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SHIGA-WATANABE’s TIME INVERSION PROPERTY FOR
SELF-SIMILAR DIFFUSION PROCESSES

Juha Vuolle-Apiala

Department of Mathematics and Statistics, University of Vaasa, P. O. Box
700, 65101 Vaasa, Finland, e-mail: jmva@uwasa.fi

Summary : Assume (X;, P°) is -self-similar, rotation invariant diffusion on
R4, d> 2, starting at 0 and assume {0} is a polar set. We will show, using the
corresponding well-known result for the radial process, that Shiga-Watanabe’s
time inversion property holds for (X; P?). The generalization for an a-self-
similar, rotation invariant diffusion, a > 0, is also given.
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0.Introduction. Theorem

The following time inversion property is well known for Brownian motion
in R4, d> 1, and Bessel diffusions on [0, o), starting at 0 (see Shiga, Watanabe
(1973) and Watanabe (1975):

(X¢) has the same finite dimensional distributions as (X ;) under P°. (1)

Graversen, Vuolle-Apiala (2000) show that (1) also holds for symmetrized
Bessel processes on R, starting at 0, in the case of the index v €(-1,0). In this
case (X;) can both hit 0 and can be started at 0. Symmetrized Bessel processes
form the class of one dimensional rotation invariant -self similar diffusions (see
the definition below). If the index v <-1 then 0 is an exit boundary point. That
is, (X4) can hit 0 but cannot be started there. If v > 0 then 0 is an entrance
boundary point, that is, (X;) can be started there and it will never come back.
Thus in this case (X;) in fact lives either on [0, co) or on (-oc0, 0] and {0} is
a polar set. Obviously, (1) is valid. Result (1) has been generalized for a-self-
similar diffusions on [0, co) and for symmetric a-self-similar diffusions on R,



ACCEPTED MANUSCRIPT

a > 0, in Graversen, Vuolle-Apiala (2000). The corresponding generalization of
(1) is then

(X;) has the same finite dimensional distributions as (t>*X; ;) under P°.(2)

In this note we will show that (2) holds for all rotation invariant, d-
dimensional, «a-self-similar diffusions (that is, strong Markov processes with
continuous paths), d> 2, a > 0, for which {0} is a polar set. Our main tool is
a skew product representation for rotation invariant diffusions starting at 0; see
Tto, Mc Kean Jr. (1974), p. 274-276.

Let (X¢, P*) be a rotation invariant (RI) a-self-similar (a-ss) diffusion
on R4, d> 2, a > 0, such that {0} is a polar set. By a-self-similarity we mean
that

(X) under P* has the same finite dimensional distributions as (a™*X,) under
P2"* for all x€RY, a> 0 (3)

and by (RI) that

(X;) under P* has the same finite dimensional distributions as (T"(X4))
under PT®) for all T€O(d). (4)

Self-similar diffusions on R or on [0, co) are defined similarly. Brownian
motion fullfills both (3) and (4). See more about self-similar Markov processes in
Graversen, Vuolle-Apiala (1986), Lamperti (1972) and Vuolle-Apiala, Graversen
(1986). According to Graversen, Vuolle-Apiala (1986) and Vuolle-Apiala (2003),
when X # 0 the diffusion processes which fullfill (3) and (4) can be represented
as skew products

[IX¢l, 03], ()

where Ay = )\fot |X,|">ds for some A > 0, the radial part (|X;|) is an a-ss

diffusion on (0,00), and (6;) is a spherical Brownian motion on S¢! independent
of ([X¢]).

REMARK: As showed in Graversen, Vuolle-Apiala (1986), (5) is valid for all
strong Markov processes with cadlag paths fullfilling (3) and (4). However, as
showed by a counterexample by J. Bertoin, W. Werner (1996), the independence
between (|X;|) and (6;) is not necessarily true if the paths are only right con-
tinuous. There is an error in the proof of Proposition 2.4, p.19-20 in Graversen,
Vuolle-Apiala (1986). It was shown in Vuolle-Apiala (2003), Lemma 2.1, that
(IX4]) and (0;) are independent in the case of continuous paths.

We want to prove the following:
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THEOREM: Let (X;, P°) be an (RI) a-ss diffusion on R4, a > 0, d> 2,
starting at 0, having {0} as a polar set. Then the time inversion property (2)
is valid.

1.The Proof of the Theorem
The proof will be based on

PROPOSITION: Let (rt) be an a-ss diffusion on [0, c0), « > 0, such that 0
is an entrance, non-exit boundary point. Then the skew product

],t> 0,10 > 0, (6)

[rt79 -1
)\fot rs®ds

where (6;, Q?) is a spherical Brownian motion on S%! independent.of (r),
such that Q%( 6p=0) = 1 v €S,

can be completed to be an a-ss diffusion on RY by defining

[rg, v, i . ds], t> 0, when ry=0, (7)

where (14, Q) is an independent, spherical Brownian motion defined for
-00 <t<+oo and the law of g is the uniform spherical distribution m(dé).

REMARK 1: Because of a uniquénness result of RI measures on S4! there
is at most one way to complete (6) to be RI on the RY.

REMARK 2: It is obvious that (14, Q) in fact is a stationary process and
vy is uniformly distributed for all t€R (see Kuznetsov, 1973).

We have
Q{u(tr) €dbry e, v(tn)€d0n}=m(dO)Q" (B(ts-t1)€dhs)...Q% (B(tu-tn1)€d6,)(8)

for soo0 <t; < ... jtn <400  (for typographical reasons we use in formula
(8)-notations v(t;) and 6(t;) instead of 1, and 6;,)

In order to prove Proposition we need
LEMMA 1: (v, ..., 14, ) under Q has the same distribution as (v.,, ...,/ ).
PROOF: Follows immediately from (8) and the fact that (6, Q?) has a
symmetric density with respect to the uniform measure m(df) on S%! (see

Vuolle-Apiala, Graversen (1986), Lemma 3, p.329).00

In the proof of Proposition we will use the result of Ito-McKean (1974),
p.275, which says that the skew product (6) can be completed to be a diffusion
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(which obviously is RI) on the whole RY having the skew product (7) when rg
=0 iff Ap; = oo a.s. PO, Here we need

LEMMA 2: Let (r¢) be an a-ss diffusion on [0,00) such that 0 is an entrance,
non-exit boundary point. Then

PO{ [5 r7ds = oo}=1 Ve > 0.
PROOF of LEMMA 2: The property (2) is valid for (ry) which implies
PO{ [i1ads = oo} = PO fy(s*ry)¥ds = oo} = PO{ [fsr}3.ds = 5o},
Substituting 1/s = h gives this equal to
PO [Y( 5 )dh = oo} = PO [ riFdh = oo}.
Using the Markov property we obtain
PO{ [y 17 dh= oo} = EO{Pr/e{ [ dh'= oo}}.

Because 0 is an entrance, non-exit boundary point, ry,. > 0 a.s. (PY). Now,
according to Lamperti (1972),

P{ [ ;7 dh = 0o} = 1 for allr> 0
and thus
o oL
EXPrve{ [rdh = co}} =1
which implies
PO{ [ rvdh = oo} =1. O
PROOF OF PROPOSITION: It only remains to prove that the skew prod-

uct

[rt ) » To :07 (7)

v 1
)\flt rs®ds

fullfills the a-self-similarity condition (3) under P°. Let Iy, ... ,I, be Borel

subsets of [0,00) and Jy, ... ,J, Borel subsets of S%1. We will show
0 _
P, €1y, ... , 1y, €L, 1/)\ " r;éds eJy, o, VAff“ r;%ds ey} =
0f, -« - *
Pa ., €1y, ... , a %y, €Ly, VAf{“l ta, eJi, o, VAfl‘““ ha, eJnH(*)

for all t> 0. For simplicity, assume n = 2, the general case is analogeous.
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Now the right hand side of (*) for n = 2 is equal to

PYaror,,. €Iy, a %y, €Ly, v 1 el v 1 EJg)=
{27rat, €1, @7 Tap, €l M @ ra) mds P UN 12 (@ r) @ ds 2}
P%r, €Ly, 1y, €Ly, v 1 EJy, v 1 EJs

{ ! B ’ )\flt/la rs®ds ’ )\fffa rs®ds }

because (r) fullfills (3) and because of independence between (r.) and

().
This is further equal to

Po{rtl ely, T, cly, v 1 €J2}=

1w T SUT
>‘f1/a re®ds + A [ g ds

voooo1 el
>‘f1/a rg®ds + A [72 1@ ds

1 L
SIS [Py, €T, wy, €D, A f), 15T dsedu,) [ rE ds edy,

t _L
A7 1 ds €dw, vy €01, ugw €2} =

_1 -1
JIZ L POy, €l xy, €1, A [y, asdsedu, A [} ¥ ds edv,
L
A 7 ds €dw}Q(vury €01, Vapw €)=

because of independence between (r) and (v.). Now (v.) is a stationary
process and thus this is equal to

f_:ooo fl’ooo f_;ooPO{rtl €ly, 1y, €l )\fll/a r;édsedu, )\fltl r;%ds edv,
A1 1 ds €dw) Qv €11, 1y €J2) =
f_-:ooo f_;OOPO{rtl €ly, ry, €la, )\fltl r;%ds edv, )\fltz r;%ds edw} Q(vy €J1,vy €J2)=

Pry, €1y, 1y, €Ly, v cJi, v INNPY O
S

1
t o t o
ASit reeds ASfi? rsod

Now we can prove Theorem:

PROOF OF THEOREM: (X;) has according to Graversen, Vuolle-Apiala
(1986), Vuolle-Apiala (2003) and Proposition a skew product representation

[rg, 0)\ i ot ds] as Xo #0 (6)
and
[rg, L | as Xp=0, (7)

14 1
)\ff rs“ds
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where (1) is the radial process, (6;, Q%) is an independent spherical Brown-
ian motion such that Q?(fy=0) =1 and (v, Q) is an independent, stationary,
spherical Brownian motion defined for -co <h<+oo and the law of (1) is the
uniform spherical distribution for all heR. To show (2) let us consider the dis-
tribution of {t%QXl/tl, o tﬁO‘Xl/tn } under PY. Assume for simplicity n = 2,
a = %, the general case is analogeous.

Let I; and J;, i = 1, 2, be Borel subsets of (0, co) and S%! respectively.
Now

POt Xy, €(li, J), 62Xy, €(Iz, Jo)} =

Po{t1r1/t1 €ly, tory s, €lo, Ve g cJy, Ve g ely}=
f_;oo f_;ooPO{tln/tl €l, tory e, €, vy €J1, vy €J2,A 11/t1 r:2ds €du,
A S r2ds edvy=
S [Pty €Ly, €lo A [ r2ds edu [ 2 r2ds €dvIQ(vy €31y €J2)=
Ji= f_;OOPO{tlrl/tl €ly, tory g, €lp,-A [ My o) 2dsedu,X [12 (st ) 2dsedviQ(rva 1,1 €72).
Because (1) is true for (ry) this is equal to
f_;oo f_-:oooPo{rtl ely, ry, €lr,-A fflrfdsedu,—)\ fthr;stedv}Q(uu ely,vy €J9)=
JIo0 [ToPOry, €Iy, 1y €, Afltlrfdsedu, A [P 12dsedviQ(rvy €1,0y €J2).
Using Lemma 1 we get this equal to
f_;oo f_':oooPO{rtl €ly, ry, €1y, )\fltlrfdsedu, )\f1t2r;2ds€dv}Q(1/u ely, vy €)=

Po{rt1 6117 Tty 612) V>\f1t1 r:2ds 6']1) V)\fltZ r:2ds GJZ}:

PO{th E(Il, Jl), Xt2 G(IQ,JQ)}.
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