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SHARP ESTIMATION IN SUP NORM WITH RANDOM DESIGN

STÉPHANE GAÏFFAS

Laboratoire de Probabilités et Modèles Aléatoires
Université Paris 7 Denis-Diderot

email: gaiffas@math.jussieu.fr

Abstract. In this paper, we study the estimation of a function based on noisy inho-
mogeneous data (the amount of data can vary on the estimation domain). We consider
the model of regression with random design, where the design density is unknown. We
construct an asymptotically sharp estimator which converges, for sup norm error loss,
with a spatially dependent normalisation which is sensitive to the variations in the local
amount of data. This estimator combines both kernel and local polynomial methods, and
it does not depend within its construction on the design density. Then, we prove that the
normalisation is optimal in an appropriate sense.

1. Introduction

In most cases, the models considered in curve estimation do not allow situations where
the data is inhomogeneous, in so far as the amount of data is implied to be constant over
space. This is the case in regression with equispaced design and white noise models, for
instance. In many situations, the data can happen to be concentrated at some points and
to be little elsewhere. In such cases, an estimator shall behave better at a point where there
is much data than where there is little data. In this paper, we propose a theoretical study
of this phenomenon.

The available data [(Xi, Yi), 1 6 i 6 n] is modeled by

Yi = f(Xi) + ξi, (1.1)

where ξi are i.i.d. centered Gaussian with variance σ2 and independent of Xi. The design
variables Xi are i.i.d. of unknown density µ on [0, 1], which is bounded away from 0 and
continuous. We want to recover f . When µ is not the uniform law, the information is
spatially inhomogeneous. We are interested in recovering f globally, with sup norm loss
‖g‖∞ := supx∈[0,1] |g(x)|. An advantage of this norm is that it is exacting: it forces an
estimator to behave well at every point simultaneously. A commonly used benchmark for
the complexity of estimation over some fixed class Σ is the minimax risk, which is given by

Rn(Σ) := infbfn

sup
f∈Σ

En
f

{
‖f̂n − f‖∞

}
, (1.2)

where the infimum is taken over all estimators. We say that ψn is the minimax convergence
rate over Σ if Rn(Σ) � ψn, where an � bn means 0 < liminfn an/bn 6 limsupn an/bn < +∞.
In the regression model (1.1) with Σ a Hölder ball with smoothness s > 0 and µ positive and
bounded, we have ψn = (log n/n)s/(2s+1), see Stone (1982). Thus, in this case, the minimax
rate is not sensitive to the variations in the amount of data. Indeed, such global minimax
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2 S. GAÏFFAS

benchmarks cannot assess the design-adaptation property of an estimator. Instead of (1.2),
an improvement is to consider the spatially dependent risk

sup
f∈Σ

En
f

{
sup

x∈[0,1]
rn(x)−1|f̂n(x)− f(x)|

}
of some estimator f̂n, where rn(·) > 0 is a family of spatially dependent normalisations.
If this quantity is bounded as n → +∞, we say that rn(·) is an upper bound over Σ.
Necessarily, the ”optimal” normalisation satisfies rn(x) � (log n/n)s/(2s+1) for any x (note
that the optimality requires an appropriate definition here). Therefore, in order to exhibit
such an optimal normalisation, we need to consider the sharp asymptotics of the minimax
risk.

2. Results

If s, L > 0, we define the Hölder ball Σ(s, L) as the set of all the functions f : [0, 1] → R
such that

|f (k)(x)− f (k)(y)| 6 L|x− y|s−k, ∀x, y ∈ [0, 1],
where k = bsc is the largest integer k < s. If Q > 0, we define ΣQ(s, L) := Σ(s, L) ∩
{f s.t. ‖f‖∞ 6 Q}, and we denote simply Σ := ΣQ(s, L) (the constant Q needs not to be
known). All along this study, we suppose:

Assumption D. There is ν ∈ (0, 1] and %, q > 0 such that

µ ∈ Σ(ν, %) and µ(x) > q, for all x ∈ [0, 1].

In the following, we consider a continuous, non-negative and nondecreasing loss function
w(·) such that w(x) 6 A(1 + |x|b) for some A, b > 0 (typically a power function). Let us
consider

rn,µ(x) :=
( log n
nµ(x)

)s/(2s+1)
. (2.1)

We prove in theorem 1 below that this normalisation is, up to the constants, an upper bound
over Σ, and that it is indeed optimal in theorem 2. We denote by En

f,µ the integration with
respect to the joint law Pn

f,µ of the observations (Xi, Yi), 1 6 i 6 n. The estimator used in
theorem 1 does not depend, within its construction, on µ.

Theorem 1 (Upper bound). Under assumption D, if f̂n is the estimator defined in section 4
below, we have for any s, L > 0,

limsupn sup
f∈Σ

En
f,µ

{
w

(
sup

x∈[0,1]
rn,µ(x)−1|f̂n(x)− f(x)|

)}
6 w(P ), (2.2)

where

P := σ2s/(2s+1)L1/(2s+1) ϕs(0)
( 2

2s+ 1

)s/(2s+1)
(2.3)

and ϕs is defined as the solution of the optimisation problem

ϕs := argmax
ϕ∈Σ(s,1;R),
‖ϕ‖261

ϕ(0), (2.4)

where Σ(s, L; R) is the extension of Σ(s, L) to the whole real line.

In the same fashion as in Donoho (1994), the constant P is defined via the solution of
an optimisation problem which is connected to optimal recovery. We discuss this result in
section 3, where further details about optimal recovery can be found. The next theorem
shows that rn,µ(·) is indeed optimal in an appropriate sense. In what follows, the notation
|I| stands for the length of an interval I.
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SHARP ESTIMATION WITH RANDOM DESIGN 3

Theorem 2 (Lower bound). Under assumption D, if In ⊂ [0, 1] is any interval such that
for some ε ∈ (0, 1),

|In|nε/(2s+1) → +∞ as n→ +∞, (2.5)
we have

liminfn infbfn

sup
f∈Σ

En
f,µ

{
w

(
sup
x∈In

rn,µ(x)−1|f̂n(x)− f(x)|
)}

> w
(
(1− ε)P

)
,

where P is given by (2.3) and the infimum is taken among all estimators. A consequence
is that if In is such that (2.5) holds for any ε ∈ (0, 1), we have

liminfn infbfn

sup
f∈Σ

En
f,µ

{
w

(
sup
x∈In

rn,µ(x)−1|f̂n(x)− f(x)|
)}

> w(P ). (2.6)

This result says that the normalisation rn,µ(·) cannot be strongly improved: no normal-
isation is uniformly better than rn,µ(·) within a ”large” interval. This result is discussed in
the following section.

3. Discussion

Literature. When the design is equidistant, that is Xi = i/n, we know from Korostelev
(1993) the exact asymptotic value of the minimax risk for sup norm error loss. If ψn :=
(log n/n)s/(2s+1), we have for any s ∈ (0, 1] and Σ = Σ(s, L)

lim
n→+∞

infbfn

sup
f∈Σ

Ef

{
w(ψ−1

n ‖f̂n − f‖∞)
}

= w(C),

where

C := σ2s/(2s+1)L1/(2s+1)
(s+ 1

2s2
)s/(2s+1)

. (3.1)

This result was the first of its kind for sup norm error loss. In the white noise model

dY n
t = f(t)dt+ n−1/2dWt, t ∈ [0, 1], (3.2)

where W is a standard Brownian motion, Donoho (1994) extends the result by Korostelev
(1993) to any s > 1. In this paper, the author makes a link between statistical sup norm
estimation and the theory of optimal recovery (see below). It is shown for any s > 0 and
Σ = Σ(s, L) that the minimax risk satisfies

lim
n→+∞

infbfn

sup
f∈Σ

Ef

{
w(ψ−1

n ‖f̂n − f‖∞)
}

= w(P1), (3.3)

where P1 is given by (2.3) with σ = 1. When s ∈ (0, 1], we have P = C, see for instance
in Leonov (1997). Since the results by Korostelev and Donoho, many other authors worked
on the problem of sharp estimation (or testing) in sup norm. On testing, see Lepski and
Tsybakov (2000), see Korostelev and Nussbaum (1999) for density estimation and Bertin
(2004a) for white noise in an anisotropic setting. The paper by Bertin (2004b) works in
the model of regression with random design (1.1). When µ satisfies assumption D and
Σ = ΣQ(s, L) for s ∈ (0, 1], it is shown that

lim
n→+∞

infbfn

sup
f∈Σ

En
f,µ

{
w(v−1

n,µ‖f̂n − f‖∞)
}

= w(C), (3.4)

where C is given by (3.1) and vn,µ := [log n/(n infx µ(x))]s/(2s+1). Note that the rate vn,µ

differs from (and is larger than) ψn when µ is not uniform. A disappointing fact is that vn,µ

depends on µ via its infimum only, which corresponds to the point in [0, 1] where we have
the least information. Therefore, this rate does not take into account all the other regions
with more data.

As a consequence, the results presented here are extensions of both the papers by Donoho
(1994) and Bertin (2004b): our results are stated in the regression model with random
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4 S. GAÏFFAS

design, where the design density is unknown. In particular, we provide the exact asymptotic
value of the minimax risk in regression with random design for any s > 0, which was
known only for s ∈ (0, 1] beforehand. Nevertheless, the main novelty is, in our sense,
the introduction of a spatially dependent normalisation factor for the assessment of an
estimator, with an appropriate optimality criterion. The asymptotically sharp minimax
framework is considered here only by necessity.

Optimal recovery. The problem of optimal recovery consists in recovering f from

y(t) = f(t) + εz(t), t ∈ R, (3.5)

where ε > 0, z is an unknown deterministic function such that ‖z‖2 6 1 and f ∈ C(s, L; R) :=
Σ(s, L; R) ∩ L2(R). The link between this deterministic problem and estimation with sup
norm loss in white noise model was made by Donoho (1994), see also Leonov (1999). The
minimax risk for the optimal recovery of f at 0 from (3.5) is defined by

Es(ε, L) := inf
T

sup
f∈C(s,L;R)
‖f−y‖26ε

|T (y)− f(0)|,

where infT is taken among all continuous and linear forms on L2(R). We know from Micchelli
and Rivlin (1977), Arestov (1990) that

Es(ε, L) = inf
K∈L2(R)

(
sup

f∈C(s,L;R)

∣∣∣ ∫
K(t)(f(t)− f(0))

∣∣∣ + ε‖K‖2

)
= sup

f∈Σ(s,L;R)
‖f‖26ε

f(0).

Note that ϕs satisfies ϕs(0) = Es(1, 1). To our knowledge, the function ϕs is known only for
s ∈ (0, 1] ∪ {2}. The kernel Ks for s ∈ (0, 1] was found by Korostelev (1993) and by Fuller
(1961) for s = 2. For any s > 0, we know from Leonov (1997) that ϕs is well defined and
unique, that it is even and compactly supported and that ‖ϕs‖2 = 1. A renormalisation
argument from Donoho (1994) shows that Es(ε, L) = Es(1, 1)L1/(2s+1)ε2s/(2s+1), thus it
suffices to know Es(1, 1). If we define

B(s, L) := sup
f∈C(s,L;R)

∣∣∣ ∫
Ks(t)(f(t)− f(0))

∣∣∣, (3.6)

we have the decomposition Es(1, 1) = B(s, 1)+‖K‖2, and in particular, if P is given by (2.3)
and

cs :=
(σ
L

)2/(2s+1)( 2
2s+ 1

)1/(2s+1)
, (3.7)

we have
P = Lcss(B(s, 1) + ‖K‖2). (3.8)

About theorem 1. We can understand the result of theorem 1 heuristically. Following
Brown and Low (1996) and Brown et al. (2002), we can say that an ”idealised” statistical
experiment which is equivalent (in the sense that the LeCam deficiency goes to 0) to the
model (1.1) is given by the heteroscedastic white noise model

dY n
t = f(t)dt+

σ√
nµ(t)

dBt, t ∈ [0, 1], (3.9)

where B is a Brownian motion. In view of the result (3.3) by Donoho (1994), which is
stated in the model (3.2), and comparing the noise levels in the models (3.2) and (3.9)
(with σ = 1), we can explain informally that our rate rn,µ(·) comes from the former rate
ψn where we ”replace” n by nµ(x).
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SHARP ESTIMATION WITH RANDOM DESIGN 5

About theorem 2. From Bertin (2004b), we know when s ∈ (0, 1] that

liminfn infbfn

sup
f∈Σ

En
f,µ

{
w(v−1

n,µ‖f̂n − f‖∞)
}

> w(P ),

where vn,µ = [log n/(n infx µ(x))]s/(2s+1). An immediate consequence is

liminfn infbfn

sup
f∈Σ

En
f,µ

{
w

(
sup

x∈[0,1]
rn,µ(x)−1|f̂n(x)− f(x)|

)}
> w(P ), (3.10)

where it suffices to use the fact that rn,µ(x) 6 vn,µ for any x ∈ [0, 1]. This entails that rn,µ(·)
is optimal in the classical minimax sense. However, this lower bound is much weaker than
the one considered in theorem 2: it does not exclude the existence of another normalisation
%n(·) such that %n(x) < rn,µ(x) for ”many” x. Therefore, to prove the optimality of rn,µ(·),
we need to localise the lower bound. Indeed, in theorem 2, if we choose In = [0, 1] we find
back (3.10) and if In = [x̄− (log n)γ , x̄+ (log n)γ ] ∩ [0, 1] for any γ > 0 and x̄ ∈ [0, 1] such
that µ(x̄) 6= infx∈[0,1] µ(x), then obviously vn,µ does not satisfy (2.6).

About assumption D. In assumption D, µ is supposed to be bounded from below, and
from above since it is continuous over [0, 1]. When µ is vanishing or exploding at a fixed
point, we know from Gäıffas (2005a) that a wide range of pointwise minimax rates can be
achieved, depending on the behaviour of µ at this point. In this case, we expect the optimal
normalisation (whenever it exists) to differ from the classical minimax rate ψn not only up
to the constants, but in order.

Adaptation to the smoothness. The estimator used in theorem 1 depends on the
smoothess s of f (see below). In practice, such a parameter is unknown. Therefore, this es-
timator cannot be used directly: some smoothness-adaptive technique, like Lepski’s method
(see Lepski et al. (1997)) can be applied. However, this estimator is considered here for
theoretical purposes only, and note that even in the white noise model, the problem of sharp
adaptive estimation in sup norm over Hölder classes remains open when s > 1.

4. Construction of an estimator

The estimator f̂n described below uses both kernel and local polynomial methods. Its
construction is divided into two parts: first, at some well-chosen discretization points, we
use a Nadaraya-Watson estimator with optimal kernel and a design data driven bandwidth.
This part of the estimator is used to attain the minimax constant. Then, between the
discretization points, the estimator is defined by a Taylor expansion where the derivatives
are estimated by local polynomial estimation. We define the empirical design sample dis-
tribution

µ̄n :=
1
n

n∑
i=1

δXi ,

where δ is the Dirac mass, and for h > 0, x ∈ [0, 1], we consider the intervals

I(x, h) :=

{
[x, x+ h] when 0 6 x 6 1/2,
[x− h, x] when 1/2 < x 6 1.

(4.1)

The choice of non-symmetrical intervals allows to skip boundaries effects. Then we define,
when it makes sense, the ”bandwidth” at x by

Hn(x) := argmin
h∈[0,1]

{
h s.t. h2sµ̄n(I(x, h)) > log n/n

}
, (4.2)
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6 S. GAÏFFAS

which makes the balance between the bias hs and the variance [log n/(nµ̄n(I))]1/2 of the
kernel estimator. When the event in (4.2) is empty (which occurs with a very small prob-
ability for large n), we take simply Hn(x) := max(1 − x, x). We consider the sequence of
points

xj := j∆n, ∆n := (log n)−2s/(2s+1)n−1/(2s+1), (4.3)

for j ∈ Jn := {0, . . . , [∆−1
n ]} where [a] is the integer part of a with xMn = 1, Mn = |Jn| (the

notation |A| stands also for the size of a finite set A). We define HM
n := maxj∈Jn Hn(xj).

From Leonov (1997, 1999) we know that the function ϕs defined by (2.4) is even and
compactly supported. We denote by [−Ts, Ts] its support and τn := min(2csTsH

M
n , δn)

where δn = (log n)−1 and cs is given by (3.7).
As usual with the estimation of a function over an interval, there is a boundary correction.

We decompose the unit interval into three parts [0, 1] = Jn,1∪Jn,2∪Jn,3 where Jn,1 := [0, τn],
Jn,2 := [τn, 1 − τn] and Jn,3 := [1 − τn, 1]. We also define Ja,n := {j|xj ∈ Ja,n} for
a ∈ {1, 2, 3}. If ϕs is defined by (2.4), we consider the kernel

Ks := ϕs/
∫
ϕs. (4.4)

The ”sharp” part of the estimator is defined as follows: at the points xj , we define f̂n by

f̂n(xj) :=



1
nHn(xj)

n∑
i=1

YiKs

( Xi − xj

csHn(xj)

)
max

[
δn,

1
nHn(xj)

n∑
i=1

Ks

( Xi − xj

csHn(xj)

)] if j ∈ J2,n,

f̄n(xj) if j ∈ J1,n ∪ J3,n.

(4.5)

This estimator is (up to the correction near the boundaries) a Nadaraya-Watson estimator
with the optimal kernel Ks and a bandwidth fitted to the local amount of data. The
boundary estimator f̄n is defined below.

We recall that k = bsc where s is the smoothness of the unknown signal f . For any
interval I ⊂ [0, 1] such that µ̄n(I) > 0, we define the inner product

〈f , g〉I :=
1

µ̄n(I)

∫
I
fg dµ̄n,

where
∫
I f dµ̄n =

∑
Xi∈I f(Xi)/n. If I = I(x, h) (see (4.1)), we define φI,m(y) := (y − x)m

and we introduce the matrix XI and vector YI with entries

(XI)p,q := 〈φI,p , φI,q〉I and (YI)p := 〈Y , φI,p〉I ,

for 0 6 p, q 6 k. Then, we consider

X̄I := XI +
1√

nµ̄n(I)
Ik+1 1Ωc

n,I
,

where Ωn,I :=
{
λ(XI) > (nµ̄n(I))−1/2

}
, where λ(M) is the smallest eigenvalue of a matrix

M and where Ik+1 is the identity matrix on Rk+1. Note that the correction term in X̄I

entails λ(X̄I) > (nµ̄n(I))−1/2. When µ̄n(I) > 0, the solution θ̂I of the system

X̄Iθ = YI ,

is well defined. If µ̄n(I) = 0, we take θ̂I = 0. Then, for any 1 6 m 6 k, a natural estimate
of f (m)(xj) is

f̃ (m)
n (xj) := m!(θ̂I(xj ,hn))m,
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SHARP ESTIMATION WITH RANDOM DESIGN 7

where hn := (σ/L)2/(2s+1)(log n/n)1/(2s+1). The boundary estimator is given by f̄n(xj) :=
(θ̂I(xj ,tn))0, where tn := (σ/L)2/(2s+1)n−1/(2s+1). If we define

Γn,I :=
{

min
16m6k

‖φI,m‖I > n−1/2
}
, (4.6)

where ‖ · ‖2
I = 〈· , ·〉I , then for x ∈ [xj , xj+1), j ∈ Jn, we take

f̂n(x) := f̂n(xj) +
( k∑

m=1

f̃
(m)
n (xj)
m!

(x− xj)m
)
1Γn,I(xj,hn)

. (4.7)

5. Proof of theorem 1

The whole section is dedicated to the proof of theorem 1. For the sake of brevity, we skip
some elements of the proof. A self-contained proof can be found in Gäıffas (2005b), any proof
missing here (of the lemmas, mainly) can be found therein. We denote by Xn the sigma-
algebra generated by X1, . . . , Xn and by Pn

µ the joint law of X1, . . . , Xn. We recall that the
discretization points xj are given by (4.3). We introduce hn,µ(x) := [log n/(nµ(x))]1/(2s+1),
and it is convenient to introduce for j ∈ Jn: Hj := Hn(xj), hj := hn,µ(xj), µj := µ(xj) and
rj := rn,µ(xj).

Step 1: approximation by the discretized risk. We introduce the uniform risk

En,f := sup
x∈[0,1]

rn,µ(x)−1|f̂n(x)− f(x)|,

and its discretized version E∆
n,f := supj∈Jn

r−1
j |f̂n(xj) − f(xj)|. In view of assumption D,

we obtain supx∈[xj ,xj+1] |rn,µ(x)−1 − r−1
j | = o(1)r−1

j . Thus, since f ∈ ΣQ(s, L), writing the
Taylor expansion of f at x ∈ [xj , xj+1], we obtain:

En,f 6 (1 + o(1))
(
E∆

n,f + max
j∈Jn

r−1
j

k∑
m=1

|f̃ (m)
n (xj)− f (m)(xj)|

∆m
n

m!

)
+O(δs

n),

where we recall that δn = (log n)−1. In this step, we need the following lemma, which
provides a control over the local polynomial estimator uniform risk. Its proof can be found
in Gäıffas (2005b).

Lemma 1. There is an event Cn ∈ Xn such that, under assumption D,

Pn
µ

{
Cc

n

}
6 exp

(
−DCn

s/(2s+1)
)
, (5.1)

where DC > 0, and a centered Gaussian vector W ∈ R(k+1)Mn with En
f,µ{W 2

p } = 1, 0 6 p 6
(k + 1)Mn, such that on Cn, one has for any 0 6 m 6 k and f ∈ Σ(s, L):

max
j∈Jn

|f̃ (m)
n (xj)− f (m)(xj)| = O(hs−m

n )(1 + (log n)−1/2WM ), (5.2)

where WM := max06p6(k+1)Mn
|Wp|. For the estimator near the boundaries, we have on

Cn, for a = 1 (the case a = 3 is similar):

max
j∈J1,n

|f̄n(xj)− f(xj)| = O(tsn)(1 +W (1)), (5.3)

where W (1) = max06p6(k+1)|J1,n| |Wp|.

In view of (5.2), we have on Cn, for any 1 6 m 6 k:

max
j∈Jn

r−1
j |f̃ (m)

n (xj)− f (m)(xj)|∆m
n /m! = O(δm

n )(1 + (log n)−1/2WM ),
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then En,f1Cn 6 (1 + o(1))E∆
n,f1Cn + O(δn)(1 + δ

1/2
n WM ) + o(1). Let us define the event

Wn := {|WM − En
f,µ{WM}| 6 δ−1

n }. Since W is a centered Gaussian vector such that
En

f,µ{W 2
p } = 1 for 0 6 p 6 (k + 1)Mn, it is well known (see for instance in Ledoux and

Talagrand (1991)) that En
f,µ{WM} 6 [2 log((k + 1)Mn)]1/2 = O(δ−1/2

n ) and

Pn
f,µ{Wc

n} 6 2 exp(−δ−2
n /2). (5.4)

Thus,
En,f1Cn∩Wn 6 (1 + o(1))E∆

n,f1Cn + o(1). (5.5)

Step 2: some events study. In what follows, it is convenient to write K instead of Ks,
and to introduce

Kij := K[(Xi − xj)/(cshj)], K̄ij := K[(Xi − xj)/(csHj)],

and qj := ncshjµj , q̄j := ncsHjµj , where cs is given by (3.7). We introduce also

Q̄j :=
∑n

i=1K̄ij , Qj :=
∑n

i=1Kij , Sj :=
∑n

i=1K̄
2
ij ,

and the events

An,j :=
{∣∣Q̄j/q̄j − 1

∣∣ 6 LAδ
min(s,1)
n

}
, Bn,j :=

{∣∣Qj/qj − 1
∣∣ 6 δn

}
,

Cn,j :=
{
|Hj/hj − 1| 6 δn

}
, En,j :=

{∣∣Sj/qj − ‖K‖2
2

∣∣ 6 LEδ
min(s,1)
n

}
,

Bn :=
⋂

j∈J2,n

(
An,j ∩ Bn,j ∩ En,j

)
∩

⋂
j∈Jn

Cn,j , (5.6)

where LA and LE are some fixed positive constants, δn = (log n)−1, and the sets of indices
Ja,n are defined in section 4. In this step, we control the probabilities of these events.

For j ∈ J2,n, we consider the sequence of i.i.d variables ζij := Kij − En
µ{Kij}, 1 6 i 6 n.

Since µ ∈ Σq(ν, %) and
∫
K = 1, we have for n large enough |En

µ{K1j}/qj − 1| 6 δn/2, thus
Bc

n,j ⊂
{
|
∑n

i=1 ζij |/qj 6 δn/2
}
. Since |ζij | 6 2‖K‖∞ and

∑n
i=1 En

µ{ζ2
ij} 6 (1 + δn)qj

∫
K2

for n large enough, Bernstein inequality entails Pn
µ{Bc

n,j} 6 2 exp(−D1δ
2
nn

2s/(2s+1)), for
any j ∈ J2,n, where D1 is a positive constant. Since ϕs ∈ Σ(s, 1; R), we have K ∈
Σ(min(s, 1), LK ; R) where LK := (

∫
ϕs)−1 if 0 < s 6 1 and LK := ‖K ′‖∞ if s > 1.

Since Supp K = [−Ts, Ts], we have on Cn,j

|K̄ij −Kij | 6 LKT
min(s,1)
s [δn/(1− δn)]min(s,1)1Mij = o(1)1Mij , (5.7)

where Mij := {|Xi − xj | 6 csTs(1 + δn)hj}. We define ηij := 1Mij − Pn
µ{Mij}. Then, we

obtain that on Cn,j and for n large enough, taking LA := 4(LKT
min(s,1)+1 + 1),

Pn
f,µ{Ac

n,j ∩ Cn,j} 6 Pn
µ

{
|
∑n

i=1 ηij | > δ
min(s,1)
n qj

}
+ Pn

µ{|
∑n

i=1 ζij | > δ
min(s,1)
n qj/2}.

Then, applying Bernstein inequality to the sum of variables ηij and ζij , 1 6 i 6 n, we obtain
that for any j ∈ Jn,2, Pn

µ{Ac
n,j ∩ Cn,j} 6 2 exp(−D2δ

2
2,n n

2s/(2s+1)), where D2 is a positive

constant and δ2,n := δ
min(s,1)
n . We can prove Pn

µ{Ec
n,j ∩ Cn,j} 6 2 exp(−D3δ

2
2,nn

2s/(2s+1))
where D3 is a positive constant in the same way as previously, with an appropriate choice
for LE . If I = I(x, h) (see (4.1)) and δ1,n := 1 − (1 + δn)−(2s+1), we define the event
Nn,I :=

{∣∣µ̄n(I)/(µ(x)h)− 1
∣∣ 6 δ1,n

}
. From the definitions of Hj and hj , we obtain

{(1− δn)hj < Hj} =
{
(1− δn)2sh2s

j < log n/
(
nµ̄n(I(xj , (1− δn)hj))

)}
=

{ µ̄n(I(xj , (1− δn)hj))
µj(1− δn)hj

6 (1− δn)−(2s+1)
}
,

and then Nn,I(xj ,(1−δn)hj) ⊂ {(1− δn)hj < Hj}. We can prove in the same way that on the
other hand Nn,I(xj ,(1+δn)hj) ⊂ {(1 + δn)hj > Hj}, hence

Nn,I(xj ,(1−δn)hj) ∩Nn,I(xj ,(1+δn)hj) ⊂ Cn,j . (5.8)
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If I = I(x, h), we have in view of assumption D that |
∫
I µ(t)dt − hµ(x)|= O(hν+1), thus,

if Zi := 1Xi∈I −
∫
I µ(t)dt, we have {|

∑n
i=1 Zi|6 nµ(x)hδn,1/2} ⊂ Nn,I for n large enough.

Then, using Bernstein inequality to the sum of Zi, 1 6 i 6 n, we obtain Pn
µ{Cc

n,j} 6

2 exp(−DCδ
2
1,nn

2s/(2s+1)), for n large enough, where DC > 0 is fixed. Using together the
previous inequalities, we obtain

Pn
µ{Bc

n} 6 exp(−DBn
s/(2s+1)) (5.9)

for n large enough, where DB > 0 is fixed.

Step 3: controls on E∆
n,f . We need the following lemma, which is proven in Gäıffas

(2005b).

Lemma 2. There is an event An ∈ Xn such that, under assumption D,

Pn
µ{Ac

n} 6 exp(−DAn
s/(2s+1)) (5.10)

for n large enough, where DA > 0 and such that

An ⊂ Bn ∩ Cn ∩ Γn, (5.11)

where Bn is given by (5.6), Cn by lemma 1 and Γn :=
⋂

j∈Jn
Γn,I(xj ,hn) where Γn,I is defined

by (4.6).

In this step, we prove that for any ε > 0, when n is large enough, the following inequality
holds:

sup
f∈ΣQ(s,L)

Pn
f,µ{E∆

n,f1An > (1 + ε)P} 6 exp
(
−DE ε(1 ∧ ε)(log n)2s/(2s+1)

)
, (5.12)

where DE > 0, and we prove that

sup
f∈ΣQ(s,L)

En
f,µ

{
w2(E∆

n,f1An)
}

= O(1). (5.13)

We decompose the risk into E∆
n,f = E∆,1

n,f +E∆,2
n,f +E∆,3

n,f where E∆,a
n,f := supj∈Ja,n

r−1
j |f̂n(xj)−

f(xj)|. For a = 1 and a = 3, E∆,a
n,f is the risk at the boundaries of [0, 1]. Since on Bn,

Q̄j/q̄j > 1−LAδ
min(s,1)
n > δn for n large enough, the denominator in (4.5) is larger than δn.

Hence, we can decompose on Bn the middle risk into bias and variance terms as follows:

E∆,2
n,f 6 bn,f + Un,f + Zn, (5.14)

where the variance term is given by Zn := maxj∈J2,n |Zn,j |, Zn,j := r−1
j

∑n
i=1 ξiWij with

Wij := K̄ij/Q̄j , and the bias terms are bn,f := maxj∈J2,n |bn,f,j |, Un,f := maxj∈J2,n |Un,f,j |,
where bn,f,j := En

f,µ{Bn,f,j1Bn}, Un,f,j := Bn,f,j − bn,f,j with Bn,f,j := r−1
j P̄j/Q̄j , P̄j :=∑n

i=1(f(Xi)− f(xj))K̄ij . We use the three following inequalities: we have

limsupn sup
f∈Σ(s,L)

bn,f 6 LcssB(s, 1), (5.15)

where B(s, L) is defined by (3.6), and there is a constant DU > 0 such that for any ε > 0,

sup
f∈Σ(s,L)

Pn
f,µ

{
Un,f1Bn > ε

}
6 exp

(
−DU ε(1 ∧ ε)n2s/(2s+1)

)
. (5.16)

Moreover, we have for any ε > 0,

sup
f∈ΣQ(s,L)

Pn
f,µ

{
Zn1Bn > (1 + ε)Lcss‖K‖2

}
6 2(log n)2s/(2s+1)n−ε/(2s+1). (5.17)
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Inequalities (5.15) and (5.17) are proven below in the section, the proof of (5.16) can be
found in Gäıffas (2005b). In view of (5.15), we have bn,f 6 (1 + 2ε)LcssB(s, 1) for n large
enough, and using (3.8) we obtain

{E∆,2
n,f 1Bn > (1 + 2ε)P} ⊂ {Zn1Bn > (1 + ε)Lcss‖K‖2} ∪ {Un,f1Bn > εLcss‖K‖2}.

Then, in view of (5.16) and (5.17), it is easy to find D2 > 0 such that uniformly for
f ∈ ΣQ(s, L) and n large enough,

Pn
f,µ

{
E∆,2

n,f 1Bn > (1 + 2ε)P
}

6 exp
(
−D2 ε(1 ∧ ε) log n

)
. (5.18)

Now, we consider the boundary risk E∆,1
n,f (the result is the same for E∆,3

n,f ). In view of (5.3),

we obtain E∆,1
n,f 1Cn = O(δs/(2s+1)

n )(1 + W (1)), and we have as previously En
f,µ{W (1)} =

O((log log n)1/2), since |J1,n| = O(log n), and for any λ > 0, Pn
f,µ

{
W (1) − En

f,µ{W (1)} >
λ
}

6 2 exp(−λ2/2). Then, for some D3 > 0, we obtain when n is large enough

Pn
f,µ

{
E∆,1

n,f 1Cn > 2εP
}

6 2 exp
(
−D3ε

2δ−2s/(2s+1)
n

)
.

This inequality, together with (5.18) and the fact that An ⊂ Bn ∩ Cn (see lemma 2) en-
tails (5.12). To prove (5.13), since w(x) 6 A(1 + |x|b), it suffices to use (5.12) and the fact
that En

f,µ{(E∆
n,f )p1An} = p

∫ +∞
0 tp−1Pn

f,µ{E∆
n,f1An > t}dt for any p > 0.

Step 4: conclusion of the proof. We need the following inequality, which is proven in
Gäıffas (2005b):

sup
f∈ΣQ(s,L)

En
f,µ

{
w2(En,f )

}
= O

(
n2b(1+s/(2s+1))

)
. (5.19)

Since w(·) is nondecreasing, we have for any ε > 0

En
f,µ{w(En,f )} 6 En

f,µ{w(En,f )1An∩Wn}+ En
f,µ{w(En,f )1Ac

n∪Wc
n
}

6 w((1 + 2ε)P ) +
(
En

f,µ{w2(En,f )}Pn
f,µ{Ac

n ∪Wc
n}

)1/2

+
(
En

f,µ

{
w2

(
(1 + 2ε)E∆

n,f1An

)}
Pn

f,µ{E∆
n,f1An > (1 + ε)P}

)1/2

6 w((1 + 2ε)P ) +O
(
nb(1+s/(2s+1)) exp(−(log n)2/4)

)
+O

(
exp(−DE ε(1 ∧ ε)(log n)2s/(2s+1))

)
= w((1 + 2ε)P ) + o(1),

where we used together lemma 2, equations (5.4), (5.12), (5.13), (5.19), and the fact that
w(·) is continuous. Thus, limsupn supf∈ΣQ(s,L) En

f,µ{w(En,f )} 6 w((1 + 2ε)P ), which con-
cludes the proof of theorem 1 since ε can be chosen arbitrarily small. �

Proof of (5.15). On An,j ∩ Cn,j we have (1 − o(1))qj 6 Q̄j 6 (1 + o(1))qj and since
Bn ⊂ An,j ∩ Cn,j for any j ∈ J2,n, we have

|bn,f,j | = r−1
j |En

f,µ{(P̄j/Q̄j)1Bn}| 6 (1 + o(1))(rjqj)−1|En
f,µ{P̄j1Bn}|.

Using (5.7), and introducing νf,j(x) := 1f(x)>f(xj) − 1f(x)<f(xj), Pj :=
∑n

i=1(f(Xi) −
f(xj))Kij , Rij := νf,j(Xi)(f(Xi)− f(xj))1Mij and Rj :=

∑n
i=1Rij , we obtain

|En
f,µ{P̄j1Bn}

∣∣ 6 |En
f,µ{Pj}|+ o(1)|En

f,µ{Rj}|.

Since bn,f and Un,f only depend on f via its values in [0, 1], we have supf∈Σ(s,L) bn,f =
supf∈Σ(s,L;R) bn,f and supf∈Σ(s,L) Un,f = supf∈Σ(s,L;R) Un,f . Thus, together with the fact
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that Σ(s, L; R) is invariant by translation and since µ ∈ Σq(ν, %), we obtain

sup
f∈Σ(s,L;R)

bn,f,j 6 (1 + o(1)) sup
f∈Σ(s,L;R)

max
j∈J2,n

1
rj

(∣∣ ∫
(f(cshjy)− f(0))K(y)dy

∣∣
+ o(1)

∫
|y|62T

|f(cshjy)− f(0)|dy
)
.

Now, we use an argument which is known as renormalisation, see Donoho and Low (1992).
We introduce the functional operator Ua,bf(·) := af(b ·). We have that f ∈ Σ(s, L; R) is
equivalent to Ua,bf ∈ Σ(s, Labs; R). Then, choosing a = (Lcssh

s
j)
−1 and b = cshj entails

sup
f∈Σ(s,L;R)

bn,f 6 (1 + o(1))LcssB(s, 1) + o(1),

and the result follows. �

Proof of (5.17). Conditionally on Xn, Zn,j is centered Gaussian with variance v2
j :=

σ2r−2
j

∑n
i=1W

2
ij . On Bn, we have for any j ∈ J2,n and n large enough

n∑
i=1

W 2
ij =

Sj

(Q̄j)2
6 (1 + o(1))

‖K‖2
2

qj
6 (1 + ε)

‖K‖2
2r

2
j

cs log n
,

where we used the definition of hn,µ(x), hence v2
j 6 (1 + ε)σ2‖K‖2

2/(cs log n). Using the
fact that P (|N(0, v2)| > λ) 6 2 exp(−λ2/(2v2)), we obtain

Pn
f,µ{|Zn,j |1Bn > (1 + ε)Lcss‖K‖2} 6 2 exp

(
− (1 + ε)

2s+ 1
log n

)
= 2n−(1+ε)/(2s+1),

and the result follows, since |J2,n| 6 Mn 6 (log n)2s/(2s+1)n1/(2s+1). �

6. Proof of theorem 2

The proof of the lower bound consists in a classical reduction to the Bayesian risk over an
hardest cubical subfamily of functions, see Korostelev (1993), Donoho (1994), Korostelev
and Nussbaum (1999) and Bertin (2004b). A more detailed proof can be found in Gäıffas
(2005b). The main difference with the former proofs is that the subfamily of functions
depends on the design via the bandwidth hn,µ(x), and that we work within a ”small” interval
In. We recall that ϕs is defined by (2.4) and that it has compact support [−Ts, Ts]. Let
hI

n := maxx∈In hn,µ(x) and Ξn := 2Tscs(21/(s−k) + 1)hI
n. If In = [an, bn], Mn := [|In|Ξ−1

n ],
we define the points

xj := an + j Ξn, j ∈ Jn := {1, . . . ,Mn}. (6.1)

We denote again µj = µ(xj), hj = hn,µ(xj). Let us define the event

Hn,j :=
{∣∣∣ 1
ncshjµj

n∑
i=1

ϕ2
s

(Xi − xj

cshj

)
− 1

∣∣∣ 6 ε
}
,

and Hn := ∩j∈JnHn,j . Together with the fact that ‖ϕs‖2 = 1, we obtain using Bernstein
inequality that

lim
n→+∞

Pn
µ{Hn} = 1. (6.2)

The subfamily of functions is defined as follows: we consider an hypercube Θ ⊂ [−1, 1]Mn ,
and for θ ∈ Θ, we define f(x; θ) :=

∑
j∈Jn

θjfj(x), where fj(x) := Lcssh
s
jϕs

(x−xj

cshj

)
, so that

f(·; θ) ∈ Σ(s, L). For any j ∈ Jn, we define the statistics

yj :=
∑n

i=1 Yiϕs(Xi)∑n
i=1 ϕ

2
s(Xi)

.
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Since the fj have disjoint supports, we have that conditionally on Xn, the yj are Gaussian
independent with En

f,µ{yj |Xn} = θj . Moreover, if v2
j := En

f,µ{y2
j |Xn}, we have on Hn

2s+ 1
2(1 + ε) log n

6 v2
j 6

2s+ 1
2(1− ε) log n

. (6.3)

In the model (1.1) with f(·) = f(· ; θ), conditionally on Xn, the likelihood function of
(Y1, . . . , Yn) can be written on Hn in the form

dPn
f,µ

dλn
|Xn(Y1, . . . , Yn) =

n∏
i=1

gσ(Yi)
∏

j∈Jn

gvj (yj − θj)
gvj (yj)

, (6.4)

where gv is the density of N(0, v2), and λn is the Lebesgue measure over Rn. In the
following, we denote Σ = Σ(s, L) and EI

n,f,T := supx∈I rn,µ(x)−1|T (x)− f(x)|. Since w(·) is
nondecreasing and f(· ; θ) ∈ Σ for any θ ∈ Θ, we have for any probability distribution B on
Θ, by a minoration of the minimax risk by the Bayesian risk,

inf
T

sup
f∈Σ

En
f,µ

{
w(EI

n,f,T )
}

> w
(
(1− ε)P

)
inf
T

∫
Θ

Pn
θ

{
EI

n,f,T > (1− ε)P
}
B(dθ),

where Pn
θ := Pn

f(· ;θ),µ. Since by construction f(xj ; θ) = rjθjP and xj ∈ In, we obtain

inf
T

∫
Θ

Pn
θ

{
EI

n,f,T > (1− ε)P
}
B(dθ) >

∫
Hn

infbθ
∫

Θ
Pn

θ

{
max
j∈Jn

|θ̂j − θj | > 1− ε|Xn

}
B(dθ)dPn

µ,

where infbθ is taken among any measurable vector (with respect to the observations (1.1))
in RMn . Then, we note that theorem 2 follows from (6.2) if we prove that on Hn,

supbθ
∫

Θ
Pn

θ

{
max
j∈Jn

|θ̂j − θj | < 1− ε|Xn

}
B(dθ) = o(1). (6.5)

We choose Θ := ΘMn
ε where Θε := {−(1 − ε), 1 − ε} and B :=

⊗
j∈Jn

bε where bε :=
(δ−(1−ε) + δ1−ε)/2. Note that using (6.4), the left hand side of (6.5) is smaller than∫ ∏n

i=1 gσ(Yi)∏
j∈Jn

gvj (yj)

( ∏
j∈Jn

supbθj∈R

∫
Θε

1|bθj−θj |<1−ε
gvj (yj − θj)dbε(θj)

)
dY1 . . . dYn,

and θ̂j = (1− ε)1yj>0− (1− ε)1yj<0 are strategies attaining the maximum. Thus, it suffices
to prove the lower bound among estimators θ̂ with coordinates θ̂j ∈ Θε and measurable
with respect to yj only. Since the yj are independent with density gvj (· − θj), the left hand
side of (6.5) is smaller than∏

j∈Jn

(
1− infbθj∈Θε

∫
Θε

∫
R
1|bθj(u)−θj |>1−ε

gvj (u− θj)du dbε(θj)
)
,

and if Φ(x) :=
∫ x
−∞ g1(t)dt and D1 is a positive constant,

infbθj∈Θε

∫
Θε

∫
R
1|bθj(u)−θj |>1−ε

gvj (u− θj)du dbε(θj)

> infbθj∈Θε

1
2

∫
R

(
1bθj>0

+ 1bθj<0

)
gvj (u− (1− ε)) ∧ gvj (u+ (1− ε))du

=
1
vj

∫ 0

−∞
g1

(y − (1− ε)
vj

)
du = Φ

(
− 1− ε

vj

)
>

D1√
log n

n−(1−ε)2(1+ε)/(2s+1),
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where we used (6.3) and the fact that for x > 0, Φ(−x) = (1 + o(1)) exp(−x2/2)/(x
√

2π)
If Ln := n−(1−ε)2(1+ε)/(2s+1)(log n)−1/2, it follows that the left hand side of (6.5) is smaller
than (1−D1Ln)Mn 6 exp

(
|In|Ξ−1

n log
(
1−D1Ln

))
, and if D2 is a positive constant,

|In|Ξ−1
n Ln = D2|In|nε/(2s+1) × nε2(1−ε)/(2s+1)(log n)−1/2−1/(2s+1) → +∞

as n→ +∞, since |In|nε/(2s+1) → +∞, thus the theorem. �
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