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Given a triangular array a = a n,k , 1 ≤ k ≤ k n , n ≥ 1 of positive reals, we study the complete convergence property of

In the Gaussian case we obtain a simple characterization of density type. Using Skorohod representation and Gaussian randomization, we then derive sufficient criteria for the case when X n,k are in L p , and establish a link between the L pcase and L 2p -case in terms of densities. We finally obtain a density type condition in the case of uniformly bounded random variables.

Introduction and results.

Throughout this paper, we let X = X n,k , 1 ≤ k ≤ k n , n ≥ 1 denote a triangular array of real centered independent random variables, and a = a n,k , 1 ≤ k ≤ k n , n ≥ 1 with {k n , n ≥ 1} non-decreasing, a triangular array of positive reals. When the random variables are symmetric (resp. identically distributed), we will say that the triangular array X is symmetric (resp. iid). Set, for every n ≥ 1,

T n = k n k=1 a n,k X n,k , A n = k n k=1 a n,k , B 2 n = k n k=1 a 2 n,k , C n = A n /B n . ( 1 
)
Let (Ω, A, P) be the basic probability space on which X is defined. Note that C n ≥ 1. We investigate under what conditions the sequence T n /A n converges completely to 0:

T n /A n c.c.
→ 0, which means, as is well-known, that for any ε > 0

n P {|T n |/A n > ε} < ∞.
The study of this property originates from a well-known paper by [START_REF] Hsu | Complete convergence and the law of large numbers[END_REF] who proved in the case of a single iid sequence ξ = ξ, ξ n , n ≥ 1} with partial sums

S n = n k=1 ξ k , n = 1, 2, . . . that E ξ = 0, E ξ 2 < ∞ imply S n /n c.c.
→ 0. Shortly afterward, Erdős (1949) proved the validity of the converse implication. Since then, the study of various possible generalizations of this result (subsequence case, the theorems of [START_REF] Baum | Convergence rates in the law of large numbers[END_REF], extensions to A c c e p t e d m a n u s c r i p t triangular arrays of independent random variables, Banach space valued random variables) have received a lot of attention. See, for example, the works of [START_REF] Pruitt | Summability of independent random variables[END_REF], [START_REF] Rohatgi | Convergence of weighted sums of independent random variables[END_REF], [START_REF] Fazekas | Convergence rates in the Marczinkiewicz strong law of large numbers for Banach space values random variables with multidimensional indices[END_REF][START_REF] Fazekas | Convergence rates in the law of large numbers for arrays[END_REF]), Hu-Móricz-Taylor (1989), [START_REF] Kuczmaszewska | On the Hsu-Robbins law of large numbers for subsequences[END_REF][START_REF] Kuczmaszewska | On complete convergence for partial sums of independent identically distributed random variables[END_REF][START_REF] Kuczmaszewska | On complete convergence in a Banach space[END_REF], [START_REF] Gut | Complete convergence for arrays[END_REF], Li-Rao-Wang (1992), Rao-Wang-Yang (1993), [START_REF] Sung | Complete convergence for weighted sums of arrays of rowwise independent B-valued random variables[END_REF], Adler-Cabrera-Rosalsky-Volodin (1999), Hu-Rosalsky-Szynal-Volodin (1999), [START_REF] Ahmed | On the rate of complete convergence for weighted sums of arrays of Banach space valued random elements with application to moving average processes[END_REF]. The purpose of the present paper is to present new necessary as well as sufficient criteria for the complete convergence of triangular arrays of independent random variables, and discuss their relations with known results in the literature. We start our investigations with the Gaussian case, because of the classical Gaussian randomization procedure for sums of independent random variables, and also because this case is in general very informative. If X is Gaussian, the problem can be simply settled. Put

L(a) = lim sup x→∞ log n : C n ≤ x x 2 .
Then we have the following characterization.

Theorem 1. Assume that the X n,k are i.i.d. standard Gaussian variables. Then we have

T n /A n c.c. -→ 0 ⇐⇒ L(a) = 0.
In view of this complete result, it is natural to attack the general i.i.d. case using invariance principles. Applying Skorohod embedding for the row sums of the triangular array X leads, under natural conditions on the stopping times in the Skorohod representation, to a necessary and sufficient criterion for

T n /A n c.c.
-→ 0, see Proposition 10. This condition, in turn, leads to sufficient criteria under the existence of higher moments. In particular, we will prove Theorem 2. Assume that E X 2 n,k = 1 and X n,k ∈ L 2p for some p ≥ 2. Then the relation

n ( k n k=1 a 4 n,k ) p/2 ( k n k=1 a 2 n,k ) p < ∞, implies T n /A n c.c.
-→ 0.

To compare this result with the Gaussian case, note that L(a) = 0 is equivalent to

n exp -δ k n k=1 a n,k 2 k n k=1 a 2 n,k
< ∞ for all δ > 0.

In the case when X is also symmetric, the condition in Theorem 2 can be weakened.

Theorem 3. Assume that X is symmetric, E X 2 n,k = 1 and X n,k ∈ L 2p for some p ≥ 2. Then the relation n k n k=1 a 4 n,k p/2 k n k=1 a n,k 2p log p n < ∞, implies T n /A n c.c.
-→ 0.

A c c e p t e d m a n u s c r i p t

Recall that the array X is stochastically bounded by a random variable X if there is a constant D such that P{|X n,k | > x} ≤ DP{|DX| > x} for all x > 0 and for all n ≥ 1, 1 ≤ k ≤ k n . We will prove the following result. Theorem 4. Let X be a symmetric triangular array stochastically bounded by a square integrable random variable X. Assume that for any ε > 0, (a)

1≤k≤l<∞ P |X| ≥ εA l /a k < ∞. Further assume that for some integer r ≥ 2 and any ε > 0,

(b) n≥1 P |T n | > εA n r < ∞. Then (c) T n /A n c.c.
-→ 0.

Conversely, if the triangular array X is iid symmetric, then (c) implies (a).

The next result concerns the uniformly bounded case. We show that a condition similar to that assumed in the Gaussian case suffices for complete convergence. Put, for any positive integer n,

V 2 n = k n k=1 a 2 n,k X 2 n,k .
Theorem 5. Let X be a triangular array of real centered, uniformly bounded independent random variables. Assume that for any ε > 0

E sup m≥1 n : m < A n /V n ≤ m + 1 exp{εm 2 } < ∞. Then T n /A n c.c.
-→ 0.

Our final result establishes a link between the complete convergence of arrays in the L p and L 2p -case. Remarkably, the link is provided by the density condition in the Gaussian case in Theorem 1. We need a preliminary definition.

Definition. Let p ≥ 2. We say that a is p-regular if any triangular array X of real centered iid random variables with finite pth moment satisfies

T n /A n c.c. → 0.
Let a be a triangular array of positive reals. Define

a 2 := a 2 n,k , 1 ≤ k ≤ k n , n ≥ 1 .
Then we have Theorem 6. Let p ≥ 2 and assume that a 2 is p-regular. Then a is 2p-regular iff L(a) = 0.

Proofs.

Proof of Theorem 1. Before giving the proof, recall for the reader's convenience an elementary estimate for Gaussian random variables due to Komatsu-Pollak (see [START_REF] Mitrinović | Analytic inequalities, Die Grundlehren der mathematischen Wissenschaften[END_REF], p. 178).

A c c e p t e d m a n u s c r i p t

Lemma 7. The Mills's ratio R(x

) = e x 2 /2 ∞ x e -t 2 /2 dt satisfies 2 √ x 2 + 4 + x ≤ R(x) ≤ 2 x 2 + 8 π + x ≤ π 2 for all x > 0.
Note that

P |T n |/A n > ε = P |N (0, 1)| > εC n 1 1 + εC n e -(εC n ) 2 /2 as n → ∞,
where the symbol means that the ratio of the two sides is between positive constants. Thus it follows that

T n /A n c.c.
-→ 0 if and only if the series n e -δC 2 n converges for any δ > 0. And this is equivalent to L(a) = 0 (for a proof, see e.g. [START_REF] Weber | Borel matrix[END_REF], pp. 402-403).

Proof of Theorem 6. The proof relies upon several intermediate results. Let ξ = ξ k , k ≥ 1 be a sequence of real centered independent square integrable random variables defined on the probability space (Ω, A, P), and let w = w k , k ≥ 1 be a sequence of positive reals. Put, for any positive integer m,

S m = m k=1 w k ξ k , W m = m k=1 w k , M m = m k=1 w 2 k .
Recall the Skorokhod embedding scheme (see e.g. Breiman (1968)): there exists, after suitably enlarging the probability space, a linear Brownian motion B = {B(t), 0 ≤ t < ∞} starting at 0, and a sequence τ 1 , τ 2 , . . . of independent non-negative random variables with

E τ k = w 2 k E ξ 2 k , k ≥ 1 such that, with τ 0 = 0 a.s., B( k j=0 τ j ) -B( k-1 j=0 τ j ), k ≥ 1 D = {w k ξ k , k ≥ 1}.
Put, for any real x,

Ψ(x) = 1 √ 2π ∞ x e -u 2 /2 du. Lemma 8. Let ε, h, δ be positive numbers with ε > h > √ 2δ
, and put

∆ m = ∆ m (δ) = P m j=0 τ j -M m ≥ δM m .
Then, for any positive integer m, we have

Ψ((ε+h) W m √ M m )-4Ψ( hW m √ 2δM m )-∆ m ≤ P |S m | > εW m ≤ Ψ((ε-h) W m √ M m )+4Ψ( hW m √ 2δM m )+∆ m .

A c c e p t e d m a n u s c r i p t

Proof. We observe that

P |S m | > εW m = P |B( m j=0 τ j )| > εW m ≤ P |B(M m )| > (ε -h)W m + P |B( m j=0 τ j )| > εW m , |B(M m )| ≤ (ε -h)W m ≤ Ψ( (ε -h)W m √ M m ) + P B( m j=0 τ j ) -B(M m ) ≥ hW m ≤ Ψ( (ε -h)W m √ M m ) + P m j=0 τ j -M m ≥ δM m + P sup |θ-1|≤δ B(θM m ) -B(M m ) ≥ hW m = Ψ( (ε -h)W m √ M m ) + P m j=0 τ j -M m ≥ δM m + P sup |θ-1|≤δ B(θ) -B(1) ≥ h W m √ M m .
Conversely,

Ψ((ε + h) W m √ M m ) = P |B(M m )| > (ε + h)W m ≤ P |B( m j=0 τ j )| > εW m + P |B(M m )| > (ε + h)W m , |B( m j=0 τ j )| ≤ εW m ≤ P |B( m j=0 τ j )| > εW m + P B( m j=0 τ j ) -B(M m ) ≥ hW m ≤ P |B( m j=0 τ j )| > εW m + P m j=0 τ j -M m ≥ δM m + P sup |θ-1|≤δ B(θM m ) -B(M m ) ≥ hW m = P |B( m j=0 τ j )| > εW m + P m j=0 τ j -M m ≥ δM m +P sup |θ-1|≤δ B(θ) -B(1) ≥ h W m √ M m .
As B has stationary increments, we get by using scale invariance, the symmetry of the law of B and Eq. 1.5.1 p. 43 in [START_REF] Csörgő | Strong Approximations in Probability and Statistics[END_REF],

P sup |θ-1|≤δ B(θ) -B(1) ≥ h W m √ M m = P sup u∈[0,2δ] B(u) ≥ hW m √ M m = P sup 0≤u≤1 B(u) ≥ hW m √ 2δM m = P max sup 0≤u≤1 B(u), sup 0≤u≤1 -B(u) ≥ hW m √ 2δM m ≤ 2P sup 0≤u≤1 B(u) ≥ hW m √ 2δM m = 4Ψ( hW m √ 2δM m ). Consequently Ψ((ε+h) W m √ M m )-4Ψ( hW m √ 2δM m )-∆ m ≤ P |S m | > εW m ≤ Ψ((ε-h) W m √ M m )+4Ψ( hW m √ 2δM m )+∆ m .
This completes the proof.

A c c e p t e d m a n u s c r i p t

We shall apply Lemma 8 to triangular arrays. Let again X = X n,k , 1 ≤ k ≤ k n , n ≥ 1 be a triangular array of real centered independent random variables and a = a n,k , 1 ≤ k ≤ k n , n ≥ 1 a triangular array of positive reals. By considering, if necessary, a larger probability space, we can always assume that there exists a sequence ξ 1 , ξ 2 , . . . such that for each positive integer n,

ξ n = ξ n,k , k ≥ 1 with ξ n,k = X n,k , 1 ≤ k ≤ k n ,
and ξ n is a sequence of independent random variables. Further the sequences ξ 1 , ξ 2 , . . . are mutually independent. By suitably enlarging the probability space, there exists for each integer n a linear Brownian motion B n = {B n (t), 0 ≤ t < ∞} starting at 0 and a sequence τ n 1 , τ n 2 , . . . of independent non-negative random variables with

E τ n k = a 2 n,k E ξ 2 n,k , k ≥ 1 such that, with τ n 0 = 0 a.s., B n ( k j=0 τ n j ) -B n ( k-1 j=0 τ n j ), k ≥ 1 D = {a n,k ξ n,k , k ≥ 1}.
In fact, in each step, it would be enough to let k run between 1 and k n . By applying Lemma 8 with the choice ξ = ξ n , m = k n , we now easily deduce the following corollary.

Corollary 9. Let ε, h, δ be positive reals with ε > h > √ 2δ. Then, with the notation (1), for n = 1, 2, . . .

Ψ((ε + h)C n ) -4Ψ( h √ 2δ C n ) -∆ n (δ) ≤ P |T n | > εA n ≤ Ψ((ε -h) C n ) + 4Ψ( h √ 2δ C n ) + ∆ n (δ),
where

∆ n (δ) = P k n j=0 τ n j -B 2 n ≥ δB 2 n .
This result will allow us to establish the following statement.

Proposition 10. Assume that X and a satisfy m ∆ m (δ) < ∞, for all δ > 0.

(

) 2 
Then T n /A n c.c. -→ 0 ⇐⇒ L(a) = 0.
This proposition can be viewed as an extension of Theorem 1, since in the Gaussian case τ n j a.s. = a 2 n,j .

Proof. The key lies in the comparison between Ψ((ε + h)C n ) and Ψ( h

√ 2δ C n ), which is achieved by using Lemma 7. The implication L(a) = 0 ⇒ T n /A n c.c.
→ 0 is easy. Indeed, if L(a) = 0, then for any ρ > 0 the series n e -ρC 2 n converges, or equivalently,

n Ψ(ρC n ) < ∞ for all ρ > 0. ( 3 
)
Let ε > 0, and choose h, δ in Corollary 9 such that h = ε/2 > √ 2δ. By Corollary 9 and the assumption made, the series → 0, then the series n P |T n | > εA n converges for any ε > 0. We shall prove that (3) holds true. We distinguish two cases. Case 1: lim inf n→∞ C n = ∞. Let ρ > 0 be fixed, we choose ε, h, δ such as

n P |T n | > εA n converges provided n Ψ((ε -h) C n ) < ∞, n Ψ( h √ 2δ C n ) < ∞.
ε = h = ρ/2, δ = 1/8, so that h √ 2δ = 2ρ. Then Ψ((ε + h)C n ) = Ψ(ρC n ) and Ψ( h √ 2δ C n ) = Ψ(2ρC n ). By Lemma 7, Ψ(ρC n ) 1 1 + ρC n e -(ρC n ) 2 /2 , Ψ(2ρC n ) 1 1 + 2ρC n e -2(ρC n ) 2 , so that, for any ρ < ρ 1 < ρ 2 < 2ρ, if n is sufficiently large Ψ(ρC n ) ≥ e -(ρ 1 C n ) 2 /2 , 4Ψ(2ρC n ) ≤ e -(ρ 2 C n ) 2 /2 . Therefore Ψ(ρC n ) -4Ψ(2ρC n ) ≥ e -(ρ 1 C n ) 2 /2 (1 -e -(ρ 2 2 -ρ 2 1 )(C n ) 2 /2 ) ≥ (1/2)e -(ρ 1 C n ) 2 /2 ,
for n sufficiently large. In view of Corollary 9, and assumption (2) this implies that the series n e -(ρ 1 C n ) 2 /2 converges. This being true for any ρ > 0 and any ρ 1 > ρ, it follows that (3) is satisfied, as claimed.

Case 2: lim inf n→∞ C n < ∞. In this case there exist a sequence of indices {n j , j ≥ 1} and a real t such that lim j→∞ C n j = t. Choose ρ > 0 such that Ψ(ρt) > 4Ψ(2ρt), and let again ε, h, δ

such as ε = h = ρ/2, δ = 1 8 . Applying Corollary 9 for n = n j , j = 1, 2, . . . gives Ψ(ρC n j ) -4Ψ(2ρC n j ) ≤ P |T n j | > εA n j + ∆ n j (δ).
Letting now j tend to infinity implies

0 < Ψ(ρt) -4Ψ(2ρt) ≤ lim inf j→∞ P |T n j | > εA n j + ∆ n j (δ) ,
which contradicts the fact that both series n P |T n | > εA n , n ∆ n (δ) converge. The proof is now complete.

We can now pass to the proof of Theorem 6. Let p ≥ 2 and let a = a n,k , 1 ≤ k ≤ k n , n ≥ 1 be a triangular array of positive reals such that b = a 2 is p-regular. Let X = X n,k , 1 ≤ k ≤ k n , n ≥ 1 be a triangular array of real centered iid random variables with finite 2p-th moment. We shall make use of the fact (Fisher (1992), Theorem 2.1) that for each n, we can assume that

{τ n k , 1 ≤ k ≤ k n } D = {a 2 n,k θ n k , 1 ≤ k ≤ k n }, and {θ n k , 1 ≤ k ≤ k n } is an iid sequence with finite p-th moment. As b is p-regular, ( 2 
) is satisfied. Using Proposition 10, we get the desired conclusion.

Remark. Although the characterization given in Theorem 6 is simple, it is rather abstract. Usually condition (2) is as difficult to check as the fact that a is 2p-regular. Thus the interest in a statement like Theorem 6 is the link established between p-regularity and 2p-regularity, via the arrays a and b.

It is possible to check directly condition [START_REF] Ahmed | On the rate of complete convergence for weighted sums of arrays of Banach space valued random elements with application to moving average processes[END_REF], by imposing conditions on the weights, which, however, appear to be stronger than the condition L(a) = 0. To see this, we shall use some

A c c e p t e d m a n u s c r i p t

arguments from Weber (2006). In order to avoid unnecessarily heavy notation, we simply return to the setting considered in Lemma 8, and will bound the quantity

∆ m = ∆ m (δ) = P m j=0 τ j -M m ≥ δM m .
Using inequality (1.2) in [START_REF] Davis | [END_REF] we see that if E|ξ i | 2+ε < ∞ for some ε > 0, the sequence of stopping times τ i satisfies Eτ

1+ε/2 i ≤ Cw 2+ε i E|ξ i | 2+ε , ( 4 
)
where the constant C depends on ε only. Let p ≥ 2. Assume that for any positive integer j, ξ i ∈ L 2p , and moreover

Q p (ξ) := sup j≥1 ξ i p < ∞.
Put for any positive integer l, x l = τ l -Eτ l = τ l -w 2 l . Then using (4) with 2(p -1) = ε gives

E |x l | p ≤ 2 p (E |τ l | p + w 2p l ) ≤ C p (1 + Q p p (ξ))w 2p l ,
where C p depends on p only, and may vary in the next lines. Further note that in the case

ξ l ∈ L 4 , l ≥ 1 we have 0 ≤ E x 2 l = E τ 2 l -(E τ l ) 2 ≤ E τ 2 l ≤ C 2 w 4 l E |ξ l | 4 .
Apply now Rosenthal's inequality (see e.g. [START_REF] Petrov | Limit theorems of probability theory[END_REF], p. 59). In view of centering and independence of the x l 's, we get

E m l=1 (τ l -w 2 l ) p ≤ C p m l=1 w 2p l + m l=1 Ex 2 l p/2 ≤ C p (1 + Q p p (ξ)) m l=1 w 2p l + m l=1 w 4 l p/2 ≤ C p (1 + Q p p (ξ)) m l=1 w 4 l p/2 .
Consequently, by using Chebyshev's inequality,

∆ m (δ) = P m j=0 τ j -M m ≥ δM m ≤ C p (1 + Q p p (ξ)) m l=1 w 4 l (δM m ) 2 p/2 .
We thus see that condition (2) holds provided

m m l=1 w 4 l 1/2 M m p < ∞.
For triangular arrays, this means that

n k n k=1 a 4 n,k 1/2 k n k=1 a 2 n,k p < ∞,

A c c e p t e d m a n u s c r i p t

establishing Theorem 2. As we noted earlier, L(a) = 0 is equivalent to

n exp -δ k n k=1 a n,k 2 k n k=1 a 2 n,k < ∞ for all δ > 0.
Proof of Theorem 3. Since X is symmetric, it has the same law as

X = ε n,k X n,k , 1 ≤ k ≤ k n , n ≥ 1 , where ε = ε n,k , 1 ≤ k ≤ k n , n ≥ 1 is a Rademacher sequence defined on a joint probability space (Ω ε , A ε , P ε ) (with corresponding expectation symbol E ε ). Put Y n = k n k=1 a n,k ε n,k X n,k , Q n = k n k=1 a 2 n,k X 2 n,k B 2 n .
Let {Ω n , n ≥ 1} be a sequence of positive reals. Write

P |T n | A n > ε = E P ε |Y n | A n > ε ≤ P Q n > Ω n + E 1 {Q n ≤Ω n } P ε |Y n | A n > ε .
Further, there exists an absolute constant C such that

P ε |Y n | A n > ε ≤ exp -C ε 2 A 2 n k n k=1 a 2 n,k X 2 n,k = exp -C ε 2 A 2 n Q n B 2 n = exp -C ε 2 C 2 n Q n .
We deduce that

P |T n | A n > ε ≤ P Q n > Ω n + exp -C ε 2 C 2 n Ω n . It follows that if a) ∞ n=1 P Q n > Ω n < ∞, b) ∞ n=1 exp -C ε 2 C 2 n Ω n < ∞. then T n /A n c.c.
-→ 0. Choosing in particular (with L > 1)

Ω n = C 2 n /(L log n) shows that T n /A n c.c.
-→ 0, provided that

∞ n=1 P Q n > λC 2 n / log n < ∞,
for any λ > 0. To connect the last sum with the sum in Theorem 3, we use Rosenthal's inequality. Recall that we assumed for 1

≤ k ≤ k n , n ≥ 1 that E X 2 n,k = 1, and for some p ≥ 2, X n,k ∈ L 2p . Put Y n,k = a 2 n,k (X 2 n,k -1), 1 ≤ k ≤ k n , n ≥ 1,
Then for sufficiently large n we have

P Q n > λC 2 n / log n = P k n k=1 a 2 n,k X 2 n,k B 2 n > λ A 2 n B 2 n log n = P k n k=1 a 2 n,k X 2 n,k > λA 2 n log n ≤ P k n k=1 a 2 n,k (X 2 n,k -1) > λ 2 A 2 n log n ≤ E k n k=1 Y n,k p λ 2 A 2 n log n p .

A c c e p t e d m a n u s c r i p t

Now, by Rosenthal's inequality

E k n k=1 Y n,k p ≤ C 0 p log p p E k n k=1 Y n,k 2 p 2 + k n k=1 E |Y n,k | p ,
where C 0 is an absolute constant. But

E k n k=1 Y n,k 2 = k n k=1 a 4 n,k E (X 2 n,k -1) 2 ≤ C X 4 4 k n k=1 a 4 n,k , so that E k n k=1 Y n,k p ≤ C 0 p log p p C X 4 4 k n k=1 a 4 n,k p 2 + X 2p 2p k n k=1 a 2p n,k ≤ C p max( X 4 4 , X 2p 2p ) k n k=1 a 4 n,k p 2 ,
Therefore,

P Q n > λC 2 n / log n ≤ C p max( X 4 4 , X 2p 2p ) k n k=1 a 4 n,k p 2 λ 2 A 2 n log n p .
This completes the proof of Theorem 3. 

Proof of

|X k | > t} + C p {P(|S n | > t)} 2 p (5)
for any integer p ≥ 1, where C p is a constant depending on p. By (5) we have

P{|T n | > 3 p εA n } ≤ DC p k n k=1 P{|Da k X| > εA n } + C p P{|T n | > εA n } 2 p (6)
Choosing p large enough and summing [START_REF] Davis | [END_REF] for n = 1, 2, . . . we get

∞ n=1 P{|T n | > 3 p εA n } ≤ DC p 1≤k≤k n n≥1 P{|X| > εA n /Da k } + C p ∞ n=1 P{|T n | > εA n } 2 p
Assumptions a) and b) therefore imply c). Conversely if c) is true, then

P{|T n | > εA n } ≥ 1 2 P max 1≤k≤k n |a k X k | ≥ εA n = 1 2 1 -P max 1≤k≤k n |a k X k | < εA n = 1 2 1 - k n k=1 1 -P |a k X k | ≥ εA n ≥ 1 2 1 - k n k=1 e -P{|a k X k |≥εA n } = 1 2 1 -e -k n k=1 P{|a k X k |≥εA n } := 1 2 1 -e -λ n .
From this estimate and c) follows that λ n tends to 0, and then the chain of estimates can be continued as

1 2 1 -e -λ n = 1 2 λ n + O(λ 2 n ) ≥ 1 4 λ n ,
for any integer n sufficiently large. Therefore, for n large

P{|T n | > εA n } ≥ 1 4 λ n .
And consequently c) implies n λ n < ∞, which is exactly a).

A c c e p t e d m a n u s c r i p t

Proof of Theorem 5. The proof is based on a convexity argument enabling us to use the Gaussian randomization technique. First of all, there is no loss of generality in assuming that for any n ≥ 1 and 1

≤ k ≤ k n we have |X n,k | ≤ 1 a.s.
Let X be an independent copy of X defined on a joint probability space (Ω , A , P ) with corresponding expectation symbol E . Write

T n = k n k=1 a n,k X n,k . Let ε = ε n,k , 1 ≤ k ≤ k n , n
≥ 1 be a triangular array of independent Rademacher random variables defined on a joint probability space (Ω ε , A ε , P ε ), with corresponding expectation symbol E ε . Similarly, let g = g n,k , 1 ≤ k ≤ k n , n ≥ 1 be a triangular array of independent N (0, 1) distributed random variables defined on a joint probability space (Ω g , A g , P g ), with corresponding expectation symbol E g . Let A be any real number and consider the convex non-decreasing function ϕ A (x) = (x -A) + . If X is any random variable, then for any positive real a, aP{X > A + a} ≤ E ϕ A (X). Applying this for A = A n ε = a and X = T n and then using Jensen's inequality lead to

(εA n )P{T n > 2εA n } ≤ E ϕ εA n (T n ) = E ϕ εA n (T n -E T n ) ≤ E E ϕ εA n (T n -T n ) = E E ε ϕ εA n ( k n k=1 a n,k ε n,k X n,k ) = E E ε ϕ εA n k n k=1 a n,k ε n,k (E g |g n,k |)X n,k (2/π) 1/2 ≤ E E ε E g ϕ εA n k n k=1 a n,k ε n,k |g n,k |X n,k (2/π) 1/2 = E E g ϕ εA n k n k=1 a n,k g n,k X n,k (2/π) 1/2 . ( 7 
)
In the last equality we used the fact that

ε n,k |g n,k |, 1 ≤ k ≤ k n , n ≥ 1 D = g n,k , 1 ≤ k ≤ k n , n ≥ 1 .
Applying it now to A = A n ε = a and X = -T n , and arguing similarly also gives

(εA n )P{-T n > 2εA n } ≤ E E g ϕ εA n k n k=1 a n,k g n,k X n,k (2/π) 1/2 . ( 8 
)
As P{|T n | > 2εA n } ≤ P{T n > 2εA n } + P{-T n > 2εA n }, we obtain from ( 7) and ( 8)

(εA n )P{|T n | > 2εA n } ≤ 2E E g ϕ εA n k n k=1 a n,k g n,k X n,k (2/π) 1/2 .
But, We now make use of the boundedness assumption on the sequence X . The above inequality becomes in this case

E g ϕ εA n k n k=1 a n,k g n,k X n,k (2/π) 1/2 = ∞ εA n P N (0, 1) > (2/π) 1/2 u V n du = V n 2/π ∞ √ 2/πεA n V n P N (0, 1) > v dv = V n 2/π ∞ √ 2/πεA n V n ∞ v e -w 2 /2 dw √ 2π dv = V n 2 ∞ √ 2/πεA n T n R(v)e -v 2 /2 dv ≤ π 2 V n 2 R( 2/πεA n V n )e
P{|T n | > 2εA n } ≤ π 4ε E e - ε 2 A 2 n πV 2 n , since V 2 n = k n k=1 a 2 n,k X 2 n,k ≤ k n
k=1 a 2 n,k ≤ A 2 n a.s. Put for m = 1, . . .

J m = n : m ≤ A n /V n < m + 1 Then ∞ n=1 P{|T n | > 2εA n } ≤ π 4ε ∞ m=1 E n∈J m e - ε 2 A 2 n πV 2 n ≤ π 4ε ∞ m=1 E {J m }e -ε 2 m 2 2π e ε 2 m 2 2π -ε 2 m 2 π ≤ π 4ε E sup m≥1 {J m }e -ε 2 m 2 2π ∞ m=1 e -ε 2 m 2 2π ≤ C ε E sup m≥1 n : m < A n /V n ≤ m + 1 exp{ε 2 m 2 /2π} .
This completes the proof of Theorem 5.

A c c e p t e d m a n u s c r i p t

A c c e p t e d m a n u s c r i p t

  And this holds true ifn Ψ((ε/2) C n ) < ∞,which is satisfied by assumption. Hence the first part of Proposition 10 is proved. Conversely, if T n /A n c.c.

-

  

  Theorem 4. Let Y 1 , . . . , Y n be independent symmetric random variables, S n = Y 1 + • • •+Y n . One part of the Hoffmann-Jorgensen inequality (see Hoffmann-Jorgensen (1974)) states that P{|S n | > 3 p t} ≤ C p P{ max

	1≤k≤n
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