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on graphs

Fundamental parts of the theory in geostatistics is based on the statement of equivalence of
the following three assertions (Chilès and Delfiner, 1999, p. 60; Cressie, 1993, p. 84):

(i) a symmetric real-valued function c on R
d is positive definite, i.e. (c(xj −xk))j,k=1,...,n is

a positive semi-definite matrix for all xj ∈ R
d and n ∈ N;

(ii) a second-order stationary real-valued random field Z in R
d exists with Cov(Z(x +

h), Z(x)) = c(h) for all x, h ∈ R
d;

(iii) a zero-mean stationary Gaussian random field Z in R
d exists with Cov(Z(x+h), Z(x)) =

c(h) for all x, h ∈ R
d.

Here, we are interested in a reversed statement of (i): Given a positive semi-definite matrix
C, does a positive definite function c exists such that C = (c(xj − xk))j,k=1,...,n for some
xj ∈ R

d? Since a multivariate Gaussian distribution is uniquely determined by its mean and
the covariance matrix, the question can be formulated also in the following way. Let Z be
a real-valued stationary Gaussian random function on R

d and x1, . . . , xn ∈ R
d any n points.

Then, by definition of a Gaussian random function, the vector

Y = (Z(x1), . . . , Z(xn)) (1)
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is a multivariate Gaussian random vector (Chilès and Delfiner, 1999). The question equivalent
to the above one is: given a multivariate Gaussian vector Y , is there some space R

d, a
stationary random function Z, and some points x1, . . . , xn ∈ R

d, such that (1) holds? An
obvious necessary condition is that the expectations, and the variances, are the same for
all components of Y . Under this condition and if d ≥ 2, we give a first positive answer,
namely that a hypersurface H and a stationary process Z always exist so that (1) holds. The
following theorem is given in terms of positive semi-definite matrices and positive definite
functions.

Theorem. An n×n matrix C = (Cjk)j,k=1,...,n is real-valued, symmetric and positive definite
and has identical values on the diagonal if and only if, for all d ≥ 2, a real-valued positive
definite function c on a graph of R

d and points x1, . . . , xn ∈ R
d exist, so that

C = (c(xj − xk))j,k=1,...,n. (2)

Proof. Let C be a real-valued, symmetric and positive definite matrix with identical values
on the diagonal and U be an arbitrary set of n distinct points t1 < . . . < tn on the real axis.
Without loss of generality we assume that the diagonal of C is identical to 1. First we show
that a non-stationary standard Gaussian random function V = {V (t), t ∈ R} exists that is
continuous in quadratic mean such that its covariance function cV satisfies

cV (tj, tk) = Cjk for all 1 ≤ j, k ≤ n.

Let η = (η1, . . . , ηn) be a Gaussian vector with covariance matrix (Cjk)j,k=1,...,n. From η, we
define an intermediate random function {ǫ(t), t ∈ R} as

ǫ(t) = η11l(−∞,t1)(t) +
n

∑

j=2

(

ηj−1 +
(ηj − ηj−1)

tj − tj−1

(t − tj−1)

)

1l[tj−1,tj)(t) + ηn1l[tn,∞)(t),

where 1lA denotes the indicator function for the set A. Then {ǫ(t), t ∈ R} is a measurable
Gaussian random function, continuous in quadratic mean. To compute its covariance function
cǫ(t, t

′), (t, t′) ∈ R
2, let us re-write ǫ(t) in a matrix form

ǫ(t) = a(t)b(t)ǫ

with a(t) the n × 1 matrix

a(t) = (1l(−∞,t1), . . . ,1l[tj−1,tj), . . . ,1l[tn,∞))(t)

and b(t) the n × n matrix

b(t) =



























1 0 0 . . . 0 0
t2−t
t2−t1

t−t1
t2−t1

0 . . . 0 0

0 t3−t
t3−t2

t−t2
t3−t2

. . . 0 0
...

...
...

. . .
...

...

0 0 0
. . . t−tn−2

tn−1−tn−2

0

0 0 0
. . . tn−t

tn−tn−1

t−tn−1

tn−tn−1

0 0 0 . . . 0 1
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Then the covariance of ǫ(t) equals

cǫ(t, t
′) = a(t)b(t)Cb(t′)ta(t′)t.

where t is the transpose operator.
The random function V is now defined as

V (t) =
ǫ(t)

√

cǫ(t, t)
.

Then, Theorem 1 in Perrin and Meiring (2003) guarantees the existence of a positive definite
function c on a graph of R

2 and points x1, . . . , xn ∈ R
2, such that (2) holds. For instance,

according to Perrin and Meiring (2003), we can take xj = (tj , exp(tj)), j = 1, . . . , n. The
remaining assertions of the theorem are obvious. In particular, the graph on R

2 can be
trivially extended to a graph on R

d. �

Hence, a necessary and sufficient condition that a Gaussian random vector can be interpreted
as a sample from a stationary random function on a graph of R

d, d ≥ 2, is that the expec-
tations are the same for all components and the covariance matrix has identical components
on the diagonal.

We conclude with a counter example, that d = 1 does not work in general. To be specific,
there exists a 6 × 6 real-valued, symmetric and positive semi-definite matrix C that has
identical values on the diagonal, such that for no continuous positive definite function c on
R a set of n points x1, . . . , xn ∈ R exists for which (2) holds. Let α be an arbitrary angle in
(0, π/3) and R

3 endowed with the canonical scalar product 〈, 〉3. Let X1, X2 and X3 be unit
vectors in R

3 such that

‖Xj + Xk‖3 = 2 cos α, 1 ≤ j 6= k ≤ 3.

This means that the angle between Xj and Xk, 1 ≤ j 6= k ≤ 3, is strictly smaller than
2π/3. Note that the intersections of X1, X2, X3 with the unit sphere are the vertices of an
equilateral triangle; hence such vectors X1, X2 and X3 always exist. Further three vectors
X4, X5, X6 are defined as linear combinations of X1, X2 and X3,

X4 =
X1 + X2

2 cosα
(3)

X5 =
X2 + X3

2 cosα
(4)

X6 =
X1 + X3

2 cosα
. (5)

The Gram matrix of X1, . . . , X6,

(Cjk) = (〈Xj, Xk〉3), 1 ≤ j, k ≤ 6, (6)

has identical values on the diagonal and is symmetric and positive definite. The latter follows
from the fact that a⊤Ca = ‖

∑6
j=1 ajXj‖

2 ≥ 0 for any a = (a1 . . . , a6) ∈ R
6.

Lemma. Let W1, . . . , W6 be six complex numbers with modulus equal to 1. Then, for all
α ∈ (0, π/3) we have

∣

∣

∣

∣

W4 −
W1 + W2

2 cos α

∣

∣

∣

∣

2

+

∣

∣

∣

∣

W5 −
W2 + W3

2 cos α

∣

∣

∣

∣

2

+

∣

∣

∣

∣

W6 −
W1 + W3

2 cosα

∣

∣

∣

∣

2

> 0. (7)
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Proof. It suffices to show that |W1 +W2| = |W1 +W3| = 2 cosα implies |W2 +W3| 6= 2 cos α.
Without lost of generality we may assume that W1 = 1. Let W2 = cos β + i sin β and
W3 = cos γ + i sin γ for some β, γ ∈ [0, 2π). Then |W1 + W2| = |W1 + W3| = 2 cos α is
equivalent to

cos β = cos γ = 2 cos2 α − 1. (8)

If β = −γ then the condition |W2 + W3| = 2 cosα yields that cos2 β = cos2 α. Together
with Eq. (8) this implies that | cos α| ∈ {1/2, 1}. Similarly, the assumption β = γ implies
| cos α| = 1. We conclude that the left hand side of Eq. (7) is strictly positive for α ∈ (0, π/3).

�

Now, we show that no stationary random function with continuous covariance c exists such
that (2) holds for C defined in (6). Assume that such a real-valued random function exists.
Bochner’s theorem states that c can be written as

c(u) =

∫ ∞

−∞

eiωuµ(dω)

where µ is a finite positive measure (0 < µ(R) < ∞) and c(u) = c(−u). Hence, for all
1 ≤ j ≤ k ≤ 6,

Cjk = c(xj − xk) =

∫ ∞

−∞

eiω(xj−xk)µ(dω)

for some x1, . . . , x6 ∈ R. Defining Wj(ω) = eiωxj for 1 ≤ j ≤ 6, we get

〈Xj, Xk〉3 = Cjk =

∫ ∞

−∞

Wj(ω)W̄k(ω)µ(dω) = 〈Wj , Wk〉L2

C
(Ω,µ).

Therefore,

∥

∥

∥

∥

X4 −
X1 + X2

2 cosα

∥

∥

∥

∥

2

3

=

∥

∥

∥

∥

W4 −
W1 + W2

2 cos α

∥

∥

∥

∥

2

L2

C
(Ω,µ)

=

∫ ∞

−∞

∣

∣

∣

∣

W4(ω) −
W1(ω) + W2(ω)

2 cosα

∣

∣

∣

∣

2

µ(dω). (9)

Similar relations hold for X5 and X6. Define

D(w) =

∣

∣

∣

∣

W4(ω) −
W1(ω) + W2(ω)

2 cos α

∣

∣

∣

∣

2

+

∣

∣

∣

∣

W5(ω) −
W2(ω) + W3(ω)

2 cosα

∣

∣

∣

∣

2

+

+

∣

∣

∣

∣

W6(ω) −
W1(ω) + W3(ω)

2 cosα

∣

∣

∣

∣

2

.

Eqs. (3)-(5) and (9) yield that
∫

D(ω)µ(ω) is identically zero, whereas the preceding lemma
states that D(ω) is positive for all ω ∈ R. Since µ is a positive measure, we obtain the
required contradiction.
Now, models that are the sum of a continuous covariance function and a nugget effect are
of major interest both from a practical and a theoretical point of view, see section 2.3.1 in
Chilès and Delfiner (1999) and Gneiting and Sasvári (1999). Hence it is important to note
that the counter-example is still valid when we allow for nugget-effect covariances c⋆ defined
by

c⋆(u) = θc(u) + (1 − θ)1lu=0(u),

4
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where θ ∈ [0, 1] and c is a continuous covariance. Assume a nugget-effect covariance c⋆ exists
such that (2) holds for C defined in (6). Let d = min |xk − xi|, 1 ≤ i 6= k ≤ 6. Then d > 0
and

c0(u) = θc(u) + (1 − θ)

(

1 −
|u|

d

)

1l0≤|u|≤d(u)

is a continuous covariance such that for all 1 ≤ i, k ≤ 6

c0(xk − xi) = c⋆(xk − xi).

This contradicts our previous counter-example.
�
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