open science

Can any multivariate Gaussian vector be interpreted as a sample from a stationary random process?

Olivier Perrin, Martin Schlather

To cite this version:

Olivier Perrin, Martin Schlather. Can any multivariate Gaussian vector be interpreted as a sample from a stationary random process?. Statistics and Probability Letters, 2009, 77 (9), pp. 881. 10.1016/j.spl.2006.12.005 . hal-00538010

HAL Id: hal-00538010

https://hal.science/hal-00538010

Submitted on 20 Nov 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Author's Accepted Manuscript

Can any multivariate Gaussian vector be interpreted as a sample from a stationary random process?

Olivier Perrin, Martin Schlather

PII:
DOI:
Reference:

To appear in: Statistics \& Probability Letters
Received date: 8 April 2005
Revised date: 26 October 2006
Accepted date: 19 December 2006

Cite this article as: Olivier Perrin and Martin Schlather, Can any multivariate Gaussian vector be interpreted as a sample from a stationary random process?, Statistics \& Probability Letters (2007), doi:10.1016/j.spl.2006.12.005

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Can any multivariate Gaussian vector be interpreted as a sample from a stationary random process?

Olivier Perrin
GREMAQ and LERNA - Université Toulouse I
21, allée de Brienne, F - 31000 Toulouse, France
tel: +33 (0)561 128571 , fax: +33 (0)5 61225563
perrin@cict.fr
Martin Schlather
Institut für Mathematische Stochastik, Universität Göttingen
Maschmühlenweg 8-10, 37073 Göttingen, Germany tel: +49 (0)551 39 13509, fax: +49 (0)551 3913505 schlather@math.uni-goettingen.de

17th January 2007

Running head: multivariate Gaussian vector interpreted as sample from stationary process
Keywords: Gram matrix, positive definite function, positive semi-definite matrix, stationarity on graphs

Fundamental parts of the theory in geostatistics is based on the statement of equivalence of the following three assertions (Chilès and Delfiner, 1999, p. 60; Cressie, 1993, p. 84):
(i) a symmetric real-valued function c on \mathbb{R}^{d} is positive definite, i.e. $\left(c\left(x_{j}-x_{k}\right)\right)_{j, k=1, \ldots, n}$ is a positive semi-definite matrix for all $x_{j} \in \mathbb{R}^{d}$ and $n \in \mathbb{N}$;
(ii) a second-order stationary real-valued random field Z in \mathbb{R}^{d} exists with $\operatorname{Cov}(Z(x+$ $h), Z(x))=c(h)$ for all $x, h \in \mathbb{R}^{d}$;
(iii) a zero-mean stationary Gaussian random field Z in \mathbb{R}^{d} exists with $\operatorname{Cov}(Z(x+h), Z(x))=$ $c(h)$ for all $x, h \in \mathbb{R}^{d}$.

Here, we are interested in a reversed statement of (i): Given a positive semi-definite matrix C, does a positive definite function c exists such that $C=\left(c\left(x_{j}-x_{k}\right)\right)_{j, k=1, \ldots, n}$ for some $x_{j} \in \mathbb{R}^{d}$? Since a multivariate Gaussian distribution is uniquely determined by its mean and the covariance matrix, the question can be formulated also in the following way. Let Z be a real-valued stationary Gaussian random function on \mathbb{R}^{d} and $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$ any n points. Then, by definition of a Gaussian random function, the vector

$$
\begin{equation*}
Y=\left(Z\left(x_{1}\right), \ldots, Z\left(x_{n}\right)\right) \tag{1}
\end{equation*}
$$

is a multivariate Gaussian random vector (Chilès and Delfiner, 1999). The question equivalent to the above one is: given a multivariate Gaussian vector Y, is there some space \mathbb{R}^{d}, a stationary random function Z, and some points $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$, such that (1) holds? An obvious necessary condition is that the expectations, and the variances, are the same for all components of Y. Under this condition and if $d \geq 2$, we give a first positive answer, namely that a hypersurface H and a stationary process Z always exist so that (1) holds. The following theorem is given in terms of positive semi-definite matrices and positive definite functions.

Theorem. An $n \times n$ matrix $C=\left(C_{j k}\right)_{j, k=1, \ldots, n}$ is real-valued, symmetric and positive definite and has identical values on the diagonal if and only if, for all $d \geq 2$, a real-valued positive definite function c on a graph of \mathbb{R}^{d} and points $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$ exist, so that

$$
\begin{equation*}
C=\left(c\left(x_{j}-x_{k}\right)\right)_{j, k=1, \ldots, n} \tag{2}
\end{equation*}
$$

Proof. Let C be a real-valued, symmetric and positive definite matrix with identical values on the diagonal and U be an arbitrary set of n distinct points $t_{1}<\ldots<t_{n}$ on the real axis. Without loss of generality we assume that the diagonal of C is identical to 1. First we show that a non-stationary standard Gaussian random function $V=\{V(t), t \in \mathbb{R}\}$ exists that is continuous in quadratic mean such that its covariance function c_{V} satisfies

$$
c_{V}\left(t_{j}, t_{k}\right)=C_{j k} \quad \text { for all } 1 \leq j, k \leq n
$$

Let $\eta=\left(\eta_{1}, \ldots, \eta_{n}\right)$ be a Gaussian vector with covariance matrix $\left(C_{j k}\right)_{j, k=1, \ldots, n}$. From η, we define an intermediate random function $\{\epsilon(t), t \in \mathbb{R}\}$ as

$$
\epsilon(t)=\eta_{1} \mathbb{1}_{\left(-\infty, t_{1}\right)}(t)+\sum_{j=2}^{n}\left(\eta_{j-1}+\frac{\left(\eta_{j}-\eta_{j-1}\right)}{t_{j}-t_{j-1}}\left(t-t_{j-1}\right)\right) \mathbb{1}_{\left[t_{j-1}, t_{j}\right)}(t)+\eta_{n} \mathbb{1}_{\left[t_{n}, \infty\right)}(t)
$$

where $\mathbb{1}_{A}$ denotes the indicator function for the set A. Then $\{\epsilon(t), t \in \mathbb{R}\}$ is a measurable Gaussian random function, continuous in quadratic mean. To compute its covariance function $c_{\epsilon}\left(t, t^{\prime}\right),\left(t, t^{\prime}\right) \in \mathbb{R}^{2}$, let us re-write $\epsilon(t)$ in a matrix form

$$
\epsilon(t)=a(t) b(t) \epsilon
$$

with $a(t)$ the $n \times 1$ matrix

$$
a(t)=\left(\mathbb{1}_{\left(-\infty, t_{1}\right)}, \ldots, \mathbb{1}_{\left[t_{j-1}, t_{j}\right)}, \ldots, \mathbb{1}_{\left[t_{n}, \infty\right)}\right)(t)
$$

and $b(t)$ the $n \times n$ matrix

$$
b(t)=\left(\begin{array}{cccccc}
1 & 0 & 0 & \cdots & 0 & 0 \\
\frac{t_{2}-t}{t_{2}-t_{1}} & \frac{t-t_{1}}{t_{2}-t_{1}} & 0 & \cdots & 0 & 0 \\
0 & \frac{t_{3}-t}{t_{3}-t_{2}} & \frac{t-t_{2}}{t_{3}-t_{2}} & \ddots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ddots & \frac{t-t_{n-2}}{t_{n-1}-t_{n-2}} & 0 \\
0 & 0 & 0 & \ddots & \frac{t_{n} t}{t_{n}-t_{n-1}} & \frac{t-t_{n-1}}{t_{n}-t_{n-1}} \\
0 & 0 & 0 & \ldots & 0 & 1
\end{array}\right) .
$$

Then the covariance of $\epsilon(t)$ equals

$$
c_{\epsilon}\left(t, t^{\prime}\right)=a(t) b(t) C b\left(t^{\prime}\right)^{t} a\left(t^{\prime}\right)^{t} .
$$

where ${ }^{t}$ is the transpose operator.
The random function V is now defined as

$$
V(t)=\frac{\epsilon(t)}{\sqrt{c_{\epsilon}(t, t)}}
$$

Then, Theorem 1 in Perrin and Meiring (2003) guarantees the existence of a positive definite function c on a graph of \mathbb{R}^{2} and points $x_{1}, \ldots, x_{n} \in \mathbb{R}^{2}$, such that (2) holds. For instance, according to Perrin and Meiring (2003), we can take $x_{j}=\left(t_{j}, \exp \left(t_{j}\right)\right), j=1, \ldots, n$. The remaining assertions of the theorem are obvious. In particular, the graph on \mathbb{R}^{2} can be trivially extended to a graph on \mathbb{R}^{d}.

Hence, a necessary and sufficient condition that a Gaussian random vector can be interpreted as a sample from a stationary random function on a graph of $\mathbb{R}^{d}, d \geq 2$, is that the expectations are the same for all components and the covariance matrix has identical components on the diagonal.

We conclude with a counter example, that $d=1$ does not work in general. To be specific, there exists a 6×6 real-valued, symmetric and positive semi-definite matrix C that has identical values on the diagonal, such that for no continuous positive definite function c on \mathbb{R} a set of n points $x_{1}, \ldots, x_{n} \in \mathbb{R}$ exists for which (2) holds. Let α be an arbitrary angle in $(0, \pi / 3)$ and \mathbb{R}^{3} endowed with the canonical scalar product \langle,\rangle_{3}. Let X_{1}, X_{2} and X_{3} be unit vectors in \mathbb{R}^{3} such that

$$
\left\|X_{j}+X_{k}\right\|_{3}=2 \cos \alpha, 1 \leq j \neq k \leq 3
$$

This means that the angle between X_{j} and $X_{k}, 1 \leq j \neq k \leq 3$, is strictly smaller than $2 \pi / 3$. Note that the intersections of X_{1}, X_{2}, X_{3} with the unit sphere are the vertices of an equilateral triangle; hence such vectors X_{1}, X_{2} and X_{3} always exist. Further three vectors X_{4}, X_{5}, X_{6} are defined as linear combinations of X_{1}, X_{2} and X_{3},

$$
\begin{equation*}
X_{4}=\frac{X_{1}+X_{2}}{2 \cos \alpha} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
X_{6}=\frac{X_{1}+X_{3}}{2 \cos \alpha} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
X_{5}=\frac{X_{2}+X_{3}}{2 \cos \alpha} \tag{4}
\end{equation*}
$$

The Gram matrix of X_{1}, \ldots, X_{6},

$$
\begin{equation*}
\left(C_{j k}\right)=\left(\left\langle X_{j}, X_{k}\right\rangle_{3}\right), 1 \leq j, k \leq 6 \tag{6}
\end{equation*}
$$

has identical values on the diagonal and is symmetric and positive definite. The latter follows from the fact that $a^{\top} C a=\left\|\sum_{j=1}^{6} a_{j} X_{j}\right\|^{2} \geq 0$ for any $a=\left(a_{1} \ldots, a_{6}\right) \in \mathbb{R}^{6}$.

Lemma. Let W_{1}, \ldots, W_{6} be six complex numbers with modulus equal to 1 . Then, for all $\alpha \in(0, \pi / 3)$ we have

$$
\begin{equation*}
\left|W_{4}-\frac{W_{1}+W_{2}}{2 \cos \alpha}\right|^{2}+\left|W_{5}-\frac{W_{2}+W_{3}}{2 \cos \alpha}\right|^{2}+\left|W_{6}-\frac{W_{1}+W_{3}}{2 \cos \alpha}\right|^{2}>0 \tag{7}
\end{equation*}
$$

Proof. It suffices to show that $\left|W_{1}+W_{2}\right|=\left|W_{1}+W_{3}\right|=2 \cos \alpha$ implies $\left|W_{2}+W_{3}\right| \neq 2 \cos \alpha$. Without lost of generality we may assume that $W_{1}=1$. Let $W_{2}=\cos \beta+i \sin \beta$ and $W_{3}=\cos \gamma+i \sin \gamma$ for some $\beta, \gamma \in[0,2 \pi)$. Then $\left|W_{1}+W_{2}\right|=\left|W_{1}+W_{3}\right|=2 \cos \alpha$ is equivalent to

$$
\begin{equation*}
\cos \beta=\cos \gamma=2 \cos ^{2} \alpha-1 \tag{8}
\end{equation*}
$$

If $\beta=-\gamma$ then the condition $\left|W_{2}+W_{3}\right|=2 \cos \alpha$ yields that $\cos ^{2} \beta=\cos ^{2} \alpha$. Together with Eq. (8) this implies that $|\cos \alpha| \in\{1 / 2,1\}$. Similarly, the assumption $\beta=\gamma$ implies $|\cos \alpha|=1$. We conclude that the left hand side of Eq. (7) is strictly positive for $\alpha \in(0, \pi / 3)$.

Now, we show that no stationary random function with continuous covariance c exists such that (2) holds for C defined in (6). Assume that such a real-valued random function exists. Bochner's theorem states that c can be written as

$$
c(u)=\int_{-\infty}^{\infty} e^{i \omega u} \mu(d \omega)
$$

where μ is a finite positive measure $(0<\mu(\mathbb{R})<\infty)$ and $c(u)=c(-u)$. Hence, for all $1 \leq j \leq k \leq 6$,

$$
C_{j k}=c\left(x_{j}-x_{k}\right)=\int_{-\infty}^{\infty} e^{i \omega\left(x_{j}-x_{k}\right)} \mu(d \omega)
$$

for some $x_{1}, \ldots, x_{6} \in \mathbb{R}$. Defining $W_{j}(\omega)=e^{i \omega x_{j}}$ for $1 \leq j \leq 6$, we get

$$
\left\langle X_{j}, X_{k}\right\rangle_{3}=C_{j k}=\int_{-\infty}^{\infty} W_{j}(\omega) \bar{W}_{k}(\omega) \mu(d \omega)=\left\langle W_{j}, W_{k}\right\rangle_{L_{\mathrm{C}}^{2}(\Omega, \mu)} .
$$

Therefore,

$$
\begin{equation*}
\left\|X_{4}-\frac{X_{1}+X_{2}}{2 \cos \alpha}\right\|_{3}^{2}=\left\|W_{4}-\frac{W_{1}+W_{2}}{2 \cos \alpha}\right\|_{L_{\mathbb{C}}^{2}(\Omega, \mu)}^{2}=\int_{-\infty}^{\infty}\left|W_{4}(\omega)-\frac{W_{1}(\omega)+W_{2}(\omega)}{2 \cos \alpha}\right|^{2} \mu(d \omega) . \tag{9}
\end{equation*}
$$

Similar relations hold for X_{5} and X_{6}. Define

$$
\begin{aligned}
D(w)= & \left|W_{4}(\omega)-\frac{W_{1}(\omega)+W_{2}(\omega)}{2 \cos \alpha}\right|^{2}+\left|W_{5}(\omega)-\frac{W_{2}(\omega)+W_{3}(\omega)}{2 \cos \alpha}\right|^{2}+ \\
& +\left|W_{6}(\omega)-\frac{W_{1}(\omega)+W_{3}(\omega)}{2 \cos \alpha}\right|^{2} .
\end{aligned}
$$

Eqs. (3)-(5) and (9) yield that $\int D(\omega) \mu(\omega)$ is identically zero, whereas the preceding lemma states that $D(\omega)$ is positive for all $\omega \in \mathbb{R}$. Since μ is a positive measure, we obtain the required contradiction.
Now, models that are the sum of a continuous covariance function and a nugget effect are of major interest both from a practical and a theoretical point of view, see section 2.3.1 in Chilès and Delfiner (1999) and Gneiting and Sasvári (1999). Hence it is important to note that the counter-example is still valid when we allow for nugget-effect covariances c^{\star} defined by

$$
c^{\star}(u)=\theta c(u)+(1-\theta) \mathbb{1}_{u=0}(u)
$$

where $\theta \in[0,1]$ and c is a continuous covariance. Assume a nugget-effect covariance c^{\star} exists such that (2) holds for C defined in (6). Let $d=\min \left|x_{k}-x_{i}\right|, 1 \leq i \neq k \leq 6$. Then $d>0$ and

$$
c_{0}(u)=\theta c(u)+(1-\theta)\left(1-\frac{|u|}{d}\right) \mathbb{1}_{0 \leq|u| \leq d}(u)
$$

is a continuous covariance such that for all $1 \leq i, k \leq 6$

$$
c_{0}\left(x_{k}-x_{i}\right)=c^{\star}\left(x_{k}-x_{i}\right) .
$$

This contradicts our previous counter-example.

References

J.-P. Chilès and P. Delfiner. Geostatistics. Modeling Spatial Uncertainty. John Wiley \& Sons, New York, Chichester, 1999.
N.A.C. Cressie. Statistics for Spatial Data. John Wiley \& Sons, New York, Chichester, 1993.
T. Gneiting and Z. Sasvári. The characterization problem for isotropic covariance functions. Math. Geol., 31:105-111, 1999.
O. Perrin and W. Meiring. Nonstationarity in \mathbb{R}^{n} is second-order stationary in $\mathbb{R}^{2 n}$. J. Appl. Prob., 40:815-820, 2003.

