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Can any multivariate Gaussian vector be interpreted as a sample from a stationary random process?
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Fundamental parts of the theory in geostatistics is based on the statement of equivalence of the following three assertions (Chilès and Delfiner, 1999, p. 60;Cressie, 1993, p. 84):

(i) a symmetric real-valued function c on R d is positive definite, i.e. (c(x j -x k )) j,k=1,...,n is a positive semi-definite matrix for all x j ∈ R d and n ∈ N;

(ii) a second-order stationary real-valued random field Z in R d exists with Cov(Z(x + h), Z(x)) = c(h) for all x, h ∈ R d ;

(iii) a zero-mean stationary Gaussian random field Z in R d exists with Cov(Z(x+h), Z(x)) = c(h) for all x, h ∈ R d .

Here, we are interested in a reversed statement of (i): Given a positive semi-definite matrix C, does a positive definite function c exists such that C = (c(x j -x k )) j,k=1,...,n for some x j ∈ R d ? Since a multivariate Gaussian distribution is uniquely determined by its mean and the covariance matrix, the question can be formulated also in the following way. Let Z be a real-valued stationary Gaussian random function on R d and x 1 , . . . , x n ∈ R d any n points. Then, by definition of a Gaussian random function, the vector

Y = (Z(x 1 ), . . . , Z(x n )) (1) 
A c c e p t e d m a n u s c r i p t is a multivariate Gaussian random vector [START_REF] Chilès | Geostatistics. Modeling Spatial Uncertainty[END_REF]. The question equivalent to the above one is: given a multivariate Gaussian vector Y , is there some space R d , a stationary random function Z, and some points x 1 , . . . , x n ∈ R d , such that (1) holds? An obvious necessary condition is that the expectations, and the variances, are the same for all components of Y . Under this condition and if d ≥ 2, we give a first positive answer, namely that a hypersurface H and a stationary process Z always exist so that (1) holds. The following theorem is given in terms of positive semi-definite matrices and positive definite functions.

Theorem. An n×n matrix C = (C jk ) j,k=1,...,n is real-valued, symmetric and positive definite and has identical values on the diagonal if and only if, for all d ≥ 2, a real-valued positive definite function c on a graph of R d and points x 1 , . . . , x n ∈ R d exist, so that

C = (c(x j -x k )) j,k=1,...,n . (2) 
Proof. Let C be a real-valued, symmetric and positive definite matrix with identical values on the diagonal and U be an arbitrary set of n distinct points t 1 < . . . < t n on the real axis.

Without loss of generality we assume that the diagonal of C is identical to 1. First we show that a non-stationary standard Gaussian random function V = {V (t), t ∈ R} exists that is continuous in quadratic mean such that its covariance function c V satisfies

c V (t j , t k ) = C jk for all 1 ≤ j, k ≤ n.
Let η = (η 1 , . . . , η n ) be a Gaussian vector with covariance matrix (C jk ) j,k=1,...,n . From η, we define an intermediate random function {ǫ(t), t ∈ R} as

ǫ(t) = η 1 1l (-∞,t 1 ) (t) + n j=2 η j-1 + (η j -η j-1 ) t j -t j-1 (t -t j-1 ) 1l [t j-1 ,t j ) (t) + η n 1l [tn,∞) (t),
where 1l A denotes the indicator function for the set A. Then {ǫ(t), t ∈ R} is a measurable Gaussian random function, continuous in quadratic mean. To compute its covariance function c ǫ (t, t ′ ), (t, t ′ ) ∈ R 2 , let us re-write ǫ(t) in a matrix form

ǫ(t) = a(t)b(t)ǫ with a(t) the n × 1 matrix a(t) = (1l (-∞,t 1 ) , . . . , 1l [t j-1 ,t j ) , . . . , 1l [tn,∞) )(t) and b(t) the n × n matrix b(t) =              1 0 0 . . . 0 0 t 2 -t t 2 -t 1 t-t 1 t 2 -t 1 0 . . . 0 0 0 t 3 -t t 3 -t 2 t-t 2 t 3 -t 2 . . . 0 0 . . . . . . . . . . . . . . . . . . 0 0 0 . . . t-t n-2 t n-1 -t n-2 0 0 0 0 . . . tn-t tn-t n-1 t-t n-1 tn-t n-1 0 0 0 . . . 0 1             
.

A c c e p t e d m a n u s c r i p t

Then the covariance of ǫ(t) equals

c ǫ (t, t ′ ) = a(t)b(t)Cb(t ′ ) t a(t ′ ) t .
where t is the transpose operator.

The random function V is now defined as

V (t) = ǫ(t) c ǫ (t, t) .
Then, Theorem 1 in [START_REF] Perrin | Nonstationarity in R n is second-order stationary in R 2n[END_REF] guarantees the existence of a positive definite function c on a graph of R 2 and points x 1 , . . . , x n ∈ R 2 , such that (2) holds. For instance, according to [START_REF] Perrin | Nonstationarity in R n is second-order stationary in R 2n[END_REF], we can take x j = (t j , exp(t j )), j = 1, . . . , n. The remaining assertions of the theorem are obvious. In particular, the graph on R 2 can be trivially extended to a graph on R d .

Hence, a necessary and sufficient condition that a Gaussian random vector can be interpreted as a sample from a stationary random function on a graph of R d , d ≥ 2, is that the expectations are the same for all components and the covariance matrix has identical components on the diagonal.

We conclude with a counter example, that d = 1 does not work in general. To be specific, there exists a 6 × 6 real-valued, symmetric and positive semi-definite matrix C that has identical values on the diagonal, such that for no continuous positive definite function c on R a set of n points x 1 , . . . , x n ∈ R exists for which (2) holds. Let α be an arbitrary angle in (0, π/3) and R 3 endowed with the canonical scalar product , 3 . Let X 1 , X 2 and X 3 be unit vectors in R 3 such that

X j + X k 3 = 2 cos α, 1 ≤ j = k ≤ 3.
This means that the angle between X j and X k , 1 ≤ j = k ≤ 3, is strictly smaller than 2π/3. Note that the intersections of X 1 , X 2 , X 3 with the unit sphere are the vertices of an equilateral triangle; hence such vectors X 1 , X 2 and X 3 always exist. Further three vectors X 4 , X 5 , X 6 are defined as linear combinations of X 1 , X 2 and X 3 ,

X 4 = X 1 + X 2 2 cos α (3) X 5 = X 2 + X 3 2 cos α (4) X 6 = X 1 + X 3 2 cos α . (5) 
The Gram matrix of X 1 , . . . , X 6 ,

(C jk ) = ( X j , X k 3 ), 1 ≤ j, k ≤ 6, ( 6 
)
has identical values on the diagonal and is symmetric and positive definite. The latter follows from the fact that a ⊤ Ca = 6 j=1 a j X j 2 ≥ 0 for any a = (a 1 . . . , a 6 ) ∈ R 6 .

Lemma. Let W 1 , . . . , W 6 be six complex numbers with modulus equal to 1. Then, for all α ∈ (0, π/3) we have

W 4 - W 1 + W 2 2 cos α 2 + W 5 - W 2 + W 3 2 cos α 2 + W 6 - W 1 + W 3 2 cos α 2 > 0. (7) 

A c c e p t e d m a n u s c r i p t

Proof. It suffices to show that

|W 1 + W 2 | = |W 1 + W 3 | = 2 cos α implies |W 2 + W 3 | = 2 cos α.
Without lost of generality we may assume that W 1 = 1. Let W 2 = cos β + i sin β and

W 3 = cos γ + i sin γ for some β, γ ∈ [0, 2π). Then |W 1 + W 2 | = |W 1 + W 3 | = 2 cos α is equivalent to cos β = cos γ = 2 cos 2 α -1. (8) 
If β = -γ then the condition |W 2 + W 3 | = 2 cos α yields that cos 2 β = cos 2 α. Together with Eq. ( 8) this implies that | cos α| ∈ {1/2, 1}. Similarly, the assumption β = γ implies | cos α| = 1. We conclude that the left hand side of Eq. ( 7) is strictly positive for α ∈ (0, π/3). Now, we show that no stationary random function with continuous covariance c exists such that (2) holds for C defined in (6). Assume that such a real-valued random function exists. Bochner's theorem states that c can be written as

c(u) = ∞ -∞ e iωu µ(dω)
where µ is a finite positive measure (0 < µ(R) < ∞) and c(u) = c(-u). Hence, for all 1 ≤ j ≤ k ≤ 6,

C jk = c(x j -x k ) = ∞ -∞ e iω(x j -x k ) µ(dω)
for some x 1 , . . . , x 6 ∈ R. Defining W j (ω) = e iωx j for 1 ≤ j ≤ 6, we get

X j , X k 3 = C jk = ∞ -∞ W j (ω) Wk (ω)µ(dω) = W j , W k L 2 C (Ω,µ) .
Therefore,

X 4 - X 1 + X 2 2 cos α 2 3 = W 4 - W 1 + W 2 2 cos α 2 L 2 C (Ω,µ) = ∞ -∞ W 4 (ω) - W 1 (ω) + W 2 (ω) 2 cos α 2 µ(dω). (9) 
Similar relations hold for X 5 and X 6 . Define

D(w) = W 4 (ω) - W 1 (ω) + W 2 (ω) 2 cos α 2 + W 5 (ω) - W 2 (ω) + W 3 (ω) 2 cos α 2 + + W 6 (ω) - W 1 (ω) + W 3 (ω) 2 cos α 2 .
Eqs.

(3)-( 5) and ( 9) yield that D(ω)µ(ω) is identically zero, whereas the preceding lemma states that D(ω) is positive for all ω ∈ R. Since µ is a positive measure, we obtain the required contradiction. Now, models that are the sum of a continuous covariance function and a nugget effect are of major interest both from a practical and a theoretical point of view, see section 2.3.1 in [START_REF] Chilès | Geostatistics. Modeling Spatial Uncertainty[END_REF] and [START_REF] Gneiting | The characterization problem for isotropic covariance functions[END_REF]. Hence it is important to note that the counter-example is still valid when we allow for nugget-effect covariances c ⋆ defined by c ⋆ (u) = θc(u) + (1 -θ)1l u=0 (u), is a continuous covariance such that for all 1 ≤ i, k ≤ 6

c 0 (x k -x i ) = c ⋆ (x k -x i ).
This contradicts our previous counter-example.

  where θ ∈ [0, 1] and c is a continuous covariance. Assume a nugget-effect covariance c ⋆ exists such that (2) holds for C defined in (6). Letd = min |x k -x i |, 1 ≤ i = k ≤ 6. Then d > 0 and c 0 (u) = θc(u) + (1 -θ) 1 -|u| d 1l 0≤|u|≤d (u)