, and

W̃j(t) = g(Ỹj , ϑ̃2; t)− D̃(t) +
(
Eϑ̃

[
q(Ỹ1, ϑ̃2; t)

])T
l̃(Ỹj ; ϑ̃).

Hence (3.13) is an immediate consequence of the Hilbert Space Central Limit Theorem, and

the proof of the theorem is completed.

Remark 3.3 The covariance kernel ω̃(s, t) of D̃ can be calculated as E[W̃1(s)W̃1(t)]. Then

the variance figuring in (3.11) is given by

σ2 = 2
∫ ∞

−∞

∫ ∞

−∞
ω̃2(s, t)D̃(s)D̃(t)β(s)β(t)dsdt.

4 Bootstrap procedures

As mentioned in Remark 3.2, several nonparametric goodness–of–fit test statistics are defined

in terms of estimated nuisance parameters. In such a case, it is well known that critical values

shift, and the asymptotic null distribution of the test statistic may depend in a complex way

on the unknown parameters.

In this section we apply the bootstrap to estimate the null distribution of the statistic T̂n,β

defined in (3.1). We shall consider both parametric and nonparametric bootstrap methods.

It will be shown that under some regularity conditions both bootstrap procedures lead to

consistent estimates of the percentiles of the true null distribution of the test statistic when

the parameters involved are estimated. The nonparametric bootstrap will also help in the

computation of power under contiguous alternatives λn = ϑ0 + λn−1/2. However, in the case

of nonparametric bootstrap we have to make a correction for the bias.
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To describe the bootstrap procedure, let X∗
1 , X∗

2 , . . . , X∗
n be i.i.d. random variables from

F̂n, where F̂n is an estimator of the DF, F , based on the random sample X1, X2, . . . , Xn. Let

ϑ̂∗n = (ϑ̂∗1n, ϑ̂∗2n)T , where ϑ̂∗1n = ϑ̂1n(X∗
1 , X∗

2 , . . . , X∗
n) and ϑ̂∗2n = ϑ̂2n(X∗

1 , X∗
2 , . . . , X∗

n). The

resampling method is called parametric bootstrap (denoted by (P )) if F̂n = Fϑ̂n
, and it is

called nonparametric bootstrap (denoted by (N)) if F̂n = Fn, the empirical DF.

Using the same notation as in Section 3, we state the following set of assumptions

required for Theorem 4.1 below.

(B.1) The local asymptotic expansion in (A.1) holds in Pϑ0–probability, where l now satisfies

Eϑ[l(X1;ϑ)] = 0 for ϑ ∈ Θ0, and L(ϑ) := Eϑ[l(X1;ϑ)l(X1;ϑ)T] is a finite positive definite

matrix for ϑ ∈ Θ0, where Θ0 is any open neighborhood of the true value ϑ0 = (ϑ10, ϑ20)T

under H0. Furthermore, L(ϑ) is continuous at ϑ0.

(B.2) For all x ∈ IR, the function h(x, ϑ1) is uniformly continuous in ϑ1 ∈ Θ10, for a given

open neighborhood Θ10 of ϑ10. Furthermore, g(h(x, ϑ1), ϑ2; ·) ∈ H for x ∈ IR and ϑ =

(ϑ1, ϑ2)T ∈ Θ0 ⊂ Θ, and each component of the k-dimensional column vector

q(x, ϑ; ·) :=
∂

∂ϑ
g(h(x, ϑ1), ϑ2; ·)

is, for each x ∈ IR, uniformly continuous on Θ0, in H.

(B.3) Eϑ[g(Y1, ϑ2; t)] = 0, t ∈ IR, Eϑ[‖g(Y1, ϑ2; ·)‖2] < ∞, Eϑ[‖q(Y1, ϑ2; ·)‖2] < ∞ for ϑ ∈ Θ0,

where Y1 = h(X1, ϑ1).

(B.4) As γ →∞,

sup
ϑ∈Θ0

∫
{‖l(x;ϑ)‖>γ}

‖l(x;ϑ)‖2 dFϑ(x) → 0.

(P) Under the bootstrap probability measure P ∗,

√
n(ϑ̂∗n − ϑ̂n) =

1√
n

n∑
j=1

l(X∗
j ; ϑ̂n) + oP ∗(1).

(N) Under the bootstrap probability measure P ∗,

√
n(ϑ̂∗n − ϑ̂n) =

1√
n

n∑
j=1

l(X∗
j ;ϑ0)−

1√
n

n∑
j=1

l(Xj ;ϑ0) + oP ∗(1).

The meaning of R∗
n := oP ∗(1) is that for all ε > 0, P ∗(‖R∗

n‖ ≥ ε) → 0 a.s. as n →

∞. Assumptions (B.1) and (P), or (B.1) and (N) hold, in general, for maximum likelihood

estimators, M–estimators and L–statistics.

Define the parametric bootstrap version of T̂n,β in (3.1) as,

T̂ ∗
n,β = ‖Z∗

n‖2, with Z∗
n(t) =

1√
n

n∑
j=1

g(Ŷ ∗
j , ϑ̂∗2n; t),(4.1)

12
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where Ŷ ∗
j = h(X∗

j , ϑ̂∗1n). Theorem 4.1 below shows that the conditional distribution of T̂ ∗
n,β,

given X1, X2, . . . , Xn, approximates consistently the null distribution of T̂n,β.

Theorem 4.1 Let X1, X2, . . . , Xn be i.i.d. observations with DF, F ∈ FΘ. Assume con-

ditions (B.1)–(B.4) and (P) hold. Suppose that, as n → ∞, ϑ̂n → ϑ0, Pϑ0–a.s., and

ϑ̂∗n − ϑ̂n → 0, P ∗–a.s. Then, as n →∞,

sup
x∈IR

∣∣∣P ∗(T̂ ∗
n,β ≤ x)− P (T̂n,β ≤ x)

∣∣∣→ 0, a.s.

Proof. The proof proceeds in exactly the same way as that of Theorem 3.1. Applying the

standing assumptions, the expression in (3.8) now becomes

1√
n

n∑
j=1

g(Y ∗
j , ϑ̂2n; t) +

(
E∗
[
q(Y ∗

1 , ϑ̂2n; t)
])T √

n(ϑ̂∗n − ϑ̂n),(4.2)

where Y ∗
j = h(X∗

j , ϑ̂1n), and E∗ denotes the expectation with respect to P ∗. The next step

is to replace
√

n(ϑ̂∗n − ϑ̂n) with the asymptotically non-negligible part of the right–hand side

of the equation in assumption (P). Hence, W 0
j (t) in (3.4) is now replaced by

W 0∗
j (t) = g(Y ∗

j , ϑ̂2n; t) +
(
E∗
[
q(Y ∗

1 , ϑ̂2n; t)
])T

l(X∗
j ; ϑ̂n).(4.3)

Now, it is a matter of simple algebra using the stated assumptions, Fubini’s theorem and

Lebesgue’s Dominated Convergence Theorem to show that

E∗
[∥∥W 0∗

1

∥∥2
]
→ Eϑ0

[∥∥W 0
1

∥∥2
]

< ∞, a.s. as n →∞,(4.4)

with W 0
1 (·) as defined in (3.4).

As in the proof of Theorem 3.1, it follows from (4.2)–(4.4), the Hilbert Space CLT and

the Continuous Mapping Theorem (assumption (B.4) implies Lindeberg’s condition) that

along almost all sample sequences X1, X2, . . . , given (X1, X2, . . . , Xn), ‖W ∗
n‖2 D∗

−→ ‖W‖2 as

n → ∞, where W ∗
n(t) = n−1/2

∑n
j=1 W 0∗

j (t) and W(·) as defined in Theorem 3.1. Here D∗

denotes convergence in distribution with respect to P ∗. Hence,

T̂ ∗
n,β

D∗
−→ ‖W‖2, Pϑ0 − a.s. as n →∞.(4.5)

The proof of the theorem now follows from (3.6), (4.5) and Polyá’s Theorem.

Remark 4.1 If conditions (B.1)–(B.4) and (N) hold, then by repeating the steps of Theorem

4.1, it follows directly that Theorem 4.1 also holds for the nonparametric bootstrap version

of T̂n,β, defined by T̃ ∗
n,β = ‖Z̃∗

n‖2, with Z̃∗
n(t) = Z∗

n(t) − Zn(t), where Zn(t) and Z∗
n(t) are

defined in (3.1) and (4.1) respectively.
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