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Abstract

Consistency of minimum divergence estimators, based on grouped data, is studied

under conditions which, to our knowledge, are weaker than the ones considered in

the existing literature. Comments on the hypotheses and the interpretation of the

main results are made, and an illustrative example is given.
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1 Introduction.

Estimation methods based on the minimization of discrepancy between the

empirical law of grouped observations and the discretization of a parametric

model are well-known in literature, and their properties are widely studied.
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These methods are largely used in economics and medical applications, for ex-

ample, where observations are generally grouped, but the main interest lies in

the distribution of the underlying continuous data (see, for instance, Victoria–

Feser, 2000).

The main object of this work is to provide some consistency criteria for mini-

mum g–divergence estimates (MgEs for short), where g–divergence is meant in

the sense of Ali and Silvey (1966) and Csiszàr (1967). The resulting class of g–

divergences contains several well–known measures of discrepancy such as the

Kullback–Leibler divergence, the total variation distance, the Hellinger dis-

tance and the χ2 distance. After noting that maximum likelihood estimators

can be thought of as MgEs in a wide sense (see next section), motivation for

considering g–divergence estimates different from the maximum likelihood is

the efficiency and the robustness of many of them as explained, for example, in

Lindsay (1994) and in Bassetti and Regazzini (2005). In the case of groupement

defined by sample quantiles, consistency and asymptotic normality of MgEs

are analyzed in Morales, Pardo and Vajda (1995), Menéndez, Morales and

Pardo (1997), and in Menéndez, Morales, Pardo and Vajda (2001). In these

papers the study of consistency is subordinated to the analysis of asymptotic

normality and, therefore, it is carried out under conditions that are appropri-

ate for asymptotic normality, but redundant for the validity of consistency.

For example, restrictive conditions are usually considered like: monotonicity

conditions with respect to the parameter, for the statistical model; regularity

conditions such as the fact that the defining function g must be twice continu-

ously differentiable in a neighborhood of 1. Consequently, important forms of

g–divergence – such as the total variation distance – are excluded, in spite of

the fact that ”regular” minimum g–divergence estimates may perform less well
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than minimum total variation estimates, from the point of view of robustness.

See Section 4 of Bassetti and Regazzini (2005).

In view of these remarks, the present paper aims at improving and extend-

ing some of the existing results, by showing that the domain of validity of

consistency of the estimates at issue can be widened considerably.

The paper is organized as follows. Section 2 deals with some preliminary topics,

such as finiteness of the g–divergence, existence and measurability of minimum

g–divergence estimates. Section 3 includes the main results about consistency.

The proofs are omitted and the interested reader is referred to Bassetti, Bodini

and Regazzini (2004).

2 Preliminaries.

Let (ξn)n≥1 be a sequence of observations and X be the range of values of

each of them. For every value θ of an unknown parameter varying in Θ, let

pθ be a probability distribution for the sequence (ξn)n≥1 which makes the ξns

independent and identically distributed (i.i.d.) according to the probability

αθ defined on the σ-algebra X of subsets of X. It is assumed that the model

is identifiable, i.e. pθ1 �= pθ2 whenever θ1, θ2 belong to Θ and θ1 �= θ2. This

paper deals with sample values grouped into classes C1, . . . , Ck which form a

measurable partition of X. This is tantamount to considering a sequence of

“discrete” observations (ξ∗n)n≥1 defined by ξ∗n = j if ξn belongs to Cj (j =

1, . . . , k; n ≥ 1). The ξ∗n s turn out to be i.i.d. with common distribution given

by α∗
θ({j}) = pθ({ξ1 ∈ Cj}), j = 1, . . . , k. Throughout the paper, α∗

θ({j})
is shortened to αj(θ) and ñj denotes the number of sample values ξ1, . . . , ξn
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in Cj so that the empirical distribution νn of the sample (ξ∗1 , . . . , ξ
∗
n) can be

defined by νn({j}) := ñj/n, j = 1, . . . , k.

At this stage, one is in a position to define the g–divergence between α∗
θ and

νn as

Dg(α
∗
θ, νn) =

k∑
j=1

[
I(0,+∞)(ñj)

ñj

n
g

(
n

αj(θ)

ñj

)
+ I{0}(ñj) ḡ αj(θ)

]
(1)

where g is any real, continuous, convex function on [0, +∞) such that limu→+∞

u−1g(u) = ḡ and g(1) = 0, and IA stands for the indicator function of the set

A. Note that the total variation distance (dTV ), the Hellinger distance (d2
H),

the Kullback–Leibler divergence (dKL) and the χ2–distance are obtained for

g(s) = |s − 1|, g(s) = (
√

s − 1)2, g(s) = s log s [0 log 0 := 0] and g(s) =

(s − 1)2, respectively. The maximum likelihood estimator can be obtained

through g(x) = − log x, but it should be observed that this function satisfies

the properties of g except for continuity at 0.

Throughout the present paper it is assumed that: (a) X is a complete separable

metric space (i.e. a Polish space); (b) Θ is a measurable subset of a metric

space with distance function d and (c) whenever θ �→ Dg(α
∗
θ, νn) is finite, θ̂n

satisfying

Dg(α
∗
θ̂n

, νn) = min{Dg(α
∗
θ, νn) : θ ∈ Θ} (2)

exists in Θ. Conditions (a)-(c) will be referred to as “General Conditions” (GC

for short) and θ̂n is just the minimum g–divergence estimator of θ dealt with

in this paper.

For the sake of notational simplicity, νn, ñj for all j = 1, . . . , k and θ̂n will be

considered as functions on X∞ and Dg as a function from X∞ × Θ into R̄.

As for assumption (c), Bassetti (2004) provides conditions which, conjoined
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with (a)-(b), are sufficient for the existence of MgEs. As an example, assume

that the set {θ ∈ Θ : dTV (a∗
θ, α

∗
θ0

) ≤ T} is a relatively compact subset of Θ for

some T , and that the functions θ �→ αj(θ) are continuous for every j. Then, a

minimum total variation estimator θ̂n(x) exists for pθ0–almost all x, for all but

a finite number of n. It is worth recalling that an analogous statement obtains

for MgEs defined through any form of g satisfying φ(Dg(π1, π2)) ≥ dTV (π1, π2)

for every probabilities π1 and π2, for some suitable strictly increasing continu-

ous function φ, with φ(0) = 0. Thus, one can guarantee the existence of min-

imum Hellinger distance estimators, minimum Kullback–Leibler estimators,

minimum χ2–distance estimators. See Propositions 2.1 and 2.2 of Bassetti

(2004). Finally, it should be noted that (a)–(b), conjoined with the continuity

of θ �→ αj(θ) for every j, are sufficient for the existence of near minima of

θ �→ Dg(a
∗
θ, νn), θ̃n, i.e. Dg(α

∗̃
θn

, νn) ≤ infΘ Dg(α
∗
θ, νn)+ εn (εn → 0). Moreover,

it is easy to check that all the results given in the rest of the paper obtain for

any sequence of near minimum g–estimator.

In general, even if Θ is a Polish space, x �→ θ̂n(x) is not necessarily a random

variable (with respect to X∞/B(Θ)) and, therefore, the issue of the measura-

bility of a MgE deserves careful consideration. There are several studies regard-

ing measurability of extrema. For example, Corollary 1 in Brown and Purves

(1973) states that the measurability of θ̂n is guaranteed if (GC) hold together

with: (a) Θ is a σ–compact subset of a Polish space; (b) (x, θ) �→ Dg(α
∗
θ, νn,x)

is measurable with respect to (X∞ × Θ, X∞ ⊗ B(Θ)), νn,x being the realiza-

tion of νn when (ξn)n≥1 = x; (c) θ �→ Dg(α
∗
θ, νn,x) is a lower semicontinuous

function for every x in X∞. As a matter of fact, a straightforward application

of this corollary gives

Proposition 1 Let (GC) be in force and let Θ be a σ–compact subset of a
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Polish space. If θ �→ αj(θ) is continuous for every j = 1, . . . , k and (x, θ) �→
Dg(α

∗
θ, νn,x) is finite on X∞×Θ for some n, then θ̂n is (X∞,X∞)/ (Θ,B(Θ))–

measurable.

Proof. See proof of Proposition 2.1 in Bassetti, Bodini and Regazzini (2004).

When ḡ is finite then Dg is finite. The following proposition gives a sufficient

condition in order that Dg may be finite even if ḡ = +∞.

Proposition 2 If αj(θ0) > 0 for every j = 1, . . . , k and some θ0 in Θ, then

there is an event N in X∞, of pθ0-probability zero, such that for every x in

N c there exists a positive integer n̄ = n̄(x) such that Dg(α
∗
θ, νn,x) is finite for

every n ≥ n̄(x) and for every θ in Θ.

Proof. See proof of Proposition 2.2 in Bassetti, Bodini and Regazzini (2004).

3 Consistency criteria for MgEs.

The first criterion, inspired by Corollary 3.2.3 in van der Vaart and Wellner

(1996), works under the assumption that θ0 is a well-separated point of min-

imum of θ �→ Dg(α
∗
θ, α

∗
θ0

), in addition to the hypothesis that the probability

α∗
θ0

dominates {α∗
θ : θ ∈ Θ}.

Proposition 3 Let (GC) be inforce. Moreover assume that ḡ is finite and the

following conditions are valid: (i) αj(θ) = 0 for every θ whenever αj(θ0) = 0;

(ii) for every ε > 0, inf{Dg(α
∗
θ, α

∗
θ0

) : d(θ, θ0) > ε} > 0. Then there exists a

set N in X∞ such that pθ0(N) = 0 and limn→+∞ θ̂n(x) = θ0 (x ∈ N c).

Proof. See proof of Proposition 3.1 in Bassetti, Bodini and Regazzini (2004).
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In view of Proposition 2, the assumption that ḡ is finite can be replaced by

the rather common condition that αj(θ0) is strictly positive for every j:

Corollary 1 Under (GC), if αj(θ0) > 0 for every j and if conditions (i)–

(ii) in Proposition 3 obtain, then there is a set N in X∞ with pθ0(N) = 0

such that, for every x in N c, θ̂n(x) exists whenever n ≥ n̄, for some suitable

n̄ = n̄(x), and θ̂n(x) → θ0 as n → +∞.

Proof. See proof of Corollary 3.2 in Bassetti, Bodini and Regazzini (2004).

The assumption that ḡ is finite excludes many interesting forms of g–divergence

such as the Kullback–Leibler divergence and the χ2–distance.

In contrast to Proposition 3 and Corollary 1, the following propositions do

not place any restriction on the support of the elements of {α∗
θ : θ ∈ Θ}.

Moreover, they encompass the total variation distance, the Hellinger distance,

the Kullback–Leibler divergence, the χ2–distance and other distances with

g(s) = |s − 1|p.

Proposition 4 Let (GC) be in force and let g be one of the following functions

defined for x ≥ 0: g(x) = |x−1|, g(x) = (
√

x−1)2. Moreover, let the following

conditions be satisfied: (i) for every ε > 0 there exists ε′ = ε′(ε) > 0 such that

for every θ in Θ, with d(θ, θ0) ≥ ε, maxj{|αj(θ)−αj(θ0)|} ≥ ε′ is valid. Then,

there exists a subset N in X∞ for which pθ0(N) = 0 and limn→+∞ θ̂n(x) = θ0

(x ∈ N c).

Proof. See proof of Proposition 3.3 in Bassetti, Bodini and Regazzini (2004).

When αj(θ) > 0 for every j, this result can be extended to further forms of g;

for example, g(x) = |x − 1|p with p > 1, or g(x) = x log x. In fact, the proof
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of Proposition 4 (see Bassetti, Bodini and Regazzini (2004)) can be adapted

to these new cases by resorting to Proposition 2 and to the inequalities (see

Dacunha-Castelle and Duflo (1994), Section 6.4) Dg(α
∗
θ, νn) ≥ dTV (α∗

θ, νn)p if

g(x) = |x − 1|p, dKL(α∗
θ, νn) ≥ d2

H(α∗
θ, ν̃n), to obtain

Corollary 2 Let (GC) be in force with αj(θ0) > 0 for every j, and let g be

one of the functions considered in Proposition 4 or one of the following ones:

g(x) = |x − 1|p with p > 1, g(x) = x log x. Moreover, let condition (i) of

Proposition 4 be satisfied. Then, there is a set N in X∞ with pθ0(N) = 0 such

that, for every x in N c, θ̂n(x) exists whenever n ≥ n̄(x), for some n̄(x), and

θ̂n(x) → θ0 as n → +∞.

Proof. See proof of Corollary 3.4 in Bassetti, Bodini and Regazzini (2004).

Remark 1. A quick look at the proof of Proposition 4 leads to the conclusion

that the theses of Proposition 4 and Corollary 2 can be extended, if αj(θ0) is

strictly positive for every j = 1, . . . , k, to functions g, which do not need to

generate divergences, but are majorant of some of the specific gs considered

therein. Hence, since − log x ≥ −2(
√

x− 1) and g(x) = −2(
√

x− 1) generates

the Hellinger distance, Corollary 2 yields the strong consistency of maximum

likelihood estimators.

Remark 2. All the previous propositions state that θ̂n(x) → θ0, as n → +∞,

for every x in the complement of a pθ0– null subset of X∞. In other words:

(θ̂n)n≥1 converges to θ0 almost surely with respect to the inner probability as-

sociated to pθ0. See, for example, Sections 1.2 and 1.9 of van der Vaart and

Wellner (1996). It should be mentioned that if θ̂n′ is nonmeasurable for any

term of a strictly increasing subsequence (n′) of integers, then the above almost
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sure convergence does not imply, for instance, convergence in outer probabil-

ity. On the other hand, if θ̂n is measurable for all but a finite number of indices

n, which hold true under mild conditions as shown in Proposition 1, then what

has been proved in the previous propositions and corollaries is equivalent to

limn1→+∞ pθ0{d(θ̂n, θ0) ≤ ε for every n ≥ n1} = 1 (∀ ε > 0).

Example. Let X coincide with the real axis R, let Θ stand for R × (0, +∞)

and denote the Euclidean norm by ‖·‖2. Consider the nondegenerate intervals:

Cj = (xj−1, xj] with j = 1, . . . , k−1 and Ck = (xk−1, xk), where x0 = −∞ and

xk = +∞. Let A be a strictly increasing continuous probability distribution

function on R. For every θ := (µ, σ) in Θ, define αθ to be the probability

measure having x �→ A((x−µ)/σ) as probability distribution function. Then,

{αθ : θ ∈ Θ} forms a location-scale family. Now, observe that θ �→ αj(θ)

is continuous for each j. At this stage, note that θ must coincide with θ0 if

k ≥ 3 and αj(θ) = αj(θ0) for every j. Indeed, if these equalities were valid for

j = 1, . . . , k, then A
(

xj−µ

σ

)
= A

(
xj−µ0

σ0

)
for j = 1, . . . , k − 1. This fact yields

σ−1(xj−µ) = σ−1
0 (xj−µ0), i.e. xj(σ0−σ) = µσ0−µ0σ for j = 1, k−1, that is to

say: σ = σ0 and µ = µ0. At this stage it can be shown that inf{dTV (α∗
θ, α

∗
θ0

) :

θ ∈ Kq} is strictly positive for every q, (Kq)q≥1 being a sequence of compact

subsets of Θ such that ∪Kq = Θ\{θ : ‖θ−θ0‖2 < ε}. Indeed, if there is a q̄ for

which inf{dTV (α∗
θ, α

∗
θ0

) : θ ∈ Kq̄} = 0, then, by compactness, dTV (α∗̄
θ, α

∗
θ0

) = 0

for some θ̄ in Kq̄, which is a flagrant contradiction. So, in order to prove that

(i) in Proposition 4 holds, it suffices to show that for any sequence (θq)q≥1

with θq in Kq, for every q, there is j for which αj(θq) �→ αj(θ0), because in this

case ε′ := inf{dTV (α∗
θ, α

∗
θ0

) : θ ∈ ∪qKq} is strictly positive. In the case under

discussion, it is easy to see that there must be j for which αj(θq) → 0.
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Università degli Studi di Pavia.

Bassetti, F., Bodini, A., Regazzini, E. (2004). Consistency of minimum

divergence estimators based on grouped data. Technical Report MI/04-01,

CNR–IMATI, Milano. http://www.mi.imati.cnr.it/iami/abstracts/04-

01.html

Bassetti, F., Regazzini, E. (2005). Asymptotic distribution and robustness of

minimum total variation distance estimators, Metron. 1, 55-80.

Brown, L. D., Purves, R. (1973). Measurable selections of extrema, Ann.

Statist. 1, 902-912.

Csiszár, I. (1967). Information-type measures of difference of probability

distributions and indirect observations., Studia Sci. Math. Hungar. 2,

299-318.

Dacunha-Castelle, D., Duflo, M. (1994). Probabilités et Statistiques. 1:

Problèms à Temps Fixe. (Masson, Paris, 2nd ed.).

10



Acc
ep

te
d m

an
usc

rip
t 

Lindsay, B. G., (1994). Efficiency versus robustness: the case for minimum

Hellinger distance and related methods, Ann. Statist. 22, 1081–1114.

Menéndez, M., Morales, D., Pardo, L. (1997). Maximum entropy principle

and statistical inference on condensed ordered data, Statist. Probab. Lett.

34, 85–93.

Menéndez, M., Morales, D., Pardo, L., Vajda, I. (2001). Minimum divergence

estimators based on grouped data. Ann. Inst. Statist. Math. 53, 277–288.

Morales, D., Pardo, L., Vajda, I. (1995). Asymptotic divergence of estimates

of discrete distributions. J. Statist. Plann. Inference 48, 347–369.

van der Vaart, A. W., Wellner, J. A. (1996). Weak Convergence and

Empirical Processes. With Applications to Statistics (Springer-Verlag, New

York).

Victoria–Feser, M. P. (2000). Robust methods fo the analysis of income distri-

bution, inequality and poverty. International Statistical Review 68, 277-293.

11


