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On complete convergence of triangular arrays
of independent random variables

István Berkes1 and Michel Weber

Abstract: Given a triangular array a =
{
an,k, 1 ≤ k ≤ kn, n ≥ 1

}
of positive reals, we study the complete convergence property of Tn =∑kn

k=1 an,kXn,k for triangular arrays X =
{
Xn,k, 1 ≤ k ≤ kn, n ≥ 1

}
of independent random variables. In the Gaussian case we obtain a
simple characterization of density type. Using Skorohod representa-
tion and Gaussian randomization, we then derive sufficient criteria
for the case when Xn,k are in Lp, and establish a link between the Lp-
case and L2p-case in terms of densities. We finally obtain a density
type condition in the case of uniformly bounded random variables.

1. Introduction and results.

Throughout this paper, we let X =
{
Xn,k, 1 ≤ k ≤ kn, n ≥ 1

}
denote a triangular array of

real centered independent random variables, and a =
{
an,k, 1 ≤ k ≤ kn, n ≥ 1

}
with {kn, n ≥ 1}

non-decreasing, a triangular array of positive reals. When the random variables are symmetric
(resp. identically distributed), we will say that the triangular array X is symmetric (resp. iid).
Set, for every n ≥ 1,

Tn =
kn∑

k=1

an,kXn,k, An =
kn∑

k=1

an,k, B2
n =

kn∑

k=1

a2
n,k, Cn = An/Bn. (1)

Let (Ω,A,P) be the basic probability space on which X is defined. Note that Cn ≥ 1. We
investigate under what conditions the sequence Tn/An converges completely to 0: Tn/An

c.c.→ 0,
which means, as is well-known, that for any ε > 0

∑
n

P {|Tn|/An > ε} < ∞.

The study of this property originates from a well-known paper by Hsu and Robbins (1947)
who proved in the case of a single iid sequence ξ =

{
ξ, ξn, n ≥ 1} with partial sums Sn =∑n

k=1 ξk, n = 1, 2, . . . that E ξ = 0, E ξ2 < ∞ imply Sn/n
c.c.→ 0. Shortly afterward, Erdős

(1949) proved the validity of the converse implication. Since then, the study of various possible
generalizations of this result (subsequence case, the theorems of Baum-Katz (1965), extensions to
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triangular arrays of independent random variables, Banach space valued random variables) have
received a lot of attention. See, for example, the works of Pruitt (1966), Rohatgi (1971), Fazekas
(1985, 1992), Hu-Móricz-Taylor (1989), Kuczmaszewska-Szynal (1988, 1990, 1994), Gut (1992),
Li-Rao-Wang (1992), Rao-Wang-Yang (1993), Sung (1997), Adler-Cabrera-Rosalsky-Volodin
(1999), Hu-Rosalsky-Szynal-Volodin (1999), Ahmed-Antonini-Volodin (2002). The purpose of
the present paper is to present new necessary as well as sufficient criteria for the complete
convergence of triangular arrays of independent random variables, and discuss their relations
with known results in the literature.

We start our investigations with the Gaussian case, because of the classical Gaussian ran-
domization procedure for sums of independent random variables, and also because this case is
in general very informative. If X is Gaussian, the problem can be simply settled. Put

L(a) = lim sup
x→∞

log ]
{
n : Cn ≤ x

}

x2
.

Then we have the following characterization.

Theorem 1. Assume that the Xn,k are i.i.d. standard Gaussian variables. Then we have

Tn/An
c.c.−→ 0 ⇐⇒ L(a) = 0.

In view of this complete result, it is natural to attack the general i.i.d. case using invariance
principles. Applying Skorohod embedding for the row sums of the triangular array X leads,
under natural conditions on the stopping times in the Skorohod representation, to a necessary
and sufficient criterion for Tn/An

c.c.−→ 0, see Proposition 10. This condition, in turn, leads to
sufficient criteria under the existence of higher moments. In particular, we will prove

Theorem 2. Assume that EX2
n,k = 1 and Xn,k ∈ L2p for some p ≥ 2. Then the relation

∑
n

(
∑kn

k=1 a4
n,k)p/2

(
∑kn

k=1 a2
n,k)p

< ∞,

implies Tn/An
c.c.−→ 0.

To compare this result with the Gaussian case, note that L(a) = 0 is equivalent to

∑
n

exp
(
− δ

(∑kn

k=1 an,k

)2

∑kn

k=1 a2
n,k

)
< ∞ for all δ > 0.

In the case when X is also symmetric, the condition in Theorem 2 can be weakened.

Theorem 3. Assume that X is symmetric, EX2
n,k = 1 and Xn,k ∈ L2p for some p ≥ 2. Then

the relation
∑

n

(∑kn

k=1 a4
n,k

)p/2

( ∑kn

k=1 an,k

)2p logp n
< ∞,

implies Tn/An
c.c.−→ 0.
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Recall that the array X is stochastically bounded by a random variable X if there is a
constant D such that P{|Xn,k| > x} ≤ DP{|DX| > x} for all x > 0 and for all n ≥ 1,
1 ≤ k ≤ kn. We will prove the following result.

Theorem 4. Let X be a symmetric triangular array stochastically bounded by a square integrable
random variable X. Assume that for any ε > 0,

(a)
∑

1≤k≤l<∞P
{|X| ≥ εAl/ak

}
< ∞.

Further assume that for some integer r ≥ 2 and any ε > 0,

(b)
∑

n≥1 P
{|Tn| > εAn

}r
< ∞.

Then

(c) Tn/An
c.c.−→ 0.

Conversely, if the triangular array X is iid symmetric, then (c) implies (a).

The next result concerns the uniformly bounded case. We show that a condition similar
to that assumed in the Gaussian case suffices for complete convergence. Put, for any positive
integer n,

V 2
n =

kn∑

k=1

a2
n,kX2

n,k.

Theorem 5. Let X be a triangular array of real centered, uniformly bounded independent
random variables. Assume that for any ε > 0

E sup
m≥1

]
{
n : m < An/Vn ≤ m + 1

}

exp{εm2} < ∞.

Then Tn/An
c.c.−→ 0.

Our final result establishes a link between the complete convergence of arrays in the Lp

and L2p-case. Remarkably, the link is provided by the density condition in the Gaussian case
in Theorem 1. We need a preliminary definition.

Definition. Let p ≥ 2. We say that a is p-regular if any triangular array X of real centered
iid random variables with finite pth moment satisfies Tn/An

c.c.→ 0.

Let a be a triangular array of positive reals. Define

a2 :=
{
a2

n,k, 1 ≤ k ≤ kn, n ≥ 1
}
.

Then we have

Theorem 6. Let p ≥ 2 and assume that a2 is p-regular. Then a is 2p-regular iff L(a) = 0.

2. Proofs.

Proof of Theorem 1. Before giving the proof, recall for the reader’s convenience an elementary
estimate for Gaussian random variables due to Komatsu-Pollak (see Mitrinović (1970), p. 178).
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Lemma 7. The Mills’s ratio R(x) = ex2/2
∫∞

x
e−t2/2 dt satisfies

2√
x2 + 4 + x

≤ R(x) ≤ 2√
x2 + 8

π + x
≤

√
π

2
for all x > 0.

Note that

P
{|Tn|/An > ε

}
= P

{|N (0, 1)| > εCn

} ³ 1
1 + εCn

e−(εCn)2/2 as n →∞,

where the symbol ³ means that the ratio of the two sides is between positive constants. Thus
it follows that Tn/An

c.c.−→ 0 if and only if the series

∑
n

e−δC2
n

converges for any δ > 0. And this is equivalent to L(a) = 0 (for a proof, see e.g. Weber (1995),
pp. 402-403).

Proof of Theorem 6. The proof relies upon several intermediate results. Let ξ =
{
ξk, k ≥ 1

}
be a sequence of real centered independent square integrable random variables defined on the
probability space (Ω,A,P), and let w =

{
wk, k ≥ 1

}
be a sequence of positive reals. Put, for

any positive integer m,

Sm =
m∑

k=1

wkξk, Wm =
m∑

k=1

wk, Mm =
m∑

k=1

w2
k.

Recall the Skorokhod embedding scheme (see e.g. Breiman (1968)): there exists, after suitably
enlarging the probability space, a linear Brownian motion B = {B(t), 0 ≤ t < ∞} starting at
0, and a sequence τ1, τ2, . . . of independent non-negative random variables with E τk = w2

kE ξ2
k,

k ≥ 1 such that, with τ0 = 0 a.s.,

{
B(

k∑

j=0

τj)−B(
k−1∑

j=0

τj), k ≥ 1
} D= {wkξk, k ≥ 1}.

Put, for any real x,

Ψ(x) =
1√
2π

∫ ∞

x

e−u2/2du.

Lemma 8. Let ε, h, δ be positive numbers with ε > h >
√

2δ, and put

∆m = ∆m(δ) = P
{∣∣

m∑

j=0

τj −Mm

∣∣ ≥ δMm

}
.

Then, for any positive integer m, we have

Ψ((ε+h)
Wm√
Mm

)−4Ψ(
hWm√
2δMm

)−∆m ≤ P
{|Sm| > εWm

}≤Ψ((ε−h)
Wm√
Mm

)+4Ψ(
hWm√
2δMm

)+∆m.
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Proof. We observe that

P
{|Sm| > εWm

}
= P

{|B(
m∑

j=0

τj)| > εWm

}

≤ P
{|B(Mm)| > (ε− h)Wm

}
+ P

{|B(
m∑

j=0

τj)| > εWm, |B(Mm)| ≤ (ε− h)Wm

}

≤ Ψ(
(ε− h)Wm√

Mm

) + P
{∣∣B(

m∑

j=0

τj)−B(Mm)
∣∣ ≥ hWm

}

≤ Ψ(
(ε− h)Wm√

Mm

) + P
{∣∣

m∑

j=0

τj −Mm

∣∣ ≥ δMm

}
+ P

{
sup

|θ−1|≤δ

∣∣B(θMm)−B(Mm)
∣∣ ≥ hWm

}

= Ψ(
(ε− h)Wm√

Mm

) + P
{∣∣

m∑

j=0

τj −Mm

∣∣ ≥ δMm

}
+ P

{
sup

|θ−1|≤δ

∣∣B(θ)−B(1)
∣∣ ≥ h

Wm√
Mm

}
.

Conversely,

Ψ((ε + h)
Wm√
Mm

) = P
{|B(Mm)| > (ε + h)Wm

}

≤ P
{|B(

m∑

j=0

τj)| > εWm

}
+ P

{ |B(Mm)| > (ε + h)Wm, |B(
m∑

j=0

τj)| ≤ εWm

}

≤ P
{|B(

m∑

j=0

τj)| > εWm

}
+ P

{∣∣B(
m∑

j=0

τj)−B(Mm)
∣∣ ≥ hWm

}

≤ P
{|B(

m∑

j=0

τj)| > εWm

}
+ P

{∣∣
m∑

j=0

τj −Mm

∣∣ ≥ δMm

}

+ P
{

sup
|θ−1|≤δ

∣∣B(θMm)−B(Mm)
∣∣ ≥ hWm

}

= P
{|B(

m∑

j=0

τj)| > εWm

}
+ P

{∣∣
m∑

j=0

τj −Mm

∣∣ ≥ δMm

}
+P

{
sup

|θ−1|≤δ

∣∣B(θ)−B(1)
∣∣ ≥ h

Wm√
Mm

}
.

As B has stationary increments, we get by using scale invariance, the symmetry of the law of
B and Eq. 1.5.1 p. 43 in Csörgő and Révész (1981),

P
{

sup
|θ−1|≤δ

∣∣B(θ)−B(1)
∣∣ ≥ h

Wm√
Mm

}
= P

{
sup

u∈[0,2δ]

∣∣B(u)
∣∣ ≥ hWm√

Mm

}

= P
{

sup
0≤u≤1

∣∣B(u)
∣∣ ≥ hWm√

2δMm

}

= P
{

max
(

sup
0≤u≤1

B(u), sup
0≤u≤1

−B(u)
) ≥ hWm√

2δMm

}

≤ 2P
{

sup
0≤u≤1

B(u) ≥ hWm√
2δMm

}
= 4Ψ(

hWm√
2δMm

).

Consequently

Ψ((ε+h)
Wm√
Mm

)−4Ψ(
hWm√
2δMm

)−∆m ≤ P
{|Sm| > εWm

}≤Ψ((ε−h)
Wm√
Mm

)+4Ψ(
hWm√
2δMm

)+∆m.

This completes the proof.
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We shall apply Lemma 8 to triangular arrays. Let again X =
{
Xn,k, 1 ≤ k ≤ kn, n ≥ 1

}
be a triangular array of real centered independent random variables and a =

{
an,k, 1 ≤ k ≤

kn, n ≥ 1
}

a triangular array of positive reals. By considering, if necessary, a larger probability
space, we can always assume that there exists a sequence ξ1, ξ2, . . . such that for each positive
integer n,

ξn =
{
ξn,k, k ≥ 1

}
with ξn,k = Xn,k, 1 ≤ k ≤ kn,

and ξn is a sequence of independent random variables. Further the sequences ξ1, ξ2, . . . are
mutually independent. By suitably enlarging the probability space, there exists for each integer n
a linear Brownian motion Bn = {Bn(t), 0 ≤ t < ∞} starting at 0 and a sequence τn

1 , τn
2 , . . .

of independent non-negative random variables with E τn
k = a2

n,kE ξ2
n,k, k ≥ 1 such that, with

τn
0 = 0 a.s.,

{
Bn(

k∑

j=0

τn
j )−Bn(

k−1∑

j=0

τn
j ), k ≥ 1

} D= {an,kξn,k, k ≥ 1}.

In fact, in each step, it would be enough to let k run between 1 and kn. By applying Lemma 8
with the choice ξ = ξn, m = kn, we now easily deduce the following corollary.

Corollary 9. Let ε, h, δ be positive reals with ε > h >
√

2δ. Then, with the notation (1), for
n = 1, 2, . . .

Ψ((ε+h)Cn)− 4Ψ(
h√
2δ

Cn)−∆n(δ) ≤ P
{|Tn| > εAn

}≤Ψ((ε−h) Cn)+4Ψ(
h√
2δ

Cn)+∆n(δ),

where

∆n(δ) = P
{∣∣

kn∑

j=0

τn
j −B2

n

∣∣ ≥ δB2
n

}
.

This result will allow us to establish the following statement.

Proposition 10. Assume that X and a satisfy
∑
m

∆m(δ) < ∞, for all δ > 0. (2)

Then
Tn/An

c.c.−→ 0 ⇐⇒ L(a) = 0.

This proposition can be viewed as an extension of Theorem 1, since in the Gaussian case
τn
j

a.s.= a2
n,j .

Proof. The key lies in the comparison between Ψ((ε + h)Cn) and Ψ( h√
2δ

Cn), which is achieved

by using Lemma 7. The implication L(a) = 0 ⇒ Tn/An
c.c.→ 0 is easy. Indeed, if L(a) = 0,

then for any ρ > 0 the series
∑

n e−ρC2
n converges, or equivalently,

∑
n

Ψ(ρCn) < ∞ for all ρ > 0. (3)

Let ε > 0, and choose h, δ in Corollary 9 such that h = ε/2 >
√

2δ. By Corollary 9 and the
assumption made, the series

∑
n P

{|Tn| > εAn

}
converges provided

∑
n

Ψ((ε− h) Cn) < ∞,
∑

n

Ψ(
h√
2δ

Cn) < ∞.
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And this holds true if
∑

n Ψ((ε/2) Cn) < ∞, which is satisfied by assumption. Hence the first
part of Proposition 10 is proved.

Conversely, if Tn/An
c.c.→ 0, then the series

∑
n P

{|Tn| > εAn

}
converges for any ε > 0. We

shall prove that (3) holds true. We distinguish two cases.
Case 1: lim infn→∞ Cn = ∞. Let ρ > 0 be fixed, we choose ε, h, δ such as ε = h = ρ/2, δ = 1/8,
so that h√

2δ
= 2ρ. Then Ψ((ε + h)Cn) = Ψ(ρCn) and Ψ( h√

2δ
Cn) = Ψ(2ρCn). By Lemma 7,

Ψ(ρCn) ³ 1
1 + ρCn

e−(ρCn)2/2, Ψ(2ρCn) ³ 1
1 + 2ρCn

e−2(ρCn)2 ,

so that, for any ρ < ρ1 < ρ2 < 2ρ, if n is sufficiently large

Ψ(ρCn) ≥ e−(ρ1Cn)2/2, 4Ψ(2ρCn) ≤ e−(ρ2Cn)2/2.

Therefore

Ψ(ρCn)− 4Ψ(2ρCn) ≥ e−(ρ1Cn)2/2(1− e−(ρ2
2−ρ2

1)(Cn)2/2) ≥ (1/2)e−(ρ1Cn)2/2,

for n sufficiently large. In view of Corollary 9, and assumption (2) this implies that the series∑
n e−(ρ1Cn)2/2 converges. This being true for any ρ > 0 and any ρ1 > ρ, it follows that (3) is

satisfied, as claimed.

Case 2: lim infn→∞ Cn < ∞. In this case there exist a sequence of indices {nj , j ≥ 1} and a
real t such that lim

j→∞
Cnj = t. Choose ρ > 0 such that Ψ(ρt) > 4Ψ(2ρt), and let again ε, h, δ

such as ε = h = ρ/2, δ = 1
8 . Applying Corollary 9 for n = nj , j = 1, 2, . . . gives

Ψ(ρCnj )− 4Ψ(2ρCnj ) ≤ P
{|Tnj | > εAnj

}
+ ∆nj (δ).

Letting now j tend to infinity implies

0 < Ψ(ρt)− 4Ψ(2ρt) ≤ lim inf
j→∞

(
P

{|Tnj | > εAnj

}
+ ∆nj (δ)

)
,

which contradicts the fact that both series
∑

n P
{|Tn| > εAn

}
,
∑

n ∆n(δ) converge. The proof
is now complete.

We can now pass to the proof of Theorem 6. Let p ≥ 2 and let a =
{
an,k, 1 ≤ k ≤ kn, n ≥ 1

}
be a triangular array of positive reals such that b = a2 is p-regular. Let X =

{
Xn,k, 1 ≤ k ≤

kn, n ≥ 1
}

be a triangular array of real centered iid random variables with finite 2p-th moment.
We shall make use of the fact (Fisher (1992), Theorem 2.1) that for each n, we can assume
that {τn

k , 1 ≤ k ≤ kn} D= {a2
n,kθn

k , 1 ≤ k ≤ kn}, and {θn
k , 1 ≤ k ≤ kn} is an iid sequence with

finite p-th moment. As b is p-regular, (2) is satisfied. Using Proposition 10, we get the desired
conclusion.

Remark. Although the characterization given in Theorem 6 is simple, it is rather abstract.
Usually condition (2) is as difficult to check as the fact that a is 2p-regular. Thus the interest
in a statement like Theorem 6 is the link established between p-regularity and 2p-regularity, via
the arrays a and b.

It is possible to check directly condition (2), by imposing conditions on the weights, which,
however, appear to be stronger than the condition L(a) = 0. To see this, we shall use some

7
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arguments from Weber (2006). In order to avoid unnecessarily heavy notation, we simply return
to the setting considered in Lemma 8, and will bound the quantity

∆m = ∆m(δ) = P
{∣∣

m∑

j=0

τj −Mm

∣∣ ≥ δMm

}
.

Using inequality (1.2) in Davis (1976) we see that if E|ξi|2+ε < ∞ for some ε > 0, the sequence
of stopping times τi satisfies

Eτ
1+ε/2
i ≤ Cw2+ε

i E|ξi|2+ε, (4)

where the constant C depends on ε only. Let p ≥ 2. Assume that for any positive integer j,
ξi ∈ L2p, and moreover

Qp(ξ) := sup
j≥1

‖ξi‖p < ∞.

Put for any positive integer l,
xl = τl −Eτl = τl − w2

l .

Then using (4) with 2(p− 1) = ε gives

E |xl|p ≤ 2p(E |τl|p + w2p
l ) ≤ C ′p(1 + Qp

p(ξ))w2p
l ,

where C ′p depends on p only, and may vary in the next lines. Further note that in the case
ξl ∈ L4, l ≥ 1 we have

0 ≤ Ex2
l = E τ2

l − (E τl)2 ≤ E τ2
l ≤ C ′2w

4
l E |ξl|4.

Apply now Rosenthal’s inequality (see e.g. Petrov (1995), p. 59). In view of centering and
independence of the xl’s, we get

E
∣∣

m∑

l=1

(τl − w2
l )

∣∣p ≤ C ′p
( m∑

l=1

w2p
l +

( m∑

l=1

Ex2
l

)p/2
)

≤ C ′p(1 + Qp
p(ξ))

( m∑

l=1

w2p
l +

( m∑

l=1

w4
l

)p/2
)
≤ C ′p(1 + Qp

p(ξ))
( m∑

l=1

w4
l

)p/2
.

Consequently, by using Chebyshev’s inequality,

∆m(δ) = P
{∣∣

m∑

j=0

τj −Mm

∣∣ ≥ δMm

} ≤ C ′p(1 + Qp
p(ξ))

(∑m
l=1 w4

l

(δMm)2
)p/2

.

We thus see that condition (2) holds provided

∑
m

([ ∑m
l=1 w4

l

]1/2

Mm

)p

< ∞.

For triangular arrays, this means that

∑
n

([ ∑kn

k=1 a4
n,k

]1/2

∑kn

k=1 a2
n,k

)p

< ∞,

8
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establishing Theorem 2. As we noted earlier, L(a) = 0 is equivalent to

∑
n

exp
(
− δ

(∑kn

k=1 an,k

)2

∑kn

k=1 a2
n,k

)
< ∞ for all δ > 0.

Proof of Theorem 3. Since X is symmetric, it has the same law as X =
{
εn,kXn,k, 1 ≤ k ≤

kn, n ≥ 1
}
, where ε =

{
εn,k, 1 ≤ k ≤ kn, n ≥ 1

}
is a Rademacher sequence defined on a joint

probability space (Ωε,Aε,Pε) (with corresponding expectation symbol Eε). Put

Yn =
kn∑

k=1

an,kεn,kXn,k, Qn =

∑kn

k=1 a2
n,kX2

n,k

B2
n

.

Let {Ωn, n ≥ 1} be a sequence of positive reals. Write

P
{ |Tn|

An
> ε

}
= EPε

{ |Yn|
An

> ε
} ≤ P

{
Qn > Ωn

}
+ E1{Qn≤Ωn}Pε

{ |Yn|
An

> ε
}
.

Further, there exists an absolute constant C such that

Pε

{ |Yn|
An

> ε
} ≤ exp

{
− C

ε2A2
n∑kn

k=1 a2
n,kX2

n,k

}
= exp

{
− C

ε2A2
n

QnB2
n

}
= exp

{
− C

ε2C2
n

Qn

}
.

We deduce that

P
{ |Tn|

An
> ε

} ≤ P
{
Qn > Ωn

}
+ exp

{
− C

ε2C2
n

Ωn

}
.

It follows that if

a)
∞∑

n=1

P
{
Qn > Ωn

}
< ∞, b)

∞∑
n=1

exp
{
− C

ε2C2
n

Ωn

}
< ∞.

then Tn/An
c.c.−→ 0. Choosing in particular (with L > 1)

Ωn = C2
n/(L log n)

shows that Tn/An
c.c.−→ 0, provided that

∞∑
n=1

P
{
Qn > λC2

n/ log n
}

< ∞,

for any λ > 0. To connect the last sum with the sum in Theorem 3, we use Rosenthal’s
inequality. Recall that we assumed for 1 ≤ k ≤ kn, n ≥ 1 that EX2

n,k = 1, and for some p ≥ 2,
Xn,k ∈ L2p. Put

Yn,k = a2
n,k(X2

n,k − 1), 1 ≤ k ≤ kn, n ≥ 1,

Then for sufficiently large n we have

P
{
Qn > λC2

n/ log n
}

= P
{∑kn

k=1 a2
n,kX2

n,k

B2
n

> λ
A2

n

B2
n log n

}
= P

{ kn∑

k=1

a2
n,kX2

n,k > λA2
n log n

}

≤ P
{ kn∑

k=1

a2
n,k(X2

n,k − 1) >
λ

2
A2

n log n
} ≤

(E
∣∣ ∑kn

k=1 Yn,k

∣∣p
(

λ
2 A2

n log n
)p

)
.

9
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Now, by Rosenthal’s inequality

E
∣∣

kn∑

k=1

Yn,k

∣∣p ≤ (
C0

p

log p

)p
{∣∣E ( kn∑

k=1

Yn,k

)2∣∣ p
2 +

kn∑

k=1

E |Yn,k|p
}

,

where C0 is an absolute constant. But

E
∣∣

kn∑

k=1

Yn,k

∣∣2 =
kn∑

k=1

a4
n,kE (X2

n,k − 1)2 ≤ C‖X‖44
kn∑

k=1

a4
n,k,

so that

E
∣∣

kn∑

k=1

Yn,k

∣∣p ≤ (
C0

p

log p

)p
{(

C‖X‖44
kn∑

k=1

a4
n,k

) p
2 + ‖X‖2p

2p

kn∑

k=1

a2p
n,k

}

≤ Cp max(‖X‖44, ‖X‖2p
2p)

( kn∑

k=1

a4
n,k

) p
2 ,

Therefore,

P
{

Qn > λC2
n/ log n

} ≤ Cp max(‖X‖44, ‖X‖2p
2p)

((∑kn

k=1 a4
n,k

) p
2

(
λ
2 A2

n log n
)p

)
.

This completes the proof of Theorem 3.

Proof of Theorem 4. Let Y1, . . . , Yn be independent symmetric random variables, Sn = Y1 +
· · ·+Yn. One part of the Hoffmann-Jorgensen inequality (see Hoffmann-Jorgensen (1974)) states
that

P{|Sn| > 3pt} ≤ CpP{ max
1≤k≤n

|Xk| > t}+ Cp{P(|Sn| > t)}2p

(5)

for any integer p ≥ 1, where Cp is a constant depending on p. By (5) we have

P{|Tn| > 3pεAn} ≤ DCp

kn∑

k=1

P{|DakX| > εAn}+ Cp

(
P{|Tn| > εAn}

)2p

(6)

Choosing p large enough and summing (6) for n = 1, 2, . . . we get
∞∑

n=1

P{|Tn| > 3pεAn} ≤ DCp

∑
1≤k≤kn

n≥1

P{|X| > εAn/Dak}+ Cp

∞∑
n=1

(
P{|Tn| > εAn}

)2p

Assumptions a) and b) therefore imply c). Conversely if c) is true, then

P{|Tn| > εAn} ≥ 1
2
P

{
max

1≤k≤kn

|akXk| ≥ εAn

}
=

1
2

[
1−P

{
max

1≤k≤kn

|akXk| < εAn

}]

=
1
2

[
1−

kn∏

k=1

(
1−P

{|akXk| ≥ εAn

})] ≥ 1
2

[
1−

kn∏

k=1

e−P{|akXk|≥εAn}
]

=
1
2

[
1− e−

∑kn

k=1
P{|akXk|≥εAn}

]
:=

1
2
[
1− e−λn

]
.

From this estimate and c) follows that λn tends to 0, and then the chain of estimates can be
continued as

1
2
[
1− e−λn

]
=

1
2
[
λn +O(λ2

n)
] ≥ 1

4
λn,

for any integer n sufficiently large. Therefore, for n large

P{|Tn| > εAn} ≥ 1
4
λn.

And consequently c) implies
∑

n λn < ∞, which is exactly a).

10
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Proof of Theorem 5. The proof is based on a convexity argument enabling us to use the Gaussian
randomization technique. First of all, there is no loss of generality in assuming that for any
n ≥ 1 and 1 ≤ k ≤ kn we have

|Xn,k| ≤ 1 a.s.

Let X ′ be an independent copy of X defined on a joint probability space (Ω′,A′,P′) with corre-
sponding expectation symbol E′. Write T ′n =

∑kn

k=1 an,kX ′
n,k. Let ε =

{
εn,k, 1 ≤ k ≤ kn, n ≥ 1

}
be a triangular array of independent Rademacher random variables defined on a joint probability
space (Ωε,Aε,Pε), with corresponding expectation symbol Eε. Similarly, let g =

{
gn,k, 1 ≤ k ≤

kn, n ≥ 1
}

be a triangular array of independent N (0, 1) distributed random variables defined
on a joint probability space (Ωg,Ag,Pg), with corresponding expectation symbol Eg. Let A be
any real number and consider the convex non-decreasing function ϕA(x) = (x − A)+. If X is
any random variable, then for any positive real a, aP{X > A + a} ≤ EϕA(X). Applying this
for A = Anε = a and X = Tn and then using Jensen’s inequality lead to

(εAn)P{Tn > 2εAn} ≤ EϕεAn
(Tn) = EϕεAn

(Tn −E′ T ′n)

≤ EE′ ϕεAn(Tn − T ′n) = EEεϕεAn(
kn∑

k=1

an,kεn,kXn,k)

= EEε ϕεAn

(∑kn

k=1 an,kεn,k(Eg |gn,k|)Xn,k

(2/π)1/2

)

≤ EEε EgϕεAn

(∑kn

k=1 an,kεn,k|gn,k|Xn,k

(2/π)1/2

)

= EEg ϕεAn

(∑kn

k=1 an,kgn,kXn,k

(2/π)1/2

)
.

(7)

In the last equality we used the fact that
{
εn,k|gn,k|, 1 ≤ k ≤ kn, n ≥ 1

} D=
{
gn,k, 1 ≤ k ≤

kn, n ≥ 1
}
. Applying it now to A = Anε = a and X = −Tn, and arguing similarly also gives

(εAn)P{−Tn > 2εAn} ≤ EEg ϕεAn

(∑kn

k=1 an,kgn,kXn,k

(2/π)1/2

)
. (8)

As P{|Tn| > 2εAn} ≤ P{Tn > 2εAn}+ P{−Tn > 2εAn}, we obtain from (7) and (8)

(εAn)P{|Tn| > 2εAn} ≤ 2EEg ϕεAn

(∑kn

k=1 an,kgn,kXn,k

(2/π)1/2

)
.

But,

Eg ϕεAn

(∑kn

k=1 an,kgn,kXn,k

(2/π)1/2

)
=

∫ ∞

εAn

P
{
N (0, 1) >

(2/π)1/2u

Vn

}
du

=
Vn√
2/π

∫ ∞
√

2/πεAn
Vn

P
{N (0, 1) > v

}
dv

=
Vn√
2/π

∫ ∞
√

2/πεAn
Vn

∫ ∞

v

e−w2/2 dw√
2π

dv

=
Vn

2

∫ ∞
√

2/πεAn
Tn

R(v)e−v2/2dv ≤
√

π

2
Vn

2
R(

√
2/πεAn

Vn
)e
− ε2A2

n
πV 2

n

≤ πVn

4
e
− ε2A2

n
πV 2

n .

11
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Therefore

P{|Tn| > 2εAn} ≤ E
πVn

4εAn
e
− ε2A2

n
πV 2

n .

We now make use of the boundedness assumption on the sequence X . The above inequality
becomes in this case

P{|Tn| > 2εAn} ≤ π

4ε
E e

− ε2A2
n

πV 2
n ,

since V 2
n =

∑kn

k=1 a2
n,kX2

n,k ≤
∑kn

k=1 a2
n,k ≤ A2

n a.s. Put for m = 1, . . .

Jm =
{
n : m ≤ An/Vn < m + 1

}

Then

∞∑
n=1

P{|Tn| > 2εAn} ≤ π

4ε

∞∑
m=1

E
∑

n∈Jm

e
− ε2A2

n
πV 2

n ≤ π

4ε

∞∑
m=1

E
[
]{Jm}e− ε2m2

2π

]
e

ε2m2
2π − ε2m2

π

≤ π

4ε
E sup

m≥1

[
]{Jm}e− ε2m2

2π

][ ∞∑
m=1

e−
ε2m2

2π

]

≤ CεE sup
m≥1

]
{
n : m < An/Vn ≤ m + 1

}

exp{ε2m2/2π} .

This completes the proof of Theorem 5.
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