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Bayesian nonparametric inference of stochastically ordered distributions, with Pólya trees and Bernstein polynomials

Introduction

In statistics, stochastic order is a fundamental concept of ordering distributions (e.g., [START_REF] Lehmann | Invariant directional orderings[END_REF][START_REF] Macneill | Ordered families of distributions[END_REF]. A univariate distribution F 2 is said to dominate distribution F 1 in the stochastic order, denoted by F 1 st F 2 , whenever F 1 (t)

F 2 (t) holds for all t, and of course, this concept can be 7NZ, United Kingdom. E-mail: S.G.Walker@kent.ac.uk
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extended to the ordering of two or more univariate distributions, F 1 ; : : : ; F K . For at least three reasons, it is often of interest to implement nonparametric estimation of a set of distribution functions F 1 ; : : : ; F K under stochastic order constraints. First, a nonparametric approach allows the statistician to circumvent unrealistic assumptions about the distributional form of the K distributions. Second, stochastic order constraints provide a natural way for the statistician to incorporate his prior beliefs about the ordering of distributions. Finally, the incorporation of order constraints, when appropriate, can improve the e¢ ciency in the estimation of parameters (e.g., [START_REF] Robertson | Order Restricted Statistical Inference[END_REF].

Much research has dealt with the development of nonparametric approaches to …nding the optimal point estimate of a set of distributions F 1 ; : : : ; F K subject to stochastic order constraints. Such methods either involve maximizing the empirical likelihood subject to the stochastic order constraint [START_REF] Brunk | Maximum likelihood estimation of the distributions of two stochastically ordered random variables[END_REF][START_REF] Robertson | On the maximum likelihood estimation of stochastically ordered random variates[END_REF][START_REF] Dykstra | Maximum likelihood estimation of the survival functions of stochastically ordered random variables[END_REF][START_REF] Feltz | Maximum likelihood estimation of the survival functions of N stochastically ordered random variables[END_REF][START_REF] Lee | Maximum likelihood estimates for stochastically ordered multinomial populations with …xed and random zeroes[END_REF][START_REF] Dykstra | Nonparametric maximum likelihood estimation of survival functions with a general stochastic ordering and its dual[END_REF][START_REF] El Barmi | Restricted multinomial maximum likelihood estimation based upon Fechnel duality[END_REF][START_REF] Dykstra | Multinomial estimation procedures for two stochastically ordered distributions[END_REF]Dardanoni & Forcina, 1998;Ho¤, 2000), swapping values between pairs of empirical c.d.f.s that violate the stochastic order [START_REF] Lo | Estimation of distribution functions under order restrictions[END_REF], or minimizing the squared distance to the K empirical cd.f.s subject to the stochastic order constraint (Gagnon and King, 2002). Most of the recent research has dealt with the estimation of the posterior distribution of F 1 ; :::; F K under the constraints of a stochastic order [START_REF] Arjas | Nonparametric Bayesian inference from right-censored survival data, using the Gibbs sampler[END_REF], 1996;Evans, Gilula, Guttman, & Swartz, 1997;Ho¤, et al., 2001;Ho¤, 2003;[START_REF] Gelfand | Nonparametric Bayesian modeling for stochastic order[END_REF], through the use of Dirichlet Process priors.

In this paper we show how a Bayesian nonparametric approach can be implemented in a simple way, using either Pólya tree prior distributions [START_REF] Ferguson | Prior distributions on spaces of probability measures[END_REF], or Bernstein polynomial prior distributions (Petrone, 1999a[START_REF] Petrone | Random Bernstein polynomials[END_REF]. It is also well known that both types support to absolutely-continuous distributions.

Moreover, with the Pólya tree prior, inference is remarkably straightforward to implement. In this case, the posterior distribution retains a useful conjugacy property which it exhibits in the traditional situation of inference on a single random distribution function. With the single Pólya tree posterior distribution,
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the Bayes estimate, that is the posterior mean, can be found without recourse to simulation. Conditional on the Pólya tree prior, the posterior mean is based on the product of means of beta distributions, and conditional on the Bernstein polynomial prior, the posterior mean is based on a weighted sum of means of beta distributions. In the two dimensional constrained case, as described in this paper, we only need to extend this to …nding the means of beta distributions under an order constraint. While numerical methods can be used, it is most convenient to …nd these means using simulation.

2 Bayesian Nonparametric Models of Stochastic Order

Model Based On The Pólya Tree Prior

We now describe a procedure for constructing two random distribution functions on [0; 1] with the order constraint. So let Y 0 , where is a sequence from f0; 1g, generate F 1 and Z 0 generate F 2 according to the description given for single Pólya tree prior distributions. See [START_REF] Ferguson | Prior distributions on spaces of probability measures[END_REF] and [START_REF] Lavine | Some aspects of Pólya tree distributions for statistical modeling[END_REF] for further details. So, for example,

F 1 (1=2) = Y 0 , F 1 (1=4) = Y 0 Y 00 and F 1 (3=4) = Y 0 + Y 1 Y 10 and so on.
Here

Y 1 = 1 Y 0 . In general, if B (m)
is one of the dyadic intervals at level m, m = 1; 2; : : :, for which there will be 2 m intervals, then we can characterise such an interval by (m) = 1 : : : m where each j 2 f0; 1g.

Then the mass assigned to the set B (m) is given by

F (B (m) ) = m Y j=1 Y 1 ::: j and note that for all , it is that Y 0 + Y 1 = Y . The Y 's are generated as independent beta distributions, that is (Y 0 ; Y 1 ) beta( 0 ; 1 );
where each > 0. A canonical choice of parameter, which provides absolutely continuous distribution functions, with respect to the Lebesgue measure, is given by (m) = cm 2 for all (m) characterising an interval at level m.

A c c e p t e d m a n u s c r i p t

To generate the appropriate order between the two Pólya tree random distribution functions, one only needs to ensure that Y 0 Z 0 for all .

Theorem 1 If Y 0 Z 0 for all , then F 1 (t ) F 2 (t ) for all where t is the right limit of B .

Proof. We prove this by an inductive argument. Assume that this hypothesis is true for level m and let = 1 : : : m , with de…ning the interval to the left of . Then:

F 1 (t 0 ) = F 1 (t ) + Y 0 fF 1 (t ) F 1 (t )g F 1 (t ) + Z 0 fF 1 (t ) F 1 (t )g = (1 Z 0 ) F 1 (t ) + Z 0 F 1 (t ) (1 Z 0 ) F 2 (t ) + Z 0 F 2 (t ) = F 2 (t 0 )
We also have:

F 1 (t 1 ) = F 1 (t ) F 2 (t ) = F 2 (t 1 ):
Clearly the hypothesis is true for m = 1 since we have

F 1 (1=2) F 2 (1=2): To illustrate for m = 2, it is easy to see that F 1 (1=4) F 2 (1=4). Also, F 1 (3=4) = Y 0 + (1 Y 0 )Y 10 = Y 0 (1 Y 10 ) + Y 10 Z 0 (1 Y 10 ) + Y 10 = Z 0 + Y 10 (1 Z 0 ) Z 0 + Z 10 (1 Z 0 ) = F 2 (3=4):
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The ft g generate the dyadic points, that is the rationals, in (0; 1) and hence from the absolute continuity of the random distribution functions, it follows that F 1 (t) F 2 (t) for all t 2 (0; 1).

In order to obtain a conjugate prior distribution, one can simply take a joint density for (y 0 ; z 0 ) as

f (y 0 ; z 0 ) / y 0 1 0 (1 y 0 ) 0 1 z 0 1 0 (1 z 0 ) 0 1 1(y 0 z 0 ):
In other words, we have the joint density function as the product of the two univariate densities joined with the constraint 1(y 0 z 0 ). This seems a suitable and minimal way to impose the order constraint, without it seems leading to further dependent structures that are undesirable. The updated model is simply the above with revised parameters

0 0 = 0 + n 0 ;
where n 0 is the number of observations from F 1 which are in the interval characterized by 0. The update of the other parameters follows straightforwardly as well.

The model can be extended to K ordered distributions without di¢ culty. We have

F 1 (t) F 2 (t) F K (t)
simply by extending the bivariate density to

f (y (1) 
0 ; : : : ; y

(K) 0 ) = K Y k=1 y (l) 0 (k) 0 1 1 y (l) 0 (k) 0 1 1(y (1) 0 y (K) 0 ):
Conjugacy in this case is also maintained.

The posterior distribution is easily available; however, it is not easy to make statistical inference from the posterior without using simulation techniques. Fortunately, there is a very easy sampling technique using elementary, but numerous Gibbs samplers.

The idea, in the bivariate case, is to sample from the joint density of (y 0 ; z 0 ), independently of all other joint distributions with di¤erent . This can be done with an independent Gibbs sampler for each .

In the bivariate case we sample from f (y 0 jz 0 ) and then from f (z 0 jy 0 ) in the usual way. Both of these densities are truncated beta distributions. In the K-dimensional model, independent Gibbs samplers for each can be run where the conditional densities are again truncated beta distributions.

A c c e p t e d m a n u s c r i p t

Rather than sample truncated beta distributions, an alternative approach relies on the introduction of latent variables. So consider the joint density, for , the subscript of which will be suppressed, given by

f (y; z; u; v) / y a 1 1 u < (1 y) b 1 z c 1 1 v < (1 z) d 1 1(z < y):
A Gibbs sampler now follows by sampling from the conditional densities of u and v, which are both obvious uniform distributions. Now the conditional distributions of z and y are simple beta distributions truncated to intervals, and hence can be sampled using the inverse c.d.f. technique.

Having sampled a large number of (Y 0 ; Z 0 ) for each , one can estimate the means ( Y 0 ; Z 0 ) and then

( b F 1 (B (m) ); b F 2 (B (m) )) = 0 @ m Y j=1 Y 1 ::: j ; m Y j=1 Z 1 ::: j 1 A
for all m and 1 : : : m .

Model Based On The Bernstein Polynomial Prior

The Bernstein polynomial prior distribution, introduced by Petrone (1999a[START_REF] Petrone | Random Bernstein polynomials[END_REF], assumes that a univariate random density function f (with sample space domain [0; 1]) has the representation:

f (x; J; w) = J X j=1
w j;J beta(x; j; J j + 1)

where the fw j;J g J j=1 are weights, and J will be …xed. We will write w j;J = j;J j 1;J where the j;J are strictly increasing for j = 1; : : : ; J and 0;J = 0 and J;J = 1. In fact j;J = j X l=1 w j;J :

If we take a Dirichlet distribution for (w 1;J ; : : : ; w J;J ), with parameters ( 1;J ; : : : ; J;J ), then let p( 1;J ; : : : ; J 1;J )

be the corresponding density function for ( 1;J ; : : : ; J 1;J ).
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In our approach involving the inference of a stochastic ordering F 1 st st F K under the Bernstein polynomial prior, we enforce the stochastic order constraint F 1 (x) F K (x) for all x, by enforcing the order constraint j;J;1 j;J;2 j;J;K for a …xed J.

Therefore, we take, and without loss of generality we put K = 2, the joint density of ( 1;J;1 ; : : : ; J 1;J;1 )

and ( 1;J;2 ; : : : ; J 1;J;2 ) as f ( 1;J;1 ; : : : ; J 1;J;1 ; 1;J;2 ; : : : ; J 1;J;2 ) / p( 1;J;1 ; : : : ; J 1;J;1 ) p( 1;J;2 ; : : :

; J 1;J;2 ) 1( 2 C);
where C = f j;J;1 > j;J;2 ; j = 1; : : : ; J 1g:

As with the approach involving the Pólya Tree prior, the combination of product of Dirichlet distributions and indicator function provides a suitable and minimal way to impose the stochastic order constraint between F 1 and F 2 , without it seems leading to further dependent structures that are undesirable. We have the following theorem which establishes the stochastic ordering:

Theorem 2 If 2 C then F 1 (x) F 2 (x) for all x.
Proof. Let B j;J (x) denote the distribution function of beta(x; j; J j + 1), that is

B j;J (x) = (J + 1) (j) (J j + 1) Z x 0 s j 1 (1 s) J j ds
and it is easy to show that B 1;J (x) B J 1;J (x). In fact we have, using integration by parts on

B j;J (x), with j > 1, that B j;J (x) = B j 1;J (x) (J + 1) (j) (J j + 1) x j 1 (1 x) J j+1
J j + 1 :
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Hence, F 1 (x) = P J j=1 ( j;J;1 j 1;J;1 ) B j;J (x) = B J;J (x) + P J 1 j=1 j;J;1 fB j;J (x) B j+1;J (x)g B J;J (x) + P J 1 j=1 j;J;2 fB j;J (x) B j+1;J (x)g = F 2 (x):

There is a straightforward Gibbs sampler for estimating this model. The start is to introduce the latent variable s 2 f1; : : : ; Jg such that it has a joint density with the data as f (s; xjw) = w s;J beta(x; s; J s + 1):

Hence, P(s = jjx; w) / w j;J (x=(1 x)) j (j) (J j 1) :

Introducing such a variable for each data point, fs i;k g, for k = 1; 2, the other full conditional density to provide for the Gibbs sampler is that for (w 1;J;1 ; : : : ; w J 1;J;1 ; w 1;J;2 ; : : : ; w J 1;J;2 )

which is given by Dir( 1;J;1 +n 1;1 ; : : : ; J;J;1 +n J;1 ) Dir( 1;J;2 +n 1;2 ; : : : ; J;J;2 +n J;2 )

1 j X l=1 w l;J;1 > j X l=1
w l;J;2 8j = 1; : : : ; J 1 ! ;

where

n j;k = #fs i;k = jg:
This joint density has full conditional densities which not only are simple to …nd, but also are simple to sample, being truncated beta distributions.
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To provide a straightforward illustration of our methods to estimating distribution functions under the stochastic order, we analyze a data set presented in [START_REF] Belin | Analysis of a …nite mixture model with variance components[END_REF]. The data were collected from a psychology experiment, where each of 17 subjects had their reactions times (in milliseconds) measured 30 times. In total, the data consists of two sets of reaction times, one set consisting of 180 reaction-times of 6 schizophrenics (S), and the other set consisting of 330 reaction times of 11 non-schizophrenics (N ).

Psychological research has suggested that schizophrenics have a higher reaction time due to attentional de…cit and general motor re ‡ex retardation. With this prior knowledge, it was of interest to estimate the posterior distribution of the two distributions of reaction times (F S ; F N ) under the stochastic order constraint F S st F N .

We performed this estimation using the approach involving Pólya Tree priors (Section 2.1), and using the approach involving Bernstein polynomial priors (Section 2.2). The largest reaction time was 1714 ms and so the data were divided by 1715 to put it onto the interval [0; 1]. This enabled the implementation of these two di¤erent approaches (as they each assume a [0; 1] sample space), though the results will be reported in terms of milliseconds (by a simple transformation back from [0; 1]).

For the Pólya tree approach, the level of the tree was taken to 6, so there are 2 6 = 64 partitions of the interval [0; 1]. All the parameters of the beta distributions were set to 1.5. A Gibbs sampler was run on each of the (Y 0 ; Z 0 ) and each was run for 50,000 iterations. For the Bernstein polynomial approach, we speci…ed J = 100 and we assumed a noninformative Dirichlet prior by setting j;J;k = 0:01 for k = 1; 2.

Here a Gibbs sampler was run for 10,000 iterations.

Figure 1 and presents the estimated posterior means c.d.f.s of F S and F N , under the stochastic order constraint F S st F N , using the approach involving Pólya Tree priors. Figure 2 presents the estimated posterior means under the Bernstein polynomial priors. We …nd that the posterior means for both approaches to be quite similar. For both the Pólya Tree prior and the Bernstein polynomial prior, we have developed a general approach for estimating the posterior distribution of a set of continuous distribution functions F 1 ; : : : ; F K subject to the constraints of a stochastic order. All the methods are straightforward to implement, since the only require generating samples from many independent truncated (order-constrained) beta densities.

Our methods can be extended in a straightforward manner to address situations where it is of interest to estimate a set of distributions under a partial stochastic order, such as F 1 (t) F 2 (t); F 3 (t) F 4 (t) for all t; where no order is speci…ed between F 2 and F 3 . Other straightforward modi…cations also permit the estimation of a pair of distribution functions under a partial stochastic order of the form F 1 (t) F 2 (t) for some t in an interval X 0 <. In either case, only an appropriate subset of beta densities would be subject to order constraints, instead of all of the beta densities. 

Figure 1 :Figure 2 :

 12 Figure 1: The estimated posterior mean of the c.d.f.s for the non-schizophrenic group (solid line) and the
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