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Consistency of minimum divergence estimators, based on grouped data, is studied under conditions which, to our knowledge, are weaker than the ones considered in the existing literature. Comments on the hypotheses and the interpretation of the main results are made, and an illustrative example is given.

A c c e p t e d m a n u s c r i p t

These methods are largely used in economics and medical applications, for example, where observations are generally grouped, but the main interest lies in the distribution of the underlying continuous data (see, for instance, Victoria-Feser, 2000).

The main object of this work is to provide some consistency criteria for minimum g-divergence estimates (MgEs for short), where g-divergence is meant in the sense of [START_REF] Ali | A general class of coefficients of divergence of one distribution from another[END_REF] and Csiszàr (1967). The resulting class of gdivergences contains several well-known measures of discrepancy such as the Kullback-Leibler divergence, the total variation distance, the Hellinger distance and the χ 2 distance. After noting that maximum likelihood estimators can be thought of as MgEs in a wide sense (see next section), motivation for considering g-divergence estimates different from the maximum likelihood is the efficiency and the robustness of many of them as explained, for example, in Lindsay (1994) and in [START_REF] Bassetti | Asymptotic distribution and robustness of minimum total variation distance estimators[END_REF]. In the case of groupement defined by sample quantiles, consistency and asymptotic normality of MgEs are analyzed in Morales, Pardo and Vajda (1995), Menéndez, Morales andPardo (1997), andin Menéndez, Morales, Pardo andVajda (2001). In these papers the study of consistency is subordinated to the analysis of asymptotic normality and, therefore, it is carried out under conditions that are appropriate for asymptotic normality, but redundant for the validity of consistency.

For example, restrictive conditions are usually considered like: monotonicity conditions with respect to the parameter, for the statistical model; regularity conditions such as the fact that the defining function g must be twice continuously differentiable in a neighborhood of 1. Consequently, important forms of g-divergence -such as the total variation distance -are excluded, in spite of the fact that "regular" minimum g-divergence estimates may perform less well
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than minimum total variation estimates, from the point of view of robustness.

See Section 4 of [START_REF] Bassetti | Asymptotic distribution and robustness of minimum total variation distance estimators[END_REF].

In view of these remarks, the present paper aims at improving and extending some of the existing results, by showing that the domain of validity of consistency of the estimates at issue can be widened considerably.

The paper is organized as follows. Section 2 deals with some preliminary topics, such as finiteness of the g-divergence, existence and measurability of minimum g-divergence estimates. Section 3 includes the main results about consistency.

The proofs are omitted and the interested reader is referred to [START_REF] Bassetti | Consistency of minimum divergence estimators based on grouped data[END_REF].

Preliminaries.

Let (ξ n ) n≥1 be a sequence of observations and X be the range of values of each of them. For every value θ of an unknown parameter varying in Θ, let p θ be a probability distribution for the sequence (ξ n ) n≥1 which makes the ξ n s independent and identically distributed (i.i.d.) according to the probability α θ defined on the σ-algebra X of subsets of X. At this stage, one is in a position to define the g-divergence between α * θ and ν n as

D g (α * θ , ν n ) = k j=1 I (0,+∞) (ñ j ) ñj n g n α j (θ) ñj + I {0} (ñ j ) ḡ α j (θ) (1)
where g is any real, continuous, convex function on [0, +∞) such that lim u→+∞ u -1 g(u) = ḡ and g(1) = 0, and I A stands for the indicator function of the set A. Note that the total variation distance (d T V ), the Hellinger distance (d 2 H ), the Kullback-Leibler divergence (d KL ) and the χ 2 -distance are obtained for

g(s) = |s -1|, g(s) = ( √ s -1) 2 , g(s) = s log s [0 log 0 := 0] and g(s) = (s -1) 2
, respectively. The maximum likelihood estimator can be obtained through g(x) =log x, but it should be observed that this function satisfies the properties of g except for continuity at 0.

Throughout the present paper it is assumed that: (a) X is a complete separable metric space (i.e. a Polish space); (b) Θ is a measurable subset of a metric space with distance function d and (c) whenever

θ → D g (α * θ , ν n ) is finite, θn satisfying D g (α * θn , ν n ) = min{D g (α * θ , ν n ) : θ ∈ Θ} (2)
exists in Θ. Conditions (a)-(c) will be referred to as "General Conditions" (GC for short) and θn is just the minimum g-divergence estimator of θ dealt with in this paper.

For the sake of notational simplicity, ν n , ñj for all j = 1, . . . , k and θn will be considered as functions on X ∞ and D g as a function from X ∞ × Θ into R.

As for assumption (c), [START_REF] Bassetti | Asymptotic properties of some minimum discrepancy estimators[END_REF] provides conditions which, conjoined 

d T V (a * θ , α * θ 0 ) ≤ T } is a relatively compact subset of Θ for
some T , and that the functions θ → α j (θ) are continuous for every j. Then, a minimum total variation estimator θn (x) exists for p θ 0 -almost all x, for all but a finite number of n. It is worth recalling that an analogous statement obtains for MgEs defined through any form of g satisfying φ(D

g (π 1 , π 2 )) ≥ d T V (π 1 , π 2 )
for every probabilities π 1 and π 2 , for some suitable strictly increasing continuous function φ, with φ(0) = 0. Thus, one can guarantee the existence of minimum Hellinger distance estimators, minimum Kullback-Leibler estimators, minimum χ 2 -distance estimators. See Propositions 2.1 and 2.2 of [START_REF] Bassetti | Asymptotic properties of some minimum discrepancy estimators[END_REF]. Finally, it should be noted that (a)-(b), conjoined with the continuity of θ → α j (θ) for every j, are sufficient for the existence of near minima of

θ → D g (a * θ , ν n ), θn , i.e. D g (α * θn , ν n ) ≤ inf Θ D g (α * θ , ν n ) + n ( n → 0). Moreover,
it is easy to check that all the results given in the rest of the paper obtain for any sequence of near minimum g-estimator.

In general, even if Θ is a Polish space, x → θn (x) is not necessarily a random variable (with respect to X ∞ /B(Θ)) and, therefore, the issue of the measurability of a MgE deserves careful consideration. There are several studies regarding measurability of extrema. For example, Corollary 1 in [START_REF] Brown | Measurable selections of extrema[END_REF] states that the measurability of θn is guaranteed if (GC) hold together

with: (a) Θ is a σ-compact subset of a Polish space; (b) (x, θ) → D g (α * θ , ν n,x ) is measurable with respect to (X ∞ × Θ, X ∞ ⊗ B(Θ)), ν n,x being the realiza- tion of ν n when (ξ n ) n≥1 = x; (c) θ → D g (α * θ , ν n,x
) is a lower semicontinuous function for every x in X ∞ . As a matter of fact, a straightforward application of this corollary gives Proposition 1 Let (GC) be in force and let Θ be a σ-compact subset of a
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Polish space. If θ → α j (θ) is continuous for every j = 1, . . . , k and (x, θ) →

D g (α * θ , ν n,x ) is finite on X ∞ ×Θ for some n, then θn is (X ∞ , X ∞ )/ (Θ, B(Θ))- measurable.
Proof. See proof of Proposition 2.1 in [START_REF] Bassetti | Consistency of minimum divergence estimators based on grouped data[END_REF].

When ḡ is finite then D g is finite. The following proposition gives a sufficient condition in order that D g may be finite even if ḡ = +∞.

Proposition 2 If α j (θ 0 ) > 0 for every j = 1, . . . , k and some θ 0 in Θ, then there is an event N in X ∞ , of p θ 0 -probability zero, such that for every x in N c there exists a positive integer n = n(x) such that D g (α * θ , ν n,x ) is finite for every n ≥ n(x) and for every θ in Θ.

Proof. See proof of Proposition 2.2 in [START_REF] Bassetti | Consistency of minimum divergence estimators based on grouped data[END_REF].

3 Consistency criteria for MgEs.

The first criterion, inspired by Corollary 3.2.3 in van der Vaart and Wellner (1996), works under the assumption that θ 0 is a well-separated point of minimum of θ → D g (α * θ , α * θ 0 ), in addition to the hypothesis that the probability

α * θ 0 dominates {α * θ : θ ∈ Θ}.
Proposition 3 Let (GC) be inforce. Moreover assume that ḡ is finite and the following conditions are valid: (i) α j (θ) = 0 for every θ whenever α j (θ 0 ) = 0;

(ii) for every > 0, inf{D g (α * θ , α * θ 0 ) : d(θ, θ 0 ) > } > 0. Then there exists a set N in X ∞ such that p θ 0 (N) = 0 and lim n→+∞ θn (x) = θ 0 (x ∈ N c ).

Proof. See proof of Proposition 3.1 in [START_REF] Bassetti | Consistency of minimum divergence estimators based on grouped data[END_REF].
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In view of Proposition 2, the assumption that ḡ is finite can be replaced by the rather common condition that α j (θ 0 ) is strictly positive for every j:

Corollary 1 Under (GC), if α j (θ 0 ) > 0 for every j and if conditions (i)-(ii) in Proposition 3 obtain, then there is a set N in X ∞ with p θ 0 (N) = 0 such that, for every x in N c , θn (x) exists whenever n ≥ n, for some suitable n = n(x), and θn (x) → θ 0 as n → +∞.

Proof. See proof of Corollary 3.2 in [START_REF] Bassetti | Consistency of minimum divergence estimators based on grouped data[END_REF].

The assumption that ḡ is finite excludes many interesting forms of g-divergence such as the Kullback-Leibler divergence and the χ 2 -distance.

In contrast to Proposition 3 and Corollary 1, the following propositions do not place any restriction on the support of the elements of {α * θ : θ ∈ Θ}.

Moreover, they encompass the total variation distance, the Hellinger distance, the Kullback-Leibler divergence, the χ 2 -distance and other distances with

g(s) = |s -1| p .
Proposition 4 Let (GC) be in force and let g be one of the following functions defined for x ≥ 0: g(x) = |x-1|, g(x) = ( √ x-1) 2 . Moreover, let the following conditions be satisfied: (i) for every > 0 there exists = ( ) > 0 such that for every θ in Θ, with d(θ, θ 0 ) ≥ , max j {|α j (θ)α j (θ 0 )|} ≥ is valid. Then, there exists a subset N in X ∞ for which p θ 0 (N) = 0 and lim n→+∞ θn (x) = θ 0

(x ∈ N c ).
Proof. See proof of Proposition 3.3 in [START_REF] Bassetti | Consistency of minimum divergence estimators based on grouped data[END_REF].

When α j (θ) > 0 for every j, this result can be extended to further forms of g;

for example, g(x) = |x -1| p with p > 1, or g(x) = x log x. In fact, the proof
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of Proposition 4 (see [START_REF] Bassetti | Consistency of minimum divergence estimators based on grouped data[END_REF]) can be adapted to these new cases by resorting to Proposition 2 and to the inequalities (see [START_REF] Dacunha-Castelle | Probabilités et Statistiques. 1: Problèms à Temps Fixe[END_REF], Section 6.4)

D g (α * θ , ν n ) ≥ d T V (α * θ , ν n ) p if g(x) = |x -1| p , d KL (α * θ , ν n ) ≥ d 2 H (α * θ , νn ), to obtain
Corollary 2 Let (GC) be in force with α j (θ 0 ) > 0 for every j, and let g be one of the functions considered in Proposition 4 or one of the following ones:

g(x) = |x -1| p with p > 1, g(x) = x log x. Moreover, let condition (i) of
Proposition 4 be satisfied. Then, there is a set N in X ∞ with p θ 0 (N) = 0 such that, for every x in N c , θn (x) exists whenever n ≥ n(x), for some n(x), and θn (x) → θ 0 as n → +∞.

Proof. See proof of Corollary 3.4 in [START_REF] Bassetti | Consistency of minimum divergence estimators based on grouped data[END_REF].

Remark 1. A quick look at the proof of Proposition 4 leads to the conclusion that the theses of Proposition 4 and Corollary 2 can be extended, if α j (θ 0 ) is strictly positive for every j = 1, . . . , k, to functions g, which do not need to generate divergences, but are majorant of some of the specific gs considered therein. Hence, sincelog x ≥ -2( √ x -1) and g(x) = -2( √ x -1) generates the Hellinger distance, Corollary 2 yields the strong consistency of maximum likelihood estimators.

Remark 2. All the previous propositions state that θn (x) → θ 0 , as n → +∞, for every x in the complement of a p θ 0 -null subset of X ∞ . In other words:

( θn ) n≥1 converges to θ 0 almost surely with respect to the inner probability associated to p θ 0 . See, for example, Sections 1.2 and 1.9 of van der Vaart and Wellner (1996). It should be mentioned that if θn is nonmeasurable for any term of a strictly increasing subsequence (n ) of integers, then the above almost 

n 1 →+∞ p θ 0 {d( θn , θ 0 ) ≤ for every n ≥ n 1 } = 1 (∀ > 0).
Example. Let X coincide with the real axis R, let Θ stand for R × (0, +∞)

and denote the Euclidean norm by • 2 . Consider the nondegenerate intervals:

C j = (x j-1 , x j ] with j = 1, . . . , k -1 and C k = (x k-1 , x k )
, where x 0 = -∞ and

x k = +∞. Let A be a strictly increasing continuous probability distribution function on R. For every θ := (µ, σ) in Θ, define α θ to be the probability measure having x → A((xµ)/σ) as probability distribution function. Then, {α θ : θ ∈ Θ} forms a location-scale family. Now, observe that θ → α j (θ) is continuous for each j. At this stage, note that θ must coincide with θ 0 if k ≥ 3 and α j (θ) = α j (θ 0 ) for every j. Indeed, if these equalities were valid for j = 1, . . . , k, then A x j -µ σ = A x j -µ 0 σ 0 for j = 1, . . . , k -1. This fact yields σ -1 (x j -µ) = σ -1 0 (x j -µ 0 ), i.e. x j (σ 0 -σ) = µσ 0 -µ 0 σ for j = 1, k-1, that is to say: σ = σ 0 and µ = µ 0 . At this stage it can be shown that inf{d T V (α * θ , α * θ 0 ) : θ ∈ K q } is strictly positive for every q, (K q ) q≥1 being a sequence of compact subsets of Θ such that ∪K q = Θ\ {θ : θθ 0 2 < }. Indeed, if there is a q for which inf{d T V (α * θ , α * θ 0 ) : θ ∈ K q} = 0, then, by compactness, d T V (α * θ , α * θ 0 ) = 0 for some θ in K q, which is a flagrant contradiction. So, in order to prove that (i) in Proposition 4 holds, it suffices to show that for any sequence (θ q ) q≥1 with θ q in K q , for every q, there is j for which α j (θ q ) → α j (θ 0 ), because in this case := inf{d T V (α * θ , α * θ 0 ) : θ ∈ ∪ q K q } is strictly positive. In the case under discussion, it is easy to see that there must be j for which α j (θ q ) → 0.
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