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In this paper, we study the estimation of a function based on noisy inhomogeneous data (the amount of data can vary on the estimation domain). We consider the model of regression with random design, where the design density is unknown. We construct an asymptotically sharp estimator which converges, for sup norm error loss, with a spatially dependent normalisation which is sensitive to the variations in the local amount of data. This estimator combines both kernel and local polynomial methods, and it does not depend within its construction on the design density. Then, we prove that the normalisation is optimal in an appropriate sense.

Introduction

In most cases, the models considered in curve estimation do not allow situations where the data is inhomogeneous, in so far as the amount of data is implied to be constant over space. This is the case in regression with equispaced design and white noise models, for instance. In many situations, the data can happen to be concentrated at some points and to be little elsewhere. In such cases, an estimator shall behave better at a point where there is much data than where there is little data. In this paper, we propose a theoretical study of this phenomenon.

The available data [(X i , Y i ), 1 i n] is modeled by

Y i = f (X i ) + ξ i , (1.1) 
where ξ i are i.i.d. centered Gaussian with variance σ 2 and independent of X i . The design variables X i are i.i.d. of unknown density µ on [0, 1], which is bounded away from 0 and continuous. We want to recover f . When µ is not the uniform law, the information is spatially inhomogeneous. We are interested in recovering f globally, with sup norm loss g ∞ := sup x∈[0,1] |g(x)|. An advantage of this norm is that it is exacting: it forces an estimator to behave well at every point simultaneously. A commonly used benchmark for the complexity of estimation over some fixed class Σ is the minimax risk, which is given by

R n (Σ) := inf b fn sup f ∈Σ E n f f n -f ∞ , (1.2)
where the infimum is taken over all estimators. We say that ψ n is the minimax convergence rate over Σ if R n (Σ) ψ n , where a n b n means 0 < liminf n a n /b n limsup n a n /b n < +∞.

In the regression model (1.1) with Σ a Hölder ball with smoothness s > 0 and µ positive and bounded, we have ψ n = (log n/n) s/(2s+1) , see [START_REF] Stone | Optimal global rates of convergence for nonparametric regression[END_REF]. Thus, in this case, the minimax rate is not sensitive to the variations in the amount of data. Indeed, such global minimax
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benchmarks cannot assess the design-adaptation property of an estimator. Instead of (1.2), an improvement is to consider the spatially dependent risk sup

f ∈Σ E n f sup x∈[0,1] r n (x) -1 | f n (x) -f (x)|
of some estimator f n , where r n (•) > 0 is a family of spatially dependent normalisations. If this quantity is bounded as n → +∞, we say that r n (•) is an upper bound over Σ. Necessarily, the "optimal" normalisation satisfies r n (x) (log n/n) s/(2s+1) for any x (note that the optimality requires an appropriate definition here). Therefore, in order to exhibit such an optimal normalisation, we need to consider the sharp asymptotics of the minimax risk.

Results

If s, L > 0, we define the Hölder ball Σ(s, L) as the set of all the functions f :

[0, 1] → R such that |f (k) (x) -f (k) (y)| L|x -y| s-k , ∀x, y ∈ [0, 1],
where

k = s is the largest integer k < s. If Q > 0, we define Σ Q (s, L) := Σ(s, L) ∩ {f s.t.
f ∞ Q}, and we denote simply Σ := Σ Q (s, L) (the constant Q needs not to be known). All along this study, we suppose:

Assumption D. There is ν ∈ (0, 1] and , q > 0 such that µ ∈ Σ(ν, ) and µ(x) q, for all x ∈ [0, 1].

In the following, we consider a continuous, non-negative and nondecreasing loss function w(•) such that w(x) A(1 + |x| b ) for some A, b > 0 (typically a power function). Let us consider r n,µ (x) := log n nµ(x)

s/(2s+1)

.

(2.1)

We prove in theorem 1 below that this normalisation is, up to the constants, an upper bound overΣ,andthatitisindeedoptimalintheorem2.WedenotebyE n f,µ the integration with respect to the joint law P n f,µ of the observations (X i , Y i ), 1 i n. The estimator used in theorem 1 does not depend, within its construction, on µ.

Theorem1(Upperbound).UnderassumptionD,if f n istheestimatordefinedinsection4 below, we have for any s, L > 0,

limsup n sup f ∈Σ E n f,µ w sup x∈[0,1] r n,µ (x) -1 | f n (x) -f (x)| w(P ), (2.2) 
where

P := σ 2s/(2s+1) L 1/(2s+1) ϕ s (0) 2 2s + 1 s/(2s+1) (2.3)
and ϕ s is defined as the solution of the optimisation problem

ϕ s := argmax ϕ∈Σ(s,1;R), ϕ 2 1 ϕ(0), (2.4)
where Σ(s, L; R) is the extension of Σ(s, L) to the whole real line. (1994),theconstantPisdefinedviathesolutionof an optimisation problem which is connected to optimal recovery. We discuss this result in section 3, where further details about optimal recovery can be found. The next theorem shows that r n,µ (•) is indeed optimal in an appropriate sense. In what follows, the notation |I| stands for the length of an interval I.

InthesamefashionasinDonoho
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Theorem2(Lowerbound).UnderassumptionD,ifI n ⊂ [0, 1] is any interval such that for some ε ∈ (0, 1),

|I n | n ε/(2s+1) → +∞ as n → +∞, (2.5) we have liminf n inf b fn sup f ∈Σ E n f,µ w sup x∈In r n,µ (x) -1 | f n (x) -f (x)| w (1 -ε)P , wherePisgivenby(2.3)andtheinfimumistakenamongallestimators.Aconsequence is that if I n issuchthat(2.5)holdsforanyε∈(0,1),wehave liminf n inf b fn sup f ∈Σ E n f,µ w sup x∈In r n,µ (x) -1 | f n (x) -f (x)| w(P ). (2.6)
This result says that the normalisation r n,µ (•) cannot be strongly improved: no normalisation is uniformly better than r n,µ (•) within a "large" interval. This result is discussed in the following section.

Discussion

Literature. When the design is equidistant, that is X i =i/n,weknowfromKorostelev (1993)theexactasymptoticvalueoftheminimaxriskforsupnormerrorloss.Ifψ n := (log n/n) s/(2s+1) , we have for any s ∈ (0, 1] and Σ = Σ(s, L)

lim n→+∞ inf b fn sup f ∈Σ E f w(ψ -1 n f n -f ∞ ) = w(C),
where

C := σ 2s/(2s+1) L 1/(2s+1) s + 1 2s 2 s/(2s+1) . (3.1)
This result was the first of its kind for sup norm error loss. In the white noise model

dY n t = f (t)dt + n -1/2 dW t , t ∈ [0, 1], (3.2)
whereWisastandardBrownianmotion, [START_REF] Donoho | Asymptotic minimax risk for sup-norm loss: Solution via optimal recovery[END_REF])extendstheresultbyKorostelev (1993)toanys>1.Inthispaper,theauthormakesalinkbetweenstatisticalsupnorm estimation and the theory of optimal recovery (see below). It is shown for any s > 0 and Σ = Σ(s, L) that the minimax risk satisfies 

lim n→+∞ inf b fn sup f ∈Σ E f w(ψ -1 n f n -f ∞ ) = w(P 1 ), ( 3 
= Σ Q (s, L) for s ∈ (0, 1], it is shown that lim n→+∞ inf b fn sup f ∈Σ E n f,µ w(v -1 n,µ f n -f ∞ ) = w(C), (3.4)
where C is given by (3.1) and v n,µ := [log n/(n inf x µ(x))] s/(2s+1) . Note that the rate v n,µ differs from (and is larger than) ψ n when µ is not uniform. A disappointing fact is that v n,µ depends on µ via its infimum only, which corresponds to the point in [0, 1] where we have the least information. Therefore, this rate does not take into account all the other regions with more data. Asaconsequence,theresultspresentedhereareextensionsofboththepapersbyDonoho (1994)andBertin(2004b):ourresultsarestatedintheregressionmodelwithrandom design, where the design density is unknown. In particular, we provide the exact asymptotic value of the minimax risk in regression with random design for any s > 0, which was known only for s ∈ (0, 1] beforehand. Nevertheless, the main novelty is, in our sense, the introduction of a spatially dependent normalisation factor for the assessment of an estimator, with an appropriate optimality criterion. The asymptotically sharp minimax framework is considered here only by necessity.

Optimal recovery. The problem of optimal recovery consists in recovering f from

y(t) = f (t) + εz(t), t ∈ R, (3.5) 
where ε > 0, z is an unknown deterministic function such that z 2 1 and 1994),seealsoLeonov(1999).The minimaxriskfortheoptimalrecoveryoffat0from(3.5)isdefinedby

f ∈ C(s, L; R) := Σ(s,L;R)∩L 2 (R).Thelinkbetweenthisdeterministicproblemandestimationwithsup normlossinwhitenoisemodelwasmadebyDonoho ( 
E s (ε, L) := inf T sup f ∈C(s,L;R) f -y 2 ε |T (y) -f (0)|,
where inf T istakenamongallcontinuousandlinearformsonL 2 (R).WeknowfromMicchelli andRivlin (1977), [START_REF] Arestov | Optimal recovery of operators and related problems[END_REF]that

E s (ε, L) = inf K∈L 2 (R) sup f ∈C(s,L;R) K(t)(f (t) -f (0)) + ε K 2 = sup f ∈Σ(s,L;R) f 2 ε f (0). Note that ϕ s satisfies ϕ s (0) = E s (1, 1
). To our knowledge, the function ϕ s is known only for s∈(0,1]∪{2}.ThekernelK s fors∈(0,1]wasfoundbyKorostelev(1993)andbyFuller (1961)fors=2.Foranys>0,weknowfromLeonov(1997)thatϕ s is well defined and unique, that it is even and compactly supported and that ϕ s 2 = 1. A renormalisation argumentfromDonoho(1994 2s+1) , thus it suffices to know E s (1, 1). If we define

)showsthatE s (ε, L) = E s (1, 1)L 1/(2s+1) ε 2s/(
B(s, L) := sup f ∈C(s,L;R) K s (t)(f (t) -f (0)) ,(3.6)
we have the decomposition E s (1,1)=B(s,1)+ K 2 ,andinparticular,ifPisgivenby(2.3) and

c s := σ L 2/(2s+1) 2 2s + 1 1/(2s+1) , (3.7) 
we have Following BrownandLow(1996)andBrownetal.(2002),wecansaythatan"idealised"statistical experiment which is equivalent (in the sense that the LeCam deficiency goes to 0) to the model (1.1) is given by the heteroscedastic white noise model

P = Lc s s (B(s, 1) + K 2 ). (3.8) Abouttheorem1.Wecanunderstandtheresultoftheorem1heuristically.
dY n t = f (t)dt + σ nµ(t) dB t , t ∈ [0, 1],
(3.9) whereBisaBrownianmotion.Inviewoftheresult(3.3)byDonoho(1994),whichis statedinthemodel(3.2),andcomparingthenoiselevelsinthemodels(3.2)and(3.9) (with σ = 1), we can explain informally that our rate r n,µ (•) comes from the former rate ψ n where we "replace" n by nµ(x).
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Abouttheorem2.FromBertin(2004b),weknowwhens∈(0,1]that

liminf n inf b fn sup f ∈Σ E n f,µ w(v -1 n,µ f n -f ∞ ) w(P ), where v n,µ = [log n/(n inf x µ(x))] s/(2s+1) . An immediate consequence is liminf n inf b fn sup f ∈Σ E n f,µ w sup x∈[0,1] r n,µ (x) -1 | f n (x) -f (x)| w(P ), (3.10)
where it suffices to use the fact that r n,µ (x) v n,µ for any x ∈ [0, 1]. This entails that r n,µ (•) is optimal in the classical minimax sense. However, this lower bound is much weaker than theoneconsideredintheorem2:itdoesnotexcludetheexistenceofanothernormalisation n (•)suchthat n (x)<r n,µ (x)for"many"x.Therefore,toprovetheoptimalityofr n,µ (•), weneedtolocalisethelowerbound.Indeed,intheorem2,ifwechooseI n = [0, 1] we find back(3.10)

andifI n =[x-(logn) γ ,x+(logn) γ ]∩[0,1]foranyγ>0andx∈[0,1]such that µ(x) = inf x∈[0,1] µ(x),thenobviouslyv n,µ doesnotsatisfy(2.6).
AboutassumptionD.InassumptionD,µissupposedtobeboundedfrombelow,and from above since it is continuous over [0, 1]. When µ is vanishing or exploding at a fixed point,weknowfromGa¨ıffas(2005a)thatawiderangeofpointwiseminimaxratescanbe achieved, depending on the behaviour of µ at this point. In this case, we expect the optimal normalisation (whenever it exists) to differ from the classical minimax rate ψ n not only up to the constants, but in order.

Adaptation to the smoothness. The estimator used in theorem 1 depends on the smoothess s of f (see below). In practice, such a parameter is unknown. Therefore, this estimator cannot be used directly: some smoothness-adaptive technique, like Lepski's method (seeLepskietal.(1997))canbeapplied.However,thisestimatorisconsideredherefor theoretical purposes only, and note that even in the white noise model, the problem of sharp adaptive estimation in sup norm over Hölder classes remains open when s > 1.

Construction of an estimator

The estimator f n described below uses both kernel and local polynomial methods. Its construction is divided into two parts: first, at some well-chosen discretization points, we use a Nadaraya-Watson estimator with optimal kernel and a design data driven bandwidth. This part of the estimator is used to attain the minimax constant. Then, between the discretization points, the estimator is defined by a Taylor expansion where the derivatives are estimated by local polynomial estimation. We define the empirical design sample distribution

μn := 1 n n i=1 δ X i ,
where δ is the Dirac mass, and for h > 0, x ∈ [0, 1], we consider the intervals

I(x, h) := [x, x + h] when 0 x 1/2, [x -h, x] when 1/2 < x 1. (4.1)
The choice of non-symmetrical intervals allows to skip boundaries effects. Then we define, when it makes sense, the "bandwidth" at x by

H n (x) := argmin h∈[0,1] h s.t. h 2s μn (I(x, h)) log n/n , (4.2) 
A c c e p t e d m a n u s c r i p t which makes the balance between the bias h s and the variance [log n/(nμ n (I))] 1/2 of the kernelestimator.Whentheeventin(4.2)isempty(whichoccurswithaverysmallprobability for large n), we take simply H n (x) := max(1 -x, x). We consider the sequence of points FromLeonov(1997FromLeonov( ,1999))weknowthatthefunctionϕ s definedby(2.4)isevenand compactlysupported.Wedenoteby[-T s , T s ] its support and τ n := min(2c s T s H M n , δ n ) where δ n =(logn) -1 andc s isgivenby(3.7).

x j := j∆ n , ∆ n := (log n) -2s/(2s+1) n -1/(2s+1) , (4.3) for j ∈ J n := {0, . . . , [∆ -1 n ]} where [a] is the integer part of a with x Mn = 1, M n = |J n | (the notation|A|standsalsoforthesizeofafinitesetA).WedefineH M n := max j∈Jn H n (x j ).
As usual with the estimation of a function over an interval, there is a boundary correction. We decompose the unit interval into three parts [0

, 1] = J n,1 ∪J n,2 ∪J n,3 where J n,1 := [0, τ n ], J n,2 := [τ n , 1 -τ n ] and J n,3 := [1 -τ n , 1].
We also define J a,n := {j|x j ∈ J a,n } for a ∈ {1, 2, 3}. If ϕ s isdefinedby(2.4),weconsiderthekernel

K s := ϕ s / ϕ s .
(4.4)

The "sharp" part of the estimator is defined as follows: at the points x j , we define f n by

f n (x j ) :=                1 nH n (x j ) n i=1 Y i K s X i -x j c s H n (x j ) max δ n , 1 nH n (x j ) n i=1 K s X i -x j c s H n (x j ) if j ∈ J 2,n , fn (x j ) if j ∈ J 1,n ∪ J 3,n . (4.5) 
This estimator is (up to the correction near the boundaries) a Nadaraya-Watson estimator with the optimal kernel K s and a bandwidth fitted to the local amount of data. The boundary estimator fn is defined below. We recall that k = s where s is the smoothness of the unknown signal f . For any interval I ⊂ [0, 1] such that μn (I) > 0, we define the inner product

f , g I := 1 μn (I) I f g dμ n ,
where I fdμ n = X i ∈I f(X i )/n.IfI=I(x,h)(see(4.1)),wedefineφ I,m (y):=(y-x) m and we introduce the matrix X I and vector Y I with entries (X I ) p,q := φ I,p , φ I,q I and (Y I ) p := Y , φ I,p I , for 0 p, q k. Then, we consider

XI := X I + 1 nμ n (I) I k+1 1 Ω c n,I ,
where Ω n,I := λ(X I ) > (nμ n (I)) -1/2 , where λ(M ) is the smallest eigenvalue of a matrix M and where I k+1 is the identity matrix on R k+1 . Note that the correction term in XI entails λ( XI ) (nμ n (I)) -1/2 . When μn (I) > 0, the solution θ I of the system XI θ = Y I , is well defined. If μn (I) = 0, we take θ I = 0. Then, for any 1 m k, a natural estimate of f (m) (x j ) is

f (m) n (x j ) := m!( θ I(x j ,hn) ) m ,
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where h n := (σ/L) 2/(2s+1) (log n/n) 1/(2s+1) . The boundary estimator is given by fn (x j ) := ( θ I(x j ,tn) ) 0 , where t n := (σ/L) 2/(2s+1) n -1/(2s+1) . If we define Γ n,I := min

1 m k φ I,m I n -1/2 , (4.6)
where

• 2 I = • , • I , then for x ∈ [x j , x j+1 ), j ∈ J n , we take f n (x) := f n (x j ) + k m=1 f (m) n (x j ) m! (x -x j ) m 1 Γ n,I(x j ,hn) .
(4.7)

Proof of theorem 1

The whole section is dedicated to the proof of theorem 1. For the sake of brevity, we skip someelementsoftheproof.Aself-containedproofcanbefoundinGa¨ıffas(2005b),anyproof missing here (of the lemmas, mainly) can be found therein. We denote by X n the sigmaalgebra generated by X 1 , . . . , X n and by P n µ the joint law of X 1 , . . . , X n . We recall that the discretization points x j aregivenby(4.3).Weintroduceh n,µ (x):=[logn/(nµ(x))] 1/(2s+1) , and it is convenient to introduce for j ∈ J n : H j := H n (x j ), h j := h n,µ (x j ), µ j := µ(x j ) and r j := r n,µ (x j ).

Step 1: approximation by the discretized risk. We introduce the uniform risk

E n,f := sup x∈[0,1] r n,µ (x) -1 | f n (x) -f (x)|, and its discretized version E ∆ n,f := sup j∈Jn r -1 j | f n (x j )-f(x j )|.InviewofassumptionD, we obtain sup x∈[x j ,x j+1 ] |r n,µ (x) -1 -r -1 j | = o(1)r -1 j . Thus, since f ∈ Σ Q (s, L),
writing the Taylor expansion of f at x ∈ [x j , x j+1 ], we obtain:

E n,f (1 + o(1)) E ∆ n,f + max j∈Jn r -1 j k m=1 | f (m) n (x j ) -f (m) (x j )| ∆ m n m! + O(δ s n ),
where we recall that δ n = (log n) -1 . In this step, we need the following lemma, which provides a control over the local polynomial estimator uniform risk. Its proof can be found inGa¨ıffas(2005b).

Lemma 1. There is an event C n ∈X n suchthat,underassumptionD,

P n µ C c n exp -D C n s/(2s+1) , (5.1) 
where D C > 0, and a centered Gaussian vector W ∈ R (k+1)Mn with E n f,µ {W 2 p } = 1, 0 p (k + 1)M n , such that on C n , one has for any 0 m k and f ∈ Σ(s, L):

max j∈Jn | f (m) n (x j ) -f (m) (x j )| = O(h s-m n )(1 + (log n) -1/2 W M ), (5.2)
where W M := max 0 p (k+1)Mn |W p |. For the estimator near the boundaries, we have on C n , for a = 1 (the case a = 3 is similar ):

max j∈J 1,n | fn (x j ) -f (x j )| = O(t s n )(1 + W (1) ), (5.3)
where

W (1) = max 0 p (k+1)|J 1,n | |W p |.
Inviewof(5.2),wehaveonC n , for any 1 m k:

max j∈Jn r -1 j | f (m) n (x j ) -f (m) (x j )|∆ m n /m! = O(δ m n )(1 + (log n) -1/2 W M ),
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then E n,f 1 Cn (1 + o(1))E ∆ n,f 1 Cn + O(δ n )(1 + δ 1/2 n W M ) + o(1). Let us define the event W n := {|W M -E n f,µ {W M }| δ -1 n }.SinceWisacenteredGaussianvectorsuchthat E n f,µ {W 2 p }=1for0 p (k+1)M n ,itiswellknown(seeforinstanceinLedouxand Talagrand(1991))thatE n f,µ {W M } [2 log((k + 1)M n )] 1/2 = O(δ -1/2 n
) and

P n f,µ {W c n } 2 exp(-δ -2 n /2).
(5.4)

Thus,

E n,f 1 Cn∩Wn (1 + o(1))E ∆ n,f 1 Cn + o(1).
(5.5)

Step 2: some events study. In what follows, it is convenient to write K instead of K s , and to introduce

K ij := K[(X i -x j )/(c s h j )], Kij := K[(X i -x j )/(c s H j )],
and q j :=nc s h j µ j ,q j :=nc s H j µ j ,wherec s isgivenby(3.7).Weintroducealso Qj :

= n i=1 Kij , Q j := n i=1 K ij , S j := n i=1 K2
ij , and the events A n,j := Qj /q j -1

L A δ min(s,1) n , B n,j := Q j /q j -1 δ n , C n,j := |H j /h j -1| δ n , E n,j := S j /q j -K 2 2 L E δ min(s,1) n , B n := j∈J 2,n A n,j ∩ B n,j ∩ E n,j ∩ j∈Jn C n,j , (5.6) 
where L A and L E are some fixed positive constants, δ n = (log n) -1 , and the sets of indices J a,n aredefinedinsection4.Inthisstep,wecontroltheprobabilitiesoftheseevents. For j ∈ J 2,n , we consider the sequence of i.i.d variables

ζ ij := K ij -E n µ {K ij }, 1 i n. Since µ ∈ Σ q (ν, ) and K = 1, we have for n large enough |E n µ {K 1j }/q j -1| δ n /2, thus B c n,j ⊂ | n i=1 ζ ij |/q j δ n /2 . Since |ζ ij | 2 K ∞ and n i=1 E n µ {ζ 2 ij } (1 + δ n )q j K 2 for n large enough, Bernstein inequality entails P n µ {B c n,j } 2 exp(-D 1 δ 2 n n 2s/(2s+1)
), for any j ∈ J 2,n , where D 1 is a positive constant. Since ϕ s ∈ Σ(s, 1; R), we have K ∈ Σ(min(s, 1), L K ; R) where L K := ( ϕ s ) -1 if 0 < s 1 and

L K := K ∞ if s > 1. Since Supp K = [-T s , T s ], we have on C n,j | Kij -K ij | L K T min(s,1) s [δ n /(1 -δ n )] min(s,1) 1 M ij = o(1)1 M ij , (5.7)
where

M ij := {|X i -x j | c s T s (1 + δ n )h j }. We define η ij := 1 M ij -P n µ {M ij }.
Then, we obtain that on C n,j and for n large enough, taking L A := 4(L K T min(s,1)+1 + 1),

P n f,µ {A c n,j ∩ C n,j } P n µ | n i=1 η ij | > δ min(s,1) n q j + P n µ {| n i=1 ζ ij | > δ min(s,1) n q j /2}.
Then, applying Bernstein inequality to the sum of variables η ij and ζ ij , 1 i n, we obtain that for any j ∈ J n,2 ,

P n µ {A c n,j ∩ C n,j } 2 exp(-D 2 δ 2 2,n n 2s/(2s+1) )
, where D 2 is a positive constant and δ 2,n := δ min(s,1) n

. We can prove

P n µ {E c n,j ∩ C n,j } 2 exp(-D 3 δ 2 2,n n 2s/(2s+1)
) where D 3 is a positive constant in the same way as previously, with an appropriate choice for L E . If I = I(x, h) (see (4.1)) and δ 1,n := 2s+1) , we define the event N n,I := μn (I)/(µ(x)h) -1 δ 1,n . From the definitions of H j and h j , we obtain 2s+1) , and then N n,I(x j ,(1-δn)h j ) ⊂ {(1 -δ n )h j < H j }. We can prove in the same way that on the other hand N n,I(x j ,(1+δn

1 -(1 + δ n ) -(
{(1 -δ n )h j < H j } = (1 -δ n ) 2s h 2s j < log n/ nμ n (I(x j , (1 -δ n )h j )) = μn (I(x j , (1 -δ n )h j )) µ j (1 -δ n )h j (1 -δ n ) -(
)h j ) ⊂ {(1 + δ n )h j H j }, hence N n,I(x j ,(1-δn)h j ) ∩ N n,I(x j ,(1+δn)h j ) ⊂ C n,j .
(5.8)
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IfI=I(x,h),wehaveinviewofassumptionDthat|

I µ(t)dt -hµ(x)|= O(h ν+1 ), thus, if Z i := 1 X i ∈I -I µ(t)dt, we have {| n i=1 Z i | nµ(x)hδ n,1 /2} ⊂ N n,I
for n large enough. Then, using Bernstein inequality to the sum of Z i , 1 i n, we obtain P n µ {C c n,j } 2 exp(-D C δ 2 1,n n 2s/(2s+1) ), for n large enough, where D C > 0 is fixed. Using together the previous inequalities, we obtain

P n µ {B c n } exp(-D B n s/(2s+1) ) (5.9)
for n large enough, where D B > 0 is fixed.

Step 3: controls on E ∆ n,f .Weneedthefollowinglemma,whichisproveninGa¨ıffas (2005b).

Lemma 2. There is an event A n ∈X n suchthat,underassumptionD,

P n µ {A c n } exp(-D A n s/(2s+1) ) (5.10)
for n large enough, where D A > 0 and such that

A n ⊂ B n ∩ C n ∩ Γ n , (5.11) 
whereB n isgivenby(5.6),C n bylemma1andΓ n := j∈Jn Γ n,I(x j ,hn) whereΓ n,I isdefined by(4.6).

In this step, we prove that for any ε > 0, when n is large enough, the following inequality holds:

sup f ∈Σ Q (s,L) P n f,µ {E ∆ n,f 1 An > (1 + ε)P } exp -D E ε(1 ∧ ε)(log n) 2s/(2s+1) , (5.12) 
where D E >0,andweprovethat

sup f ∈Σ Q (s,L) E n f,µ w 2 (E ∆ n,f 1 An ) = O(1).
(5.13)

We decompose the risk into

E ∆ n,f = E ∆,1 n,f + E ∆,2 n,f + E ∆,3 n,f where E ∆,a n,f := sup j∈Ja,n r -1 j | f n (x j ) - f (x j )|. For a = 1 and a = 3, E ∆,a
n,f is the risk at the boundaries of [0, 1]. Since on B n , Qj /q j 1 -L A δ min(s,1) n > δ n for n large enough, the denominator in (4.5) is larger than δ n . Hence, we can decompose on B n the middle risk into bias and variance terms as follows: (5.14) where the variance term is given by

E ∆,2 n,f b n,f + U n,f + Z n ,
Z n := max j∈J 2,n |Z n,j |, Z n,j := r -1 j n i=1 ξ i W ij with W ij := ¯Kij / ¯Qj ,andthebiastermsareb n,f :=max j∈J 2,n |b n,f,j |,U n,f :=max j∈J 2,n |U n,f,j |, where b n,f,j :=E n f,µ {B n,f,j 1 Bn },U n,f,j :=B n,f,j -b n,f,j withB n,f,j :=r -1 j Pj / Qj , Pj := n i=1 (f(X i )-f(x j )) ¯Kij .Weusethethreefollowinginequalities:wehave limsup n sup f ∈Σ(s,L)
b n,f Lc s s B(s, 1), (5.15) whereB(s,L)isdefinedby(3.6),andthereisaconstantD U > 0 such that for any ε > 0, sup f ∈Σ(s,L) 2s+1) .

P n f,µ U n,f 1 Bn > ε exp -D U ε(1 ∧ ε)n 2s/(
(5.16) Moreover, we have for any ε > 0, sup 2s+1) .

f ∈Σ Q (s,L) P n f,µ Z n 1 Bn > (1 + ε)Lc s s K 2 2(log n) 2s/(2s+1) n -ε/(
(5.17 

{E ∆,2 n,f 1 Bn > (1 + 2ε)P } ⊂ {Z n 1 Bn > (1 + ε)Lc s s K 2 } ∪ {U n,f 1 Bn > εLc s s K 2 }.
Then,inviewof(5.16)and(5.17),itiseasytofindD 2 > 0 such that uniformly for f ∈ Σ Q (s, L) and n large enough,

P n f,µ E ∆,2 n,f 1 Bn >(1+2ε)P exp -D 2 ε(1∧ε)logn .(5.18)
Now, we consider the boundary risk E ∆,1 n,f (the result is the same for E ∆,3 n,f ).Inviewof(5.3), we obtain

E ∆,1 n,f 1 Cn = O(δ s/(2s+1) n )(1 + W (1)
), and we have as previously

E n f,µ {W (1) } = O((log log n) 1/2 ), since |J 1,n | = O(log n), and for any λ > 0, P n f,µ W (1) -E n f,µ {W (1) } > λ 2 exp(-λ 2 /2).
Then, for some D 3 > 0, we obtain when n is large enough

P n f,µ E ∆,1 n,f 1 Cn >2εP 2exp -D 3 ε 2 δ -2s/(2s+1) n .
Thisinequality,togetherwith(5.18)andthefactthatA n ⊂B n ∩C n (seelemma2)entails(5.12).Toprove(5.13),sincew(x) A(1+|x| b ),itsufficestouse(5.12)andthefact that

E n f,µ {(E ∆ n,f ) p 1 An } = p +∞ 0 t p-1 P n f,µ {E ∆ n,f 1 An > t}dt for any p > 0.
Step 4: conclusion of the proof. We need the following inequality, which is proven in Ga¨ıffas(2005b):

sup f ∈Σ Q (s,L) E n f,µ w 2 (E n,f ) = O n 2b(1+s/(2s+1)) .
(5.19)

Since w(•) is nondecreasing, we have for any ε > 0

E n f,µ {w(E n,f )} E n f,µ {w(E n,f )1 An∩Wn } + E n f,µ {w(E n,f )1 A c n ∪W c n } w((1 + 2ε)P ) + E n f,µ {w 2 (E n,f )} P n f,µ {A c n ∪ W c n } 1/2 + E n f,µ w 2 (1 + 2ε)E ∆ n,f 1 An P n f,µ {E ∆ n,f 1 An > (1 + ε)P } 1/2 w((1 + 2ε)P ) + O n b(1+s/(2s+1)) exp(-(log n) 2 /4)
+O exp(-D E ε(1∧ε)(logn) 2s/(2s+1) ) =w((1+2ε)P)+o(1), whereweusedtogetherlemma2,equations(5.4),(5.12),(5.13),(5.19),andthefactthat w(•) is continuous. Thus, limsup n sup f ∈Σ Q (s,L) E n f,µ {w(E n,f )} w((1 + 2ε)P ), which concludes the proof of theorem 1 since ε can be chosen arbitrarily small. Proofof(5.15).OnA n,j ∩ C n,j we have (1 -o(1))q j Qj (1 + o(1))q j and since B n ⊂ A n,j ∩ C n,j for any j ∈ J 2,n , we have 

|b n,f,j | = r -1 j |E n f,µ {( Pj / Qj )1 Bn }| (1 + o(1))(r j q j ) -1 |E n f,µ { Pj 1 Bn }|. Using(5.7),andintroducingν f,j (x) := 1 f (x) f (x j ) -1 f (x)<f (x j ) , P j := n i=1 (f (X i ) - f (x j ))K ij , R ij := ν f,j (X i )(f (X i ) -f (x j ))1 M ij and R j := n i=1 R ij , we obtain |E n f,µ { Pj 1 Bn } |E n f,µ {P j }| + o(1)|E n f,µ {R j }|.
) := af (b •). We have that f ∈ Σ(s, L; R) is equivalent to U a,b f ∈ Σ(s, Lab s ; R). Then, choosing a = (Lc s s h s j ) -1 and b = c s h j entails sup f ∈Σ(s,L;R) b n,f (1 + o(1))Lc s s B(s, 1) + o(1),
and the result follows.

Proofof(5.17).ConditionallyonX n , Z n,j is centered Gaussian with variance v 2 j := σ 2 r -2 j n i=1 W 2 ij . On B n , we have for any j ∈ J 2,n and n large enough

n i=1 W 2 ij = S j ( Qj ) 2 (1 + o(1)) K 2 2 q j (1 + ε) K 2 2 r 2 j c s log n ,
where we used the definition of h n,µ (x), hence v

2 j (1 + ε)σ 2 K 2 2 /(c s log n). Using the fact that P (|N (0, v 2 )| λ) 2 exp(-λ 2 /(2v 2 )), we obtain P n f,µ {|Z n,j |1 Bn > (1 + ε)Lc s s K 2 } 2 exp - (1 + ε) 2s + 1 log n = 2n -(1+ε)/(2s+1) ,
and the result follows, since |J 2,n | M n (log n) 2s/(2s+1) n 1/(2s+1) .

Proof of theorem 2

The proof of the lower bound consists in a classical reduction to the Bayesian risk over an hardestcubicalsubfamilyoffunctions,seeKorostelev(1993), [START_REF] Donoho | Asymptotic minimax risk for sup-norm loss: Solution via optimal recovery[END_REF]),Korostelev andNussbaum(1999)andBertin(2004b).AmoredetailedproofcanbefoundinGa¨ıffas (2005b).Themaindifferencewiththeformerproofsisthatthesubfamilyoffunctions depends on the design via the bandwidth h n,µ (x), and that we work within a "small" interval I n .Werecallthatϕ s isdefinedby(2. We denote again µ j = µ(x j ), h j = h n,µ (x j ). Let us define the event

H n,j := 1 nc s h j µ j n i=1 ϕ 2 s X i -x j c s h j -1 ε ,
and H n := ∩ j∈Jn H n,j . Together with the fact that ϕ s 2 = 1, we obtain using Bernstein inequality that lim n→+∞ P n µ {H n } = 1. (6.2)

The subfamily of functions is defined as follows: we consider an hypercube Θ ⊂ [-1, 1] Mn , and for θ ∈ Θ, we define f (x; θ) := j∈Jn θ j f j (x), where f j (x) := Lc s s h s j ϕ s

x-x j csh j , so that f (•; θ) ∈ Σ(s, L). For any j ∈ J n , we define the statistics

y j := n i=1 Y i ϕ s (X i ) n i=1 ϕ 2 s (X i )
. 

  )

  15)and(5.17)areprovenbelowinthesection,theproofof(5.16)canbe foundinGa¨ıffas(2005b).Inviewof(5.15),wehaveb n,f(1 + 2ε)Lc s s B(s, 1) for n large enough,andusing(3.8)weobtain

  Since b n,f and U n,f only depend on f via its values in [0, 1], we have sup f ∈Σ(s,L) b n,f = sup f ∈Σ(s,L;R) b n,f and sup f ∈Σ(s,L) U n,f = sup f ∈Σ(s,L;R) U n,f . Thus, together with the fact s, L; R) is invariant by translation and since µ ∈ Σ q (ν, ), we obtain supf ∈Σ(s,L;R) b n,f,j (1 + o(1)) sup f ∈Σ(s,L;R) c s h j y) -f (0))K(y)dy + o(1) |y| 2T |f (c s h j y) -f (0)|dy .Now,weuseanargumentwhichisknownasrenormalisation,seeDonohoandLow(1992). We introduce the functional operator U a,b f (•

  4)andthatithascompactsupport[-T s ,T s ].Let h I n := max x∈In h n,µ (x) and Ξ n := 2T s c s (2 1/(s-k) + 1)h I n . If I n = [a n , b n ], M n := [|I n | Ξ -1 n ], we define the points x j := a n + j Ξ n , j ∈ J n := {1, . . . , M n }.(6.1)

  Since the f j have disjoint supports, we have that conditionally on X n , the y j are Gaussian independent with E n f,µ {y j |X n } = θ j . Moreover, if v 2 j := E n f,µ {y 2 j |X n }, we have on H n 2s (1.1) with f (•) = f (• ; θ), conditionally on X n , the likelihood function of (Y 1 , . . . , Y n ) can be written on H n in the formdP n f,µ dλ n | Xn (Y 1 , . . . , Y n ) = n i=1 g σ (Y i ) j∈Jn g v j (y j -θ j ) g v j (y j ) , (6.4)where g v is the density of N (0, v 2 ), and λ n is the Lebesgue measure over R n . In the following, we denote Σ = Σ(s, L) andE I n,f,T := sup x∈I r n,µ (x) -1 |T (x) -f (x)|.Since w(•) is nondecreasing and f (• ; θ) ∈ Σ for any θ ∈ Θ, we have for any probability distribution B on Θ, by a minoration of the minimax risk by the Bayesian risk, infT sup f ∈Σ E n f,µ w(E I n,f,T ) w (1 -ε)P infwhere we used (6.3) and the fact that for x > 0, Φ(-x) = (1 + o(1)) exp(-x 2 /2)/(x √ 2π) If L n :=n -(1-ε) 2 (1+ε)/(2s+1) (logn) -1/2 ,itfollowsthatthelefthandsideof(6.5)issmaller than (1 -D 1 L n ) Mn exp |I n |Ξ -1 n log 1 -D 1 L n , and if D 2 is a positive constant, |I n | Ξ -1 n L n = D 2 |I n | n ε/(2s+1)× n ε 2 (1-ε)/(2s+1) (log n) -1/2-1/(2s+1) → +∞ as n → +∞, since |I n |n ε/(2s+1) → +∞, thus the theorem.