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A note on uniform consistency of monotone
function estimators

Natalie Neumeyeri

Abstract

Recently, Dette, Neumeyer and Pilz (2006) proposed a new monotone estimator for
strictly increasing nonparametric regression functions and proved asymptotic normal-
ity. We explain two modifications of their method that can be used to obtain monotone
versions of any nonparametric function estimators, for instance estimators of densities,
variance functions or hazard rates. The method is appealing to practitioners because
they can use their favorite method of function estimation (kernel smoothing, wavelets,
orthogonal series,. . . ) and obtain a monotone estimator that inherits desirable prop-
erties of the original estimator. In particular, we show that both monotone estimators
share the same rates of uniform convergence (almost sure or in probability) as the
original estimator.

MSC 2000: 62G05

KEYWORDS: function estimator, kernel method, monotonicity, uniform convergence

1 Introduction

During the last decades much effort has been devoted to the problem of estimating monotone

functions. Estimating a monotone density function was considered by Grenander (1956),

Groeneboom (1985), Groeneboom and Lopuhaä (1993), Datta (1995), Cheng, Gasser und

Hall (1999), and van der Vaart and van der Laan (2003), among others. Even more literature

can be found about estimating increasing regression functions, starting with Brunk (1958),

Barlow, Bartholomew, Bremmer and Brunk (1972), Mukerjee (1988), Mammen (1991), Ram-

say (1988), and Hall and Huang (2001), among many others. For censored data Huang and

Zhang (1994) and Huang and Wellner (1995) consider estimators for a monotone density

and monotone hazard rate. For monotone estimators of a hazard rate see also Mukerjee and

Wang (1993) and Hall, Huang, Gifford and Gijbels (2001).

Appealing to users of common kernel methods is a new method proposed by Dette, Neumeyer

and Pilz (2006) for nonparametric regression functions and by Dette and Pilz (2004) for

variance functions in nonparametric regression models. The considered estimator is easy to

iDepartment Mathematik, Schwerpunkt Stochastik, Universität Hamburg, Bundesstrasse 55, 20146 Ham-
burg, Germany, e-mail: neumeyer@math.uni-hamburg.de. The financial support of the Deutsche Forschungs-
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implement, is based on kernel estimators, and, in contrast to many other procedures, does

not require any optimization over function spaces. To obtain a monotone estimator for a

strictly increasing function g (here g : [0, 1] → R denotes the regression or variance function),

the method consists of first monotonically estimating the distribution function of g(U), i. e.

h(t) = P (g(U) ≤ t), by a kernel method, where U is uniformly distributed in [0, 1]. The

first step uses a (not necessarily increasing) kernel estimator ĝ for g. More precisely, the

estimator for h is an integrated kernel density estimator,

ĥ(t) =

∫ t

−∞

1

N

N∑
i=1

1

a
k
(x − ĝ( i

N
)

a

)
dx,(1.1)

where k denotes a density function, a = aN = o(1) a sequence of bandwidths and N converges

to infinity. Noting that h(t) = g−1(t), an increasing estimator for g is then obtained by

inversion of ĥ. Asymptotic normality of the constrained estimator is shown in Dette et al.

(2006). An alternative method to obtain the estimator for g−1 is mentioned but not further

developed in the aforementioned references, namely using

ĥ(t) =

∫ 1

0

I{ĝ(x) ≤ t} dx(1.2)

(where I denotes the indicator function) as an estimator for
∫ 1

0
I{g(x) ≤ t} dx = g−1(t)

(where g is increasing). Note that Dette et al.’s (2006) proof for the asymptotic distribution

of ĥ defined in (1.1) and its inverse is not easily generalized to obtain asymptotic results

about the estimator based on (1.2). The approach to use the inverse ĥ−1 as an estimator

for g, where ĥ is defined in (1.2) is related to nondecreasing rearrangements of data con-

sidered by Ryff (1965,1970), and is in principle similar to Polonik’s (1995,1998) work, who

constructs estimators for a density f from the identity f(x) =
∫ ∞
0

I{f(x) ≥ t} dt. Here, the

density contour clusters {x : f(x) ≥ t} are estimated by the so-called excess mass approach.

By choosing the class of sets appropriately, for example, monotone density estimators are

obtained. In this case the estimator coincides with Grenander’s (1956) estimator. In a more

general context, Polonik (1995) shows L1-consistency of the obtained estimators. The ap-

proach is related to the estimation of density level sets, see Tsybakov (1997), among others.

In the paper at hand properties of the two methods [using the inverse of (1.1) or (1.2),

respectively, as a monotone estimator of g] will be compared. Both methods are not restricted

to monotone estimation of regression or variance functions, neither to the case of kernel or

local linear estimators used in the first step. These restricted cases were considered in Dette et

al. (2006) to prove asymptotic normality of the new estimators and first order equivalence to

the unconstrained estimator. In these references it was also crucial to assume the function g

to be strictly increasing with positive derivative. Here we consider the general case to modify

any function estimator (using kernels, local polynomials, nearest-neighbors, wavelets, splines,
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orthogonal series, . . . ) for any function (density, regression function, variance function,

hazard function, . . . ) with compact support (or support bounded on one side) to obtain

a monotone (either nondecreasing or strictly increasing) estimator. The estimators do not

need to be based on an independent and identically distributed sample but can be based on

dependent observations such as time series, or on censored observations. Also the original

estimators are not supposed to be nonparametric but can be either non-, semi- or parametric.

We only assume knowledge about uniform consistency of the original estimator used in the

first step.

Both procedures [based on (1.1) and (1.2)] to obtain monotone versions of any function

estimator are explained in detail in Section 2. We will show that the monotone modifications

of the estimator share the same rates of uniform convergence (almost sure or in probability)

as the original unconstrained estimator, see Section 3. Some examples of applications are

also given in Section 3 and the details of the proofs are deferred to Section 4.

Throughout the text we call a function g nondecreasing provided that x < y implies that

g(x) ≤ g(y) and increasing provided that x < y implies that g(x) < g(y). Further, f |A
denotes the function f with domain restricted to the set A.

2 Monotone modifications of function estimators

We explain in the following the method to obtain a monotone modification of any function

estimator ĝ of an unknown function g, where g is nondecreasing. We restrict ourselves first

to the case of a compact support of the target function g. Only for the ease of presentation

this support is assumed to be [0, 1]. Changes in the methods for noncompact supports will

be discussed at the end of Section 3.

For any Lebesgue–measurable function f : [a, b] → R we define a function Φ(f) : R → R by

Φ(f)(z) =

∫ b

a

I{f(x) ≤ z} dx + a, z ∈ R.

For an increasing function f , the function Φ(f)|[f(a),f(b)] is just the inverse f−1. If f is only

nondecreasing, then Φ(f)|[f(a),f(b)] is the generalized inverse f−1(t) = min(inf{u | f(u) >

t}, b) that may have jump points when f has constant parts. Whether f is nondecreasing or

not, Φ(f) is always nondecreasing. Also, Φ(f) is Lebesgue–measurable. Now for a Lebesgue–

measurable function h : [0, 1] → R we define a nondecreasing modification hI : [0, 1] → R

by

hI = Φ
(
Φ(h)|[h(0),h(1)]

)
|[0,1].

Then, for any nondecreasing function g : [0, 1] → R, we have gI = g and for an estimator

ĝ : [0, 1] → R for g, we call

ĝI = Φ
(
Φ(ĝ)|[ĝ(0),ĝ(1)]

)
|[0,1]

3



Acc
ep

te
d m

an
usc

rip
t 

an isotone modification of ĝ. We will show in Section 3 that the monotone estimator ĝI

shares the same rates of uniform convergence to g as ĝ.

A modification of the presented method uses a smooth approximation of the indicator func-

tion. To this end, let k denote a density function, K(y) =
∫ y

−∞ k(u) du the corresponding

distribution function, and an a sequence of positive bandwidths converging to zero for in-

creasing sample size. For any estimator ĝ : [0, 1] → R for g we define

Ψ(ĝ)(y) =

∫ 1

0

K
(y − ĝ(x)

an

)
dx

and an isotone modification ĝSI of ĝ by

ĝSI = Φ
(
Ψ(ĝ)|[ĝ(0),ĝ(1)]

)
|[0,1].

When K is increasing, the estimator ĝSI will be increasing (except for small areas at the

boundaries) in most cases. It will be constant, when ĝ is already constant. Note that in

contrast to ĝI , ĝSI will in general not coincide with ĝ, when ĝ is nondecreasing.

Both methods are appealing because every practitioner can use his or her favorite method

of function estimation like wavelets or orthogonal series and will obtain a nondecreasing

estimator that shares the same rate of uniform consistency and also shares a lot of desirable

properties of the original estimator because (when using the first method) the new estimator

will coincide with the original estimator on every interval where the unconstrained estimator

already is nondecreasing and the endpoints are singletons (compare Figure 1 (b)). Which

of the two methods to apply depends on the requirements one has for the estimator. When

using the first method there is no need for the choice of a bandwidth. Also, flat parts of g are

better reflected (we obtain a nondecreasing, not an increasing estimator). But the estimator

ĝI may be not differentiable in some points. With the smooth modification of the method

we can obtain increasing and smooth estimators ĝSI .

The following figure shows the monotone modifications hI and hSI for a monotone (Figure

1 (a)) and a not everywhere monotone function h (Figure 1 (b)).

We will also give asymptotic results for discrete versions, ĝI,d = Φ(Φ̃(ĝ)|[ĝ(0),ĝ(1)])|[0,1] and

ĝSI,d = Φ(Ψ̃(ĝ)|[ĝ(0),ĝ(1)])|[0,1] where the integrals in the definitions of ĝI and ĝIS are approxi-

mated by Riemann sums, i. e.

Φ̃(g)(y) =
1

N

N∑
i=1

I{ĝ(
i

N
) ≤ y}, Ψ̃(g)(y) =

1

N

N∑
i=1

K
(y − ĝ( i

N
)

a

)
.

The estimator ĝSI,d is very similar to the estimator based on inversion of (1.1), for which Dette

et al. (2006) showed asymptotic normality under some regularity assumptions. One could

also consider estimators Φ̃(Φ̃(ĝ)|[ĝ(0),ĝ(1)])|[0,1] and Φ̃(Ψ̃(ĝ)|[ĝ(0),ĝ(1)])|[0,1] but for the second

“inversion” a discretization is not expedient as Φ̃(ĝ) and Ψ̃(ĝ) are already monotone and for

a monotone function h we have just Φ(h) = inf{u | h(u) > ·}.
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Figure 1: The graphics show isotone modifications of the function h (solid line). The dotted

lines are hI in the left panels and hSI in the right panels with Epanechnikov–kernel k(x) =
3
4
(1−x2)I{−1 ≤ x ≤ 1} and bandwidth a = 0.2. The dashed curves are Φ(h) in the left panels

and Ψ(h) in the right panels. (a) nondecreasing function h(x) = hI(x) = 1
4
−4(x− 1

4
)2I{0 ≤

x ≤ 1
4
} + 4(x − 1

2
)2I{1

2
≤ x ≤ 1}; (b) not monotone function h(x) = 5x3 + 4x − 8x2.

3 Main results and applications

In this section we give conditions under which the isotone modifications of function estimators

share the same rate of uniform convergence as the original estimator. Let in the following

||h||∞ = supz∈[0,1] |h(z)| denote the supremum norm of a function h : [0, 1] → R.

Theorem 3.1 (a) Let g : [0, 1] → R be a nondecreasing function and ĝ : [0, 1] → R an

estimator for g. Then there exists a constant c such that for the isotone modification ĝI of

ĝ it holds that ||ĝI − g||∞ ≤ c||ĝ − g||∞.

(b) Let g : [0, 1] → R be an increasing twice differentiable function with bounded second

derivative such that the first derivative is bounded away from zero. Let ĝ : [0, 1] → R be an

estimator for g. Let k denote a symmetric density function with compact support and two

bounded derivatives. Let an = o(1) denote a sequence of positive bandwidths. Then there

exists a constant c such that for the increasing modification ĝSI of ĝ it holds that

||ĝSI − g||∞ ≤ c
(
||ĝ − g||∞ +

1

an
||ĝ − g||2∞ +

1

a3
n

||ĝ − g||3∞ + a2
n

)
.

Note that in Theorem 3.1 (b) [but not in (a)] we assume a first derivative bounded away

from zero, which rules out some common functions g. The constant c in Theorem 3.1

obtained in the proof is not claimed to be the best possible. In special cases (for example
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estimating a regression function by kernel methods) it might be possible to obtain sharper

bounds, but our results are valid very generally and the given proof is uncomplicated. In

the situation of Theorem 3.1 (a) we obtain uniform consistency of the estimator ĝI whenever

||ĝ − g||∞ = o(1) is known. Also, when rates of convergence are known for the original

estimator, i. e. ||ĝ − g||∞ = O(cn) for n → ∞ a.s. (in probability), then the same holds for

ĝI , i. e. ||ĝI − g||∞ = O(cn) for n → ∞ a.s. (in probability). The estimator ĝI based on the

indicator method works better to estimate constant functions or nondecreasing functions with

flat parts. Moreover, there is no need for choosing a bandwidth an when using this estimator.

In contrast, in the situation of Theorem 3.1 (b) uniform consistency of the estimator ĝSI can

only be obtained from rates of the uniform convergence of ĝ and by choosing the bandwidth

an accordingly. When it is known that ||ĝ − g||∞ = O(cn) for n → ∞ a.s. (in probability),

then it holds that

||ĝSI − g||∞ = O
(
cn +

c2
n

an
+

c3
n

a3
n

+ a2
n

)
for n → ∞ a.s. (in probability).

When a sequence of bandwidths an is chosen that satisfies cn = O(a
3/2
n ) and an = O(c

1/2
n )

we obtain the same rate O(cn) for the uniform convergence of the strictly increasing version.

Remark 3.2 The estimator ĝI is by definition forced to take values in [ĝ(0), ĝ(1)]. In some

cases this may not be desired and can lead to an estimator, which gives too much weight to

0 and 1. This could be repaired by defining ĝI = Φ(Φ(ĝ)|[m̂,M̂ ])|[0,1] for m̂ = minx∈[0,1] ĝ(x)

and M̂ = maxx∈[0,1] ĝ(x) [compare the estimator defined as the inverse of (1.1), which takes

values in the interval (mini=1,...,N ĝ( i
N

)−a, maxi=1,...,N ĝ( i
N

)+a)]. Then the results in Theorem

3.1 remain to hold provided that the estimator ĝ is such that m̂ and M̂ converge to m =

minx∈[0,1] g(x) = g(0) and M = maxx∈[0,1] g(x) = g(1), respectively, with the same rate as

||ĝ − g||∞. When this does not hold, then in terms of uniform convergence the originally

defined estimator ĝI has better asymptotic properties.

Note also that nonparametric function estimators often suffer from boundary problems. In a

case where ĝ has a slower rate of convergence in points near 0 and 1, it could be preferable

to consider rates of convergence of supx∈[ε,1−ε] |ĝ(x)− g(x)| for some small positive ε instead

of ||ĝ − g||∞. To maintain the same rate for supx∈[ε,1−ε] |ĝI(x) − g(x)| the definition of

the estimator ĝI should be suitably modified by restricting the intervals to [ε, 1 − ε] and

[ĝ(ε), ĝ(1− ε)] instead of [0, 1] and [ĝ(0), ĝ(1)], respectively. For example for a nondecreasing

function h : [0, 1] → R we have h|[ε,1−ε] = Φ(Φ(h|[ε,1−ε])|[h(ε),h(1−ε)])|[ε,1−ε].

For the discrete versions of the isotone modifications we have the following asymptotic results.

Theorem 3.3 (a) Let g : [0, 1] → R be an increasing differentiable function such that the

first derivative is bounded away from zero and let ĝ : [0, 1] → R be an estimator for g. Then

6
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there exists a constant c such that for the isotone modification ĝI,d of ĝ it holds that

||ĝI,d − g||∞ ≤ c
(
||ĝ − g||∞ +

1

N

)
.

(b) Let g, ĝ, k and an fulfill the assumptions of Theorem 3.1 (b). Then there exists a

constant c such that for the increasing modification ĝSI,d of ĝ it holds that

||ĝSI,d − g||∞ ≤ c
(
||ĝ − g||∞(1 +

1

Nan
) +

1

an
||ĝ − g||2∞(1 +

1

Na2
n

) +
1

a3
n

||ĝ − g||3∞

+
1

N
+

1

N2an
+

1

N3a3
n

+ a2
n

)
.

There are plenty of applications and we only mention a few. Whenever we have knowledge

about uniform consistency of a function estimate and a monotone uniformly consistent es-

timator is desired it is sensible to use one of the above methods. For example, uniform

almost sure consistency of kernel density estimators was shown by Silverman (1978), De-

vroye and Wagner (1978) and Stute (1982), among others. For kernel regression estimators

corresponding results can be found in Mack and Silverman (1982). Rates of uniform almost

sure convergence for variance function estimators in nonparametric regression models are a

by-product of Akritas and Van Keilegom (2001). Further, there is a vast literature about

uniform consistency of wavelet estimators for densities and regression functions based on iid

or time series or censored data, respectively, see, e. g., Masry (1997), Massiani (2003), among

others. Corresponding results about orthogonal series estimators can be found in publica-

tions by Chen (1981), Györfi and Walk (1996) and Newey (1997). Moreover, strong uniform

consistency of k-nearest neighbor estimators for regression and density functions based on iid

or dependent data is considered by Devroye and Wagner (1977) and Mack (1983). Uniform

consistency for different estimators of hazard rates is shown by Zhang (1996) and Collomb,

Hassani, Sarda and Vieu (1985). For each of the proposed estimators our method yields a

monotone version that shares the same rate of uniform convergence.

For example, let m denote the isotone regression function in a nonparametric regression

model Yi = m(Xi) + εi, i = 1, . . . , n with independent observations and univariate covari-

ates Xi ∈ [0, 1]. Let m̂ denote the common Nadaraya-Watson kernel regression estimator

with a sequence of positive bandwidths hn converging to zero. Under common regularity

assumptions (see Mack and Silverman, 1982) with suitable modifications at the boundaries

(or under restriction to the interval [ε, 1 − ε] for some small positive ε, compare Remark

3.2) it holds that ||m̂ − m||∞ = O(cn) for n → ∞ a.s., where cn = (log h−1
n /(nhn))1/2.

We obtain an isotone modification of the kernel estimator m̂, namely m̂I . This estima-

tor fulfills ||m̂I − m||∞ = O(cn) for n → ∞ a.s. For the smooth version m̂SI we obtain

||m̂SI−m||∞ = O(cn) for n → ∞ a.s. when a sequence of bandwidths an is chosen that fulfills

nhna4
n/ log h−1

n = O(1) and log h−1
n /(nhna3

n) = O(1). For the common choice hn = Cn−1/5,

7
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for instance, an = hn is a possible choice. Note that Birke and Dette (2005) show a rate for

uniform convergence of m̂−1
SI as a by-product.

Masry (1997) considers d–dimensional wavelet density estimators f̂ on compact sets D for

strongly mixing stationary processes and densities f in certain Besov spaces Bspq. For sim-

plicity we assume D = [0, 1] and consider the one-dimensional case d = 1. For example,

under certain assumptions in Corollary 1, Masry (1997) obtains the uniform rate of conver-

gence ||f̂ − f ||∞ = O(cn) for n → ∞ a.s. for cn = (log n/n)
s

1+2s for f ∈ Bs∞∞. The wavelet

estimator f̂ can be modified to obtain nondecreasing (or, analogously, nonincreasing) estima-

tors f̂I and f̂SI such that ||f̂I −f ||∞ = O(cn) and ||f̂SI −f ||∞ = O(cn) for n → ∞ a.s. where

for f̂SI a bandwidth an is used such that na
4+ 2

s
n / log n = O(1) and log n/(na

3(1+ 1
2s

)
n ) = O(1).

For example, an = Cn−1/5 is a possible choice for s = 2.

Finally, we consider how the assumption of the compact support of the target function can

be weakened. For instance, often densities are assumed to be nondecreasing on (−∞, 0]

(respectively nonincreasing on [0,∞)) and also hazard rates are often defined on [0,∞). We

will describe in the following how the proposed methods are applicable when a nondecreasing

function h : (−∞, 0] → R has to be estimated. Assume there is an estimator ĥ : (−∞, 0] → R

available such that supz∈(−∞,0] |ĥ(z) − h(z)| = O(cn). Because log : (0, 1] → (−∞, 0] is

continuous we have for g = h ◦ log, ĝ = ĥ ◦ log that ||ĝ − g||∞ = O(cn) and from the results

of Sections 2 and 3 we obtain a monotone version of ĝ, i. e. ĝI , such that ||ĝI − g||∞ = O(cn).

A monotone estimator for h is defined by ĥI = ĝI ◦ exp : (−∞, 0] → R and it holds that

supz∈(−∞,0] |ĥI(z) − h(z)| = ||ĝI − g||∞ = O(cn).

4 Proofs

Proof of Theorem 3.1 (a). For nondecreasing g we have g = gI and, hence,

||ĝI − g||∞ = sup
z∈[0,1]

∣∣∣
∫ ĝ(1)

ĝ(0)

I
{∫ 1

0
I{ĝ(t) ≤ x} dt ≤ z

}
dx + ĝ(0)

−
∫ g(1)

g(0)

I
{∫ 1

0
I{g(t) ≤ x} dt ≤ z

}
dx − g(0)

∣∣∣
≤ 2|ĝ(0) − g(0)| + |ĝ(1) − g(1)|+ rn

where

rn = sup
z∈[0,1]

∣∣∣
∫ g(1)

g(0)

(
I
{∫ 1

0
I{ĝ(t) ≤ x} dt ≤ z

}
− I

{∫ 1

0
I{g(t) ≤ x} dt ≤ z

})
dx

∣∣∣

≤ sup
z∈[0,1]

∫ g(1)

g(0)

I
{∫ 1

0
I{ĝ(t) ≤ x} dt ≤ z and

∫ 1

0
I{g(t) ≤ x} dt > z

}
dx

+ sup
z∈[0,1]

∫ g(1)

g(0)

I
{∫ 1

0
I{ĝ(t) ≤ x} dt > z and

∫ 1

0
I{g(t) ≤ x} dt ≤ z

}
dx.
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Both summands are bounded in the very same way and we therefore restrict attention to

the first one in the following, i. e.

sup
z∈[0,1]

∫ g(1)

g(0)

I
{∫ 1

0
I{g(t) ≤ x − (ĝ(t) − g(t))} dt ≤ z <

∫ 1

0
I{g(t) ≤ x} dt

}
dx

≤ sup
z∈[0,1]

∫ g(1)

g(0)

I
{∫ 1

0
I{g(t) ≤ x − ||ĝ − g||∞} dt ≤ z <

∫ 1

0
I{g(t) ≤ x} dt

}
dx

= sup
z∈[0,1]

∫ g(1)

g(0)

I
{
g−1(x − ||ĝ − g||∞) ≤ z < g−1(x)

}
dx

≤ sup
z∈[0,1]

∫ g(1)

g(0)

I
{
g(z) ≤ x ≤ g(z) + ||ĝ − g||∞

}
dx

= sup
z∈[0,1]

(
I
{
g(z) + ||ĝ − g||∞ ≤ g(1)

}
||ĝ − g||∞ + I

{
g(z) + ||ĝ − g||∞ > g(1)

}
(g(1) − g(z))

)

≤ ||ĝ − g||∞.

Altogether ||ĝI−g||∞ can be bounded by 2|ĝ(0)−g(0)|+|ĝ(1)−g(1)|+2||ĝ−g||∞ ≤ 5||ĝ−g||∞.

�

Proposition 4.1 Under the assumptions of Theorem 3.1 (b) we have for some constant C

sup
y∈(g(0),g(1))

|Ψ(ĝ)(y) − g−1(y)| ≤ C
(
||ĝ − g||∞ +

1

an
||ĝ − g||2∞ +

1

a3
n

||ĝ − g||3∞ + a2
n

)
.

Proof. During the proof we assume for simplicity the support of k to be [−1, 1]. Note that

then K(z) = 0 for z ≤ −1 and K(z) = 1 for z ≥ 1. For every fixed y ∈ (g(0), g(1)) we have

|Ψ(ĝ)(y) − g−1(y)| ≤
∣∣∣
∫ 1

0

[
K

(y − ĝ(x)

an

)
− K

(y − g(x)

an

)]
dx

∣∣∣(4.1)

+
∣∣∣
∫ 1

0

K
(y − g(x)

an

)
dx − g−1(y)

∣∣∣.
The first term on the right hand side of (4.1) is bounded by applying a Taylor expansion,

∣∣∣
∫ 1

0

[
K

(y − ĝ(x)

an

)
− K

(y − g(x)

an

)]
dx

∣∣∣
≤

∣∣∣
∫ 1

0

1

an

k
(y − g(x)

an

)
(ĝ(x) − g(x)) dx

∣∣∣
+

∣∣∣
∫ 1

0

1

a2
n

k′
(y − g(x)

an

)
(ĝ(x) − g(x))2 dx

∣∣∣ + sup
u∈IR

|k′′(u)| 1

a3
n

||ĝ − g||3∞

≤ C1||ĝ − g||∞ + C2
1

an
||ĝ − g||2∞ + C3

1

a3
n

||ĝ − g||3∞

9
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for some constants C1, C2, C3, where the last line follows by a replacement of variables,

z = (y − g(x))/an, in the integrals. By a change of the variable and integration by parts we

obtain that the second term on the right hand side of (4.1) is bounded by

∣∣∣
∫ g−1(y−an)

0

K
(y − g(x)

an

)
dx +

∫ g−1(y+an)

g−1(y−an)

K
(y − g(x)

an

)
dx − g−1(y)

∣∣∣

≤
∣∣∣g−1(y − an) −

∫ 1

−1

K(z)
∂

∂z
g−1(y − anz) dz − g−1(y)

∣∣∣
=

∣∣∣g−1(y − an) − K(z)g−1(y − anz)
∣∣∣z=1

z=−1
+

∫ 1

−1

k(z)g−1(y − anz) dz − g−1(y)
∣∣∣

≤ a2
n sup

t
|(g−1)′′(t)|

∫
k(z)z2 dz ≤ C4a

2
n

for some constant C4. Collecting all bounds together the assertion follows. �

Proof of Theorem 3.1 (b). Let Dn = C(||ĝ − g||∞ + 1
an
||ĝ − g||2∞ + 1

a3
n
||ĝ − g||3∞ + a2

n)

such that supy∈(g(0),g(1)) |Ψ(ĝ)(y) − g−1(y)| ≤ Dn from Proposition 4.1. Then from g =

Φ(g−1|[g(0),g(1)])|[0,1] it follows that

||ĝSI − g||∞ = sup
z∈[0,1]

∣∣∣
∫ ĝ(1)

ĝ(0)

I
{

Ψ(ĝ)(x) ≤ z
}

dx + ĝ(0) −
∫ g(1)

g(0)

I
{
g−1(x) ≤ z

}
dx − g(0)

∣∣∣
≤ 2|ĝ(0) − g(0)| + |ĝ(1) − g(1)| + rn

where

rn ≤ sup
z∈[0,1]

∫ g(1)

g(0)

I
{

Ψ(ĝ)(x) ≤ z < g−1(x)
}

dx + sup
z∈[0,1]

∫ g(1)

g(0)

I
{

g−1(x) ≤ z < Ψ(ĝ)(x)
}

dx.

Both summands are estimated in the very same way and by Proposition 4.1 the first one is

bounded by

sup
z∈[0,1]

∫ g(1)

g(0)

I
{
g−1(x) − Dn ≤ z < g−1(x)

}
dx ≤ sup

z∈[0,1]

|g(z + Dn) − g(z)| ≤ ||g′||∞Dn.

The assertion follows collecting all bounds together. �

Proposition 4.2 Under the assumptions of Theorem 3.3 (a) for some constant C we have

sup
y∈(g(0),g(1))

|Φ̃(ĝ)(y) − g−1(y)| ≤ C
(
||ĝ − g||∞ +

1

N

)
.

Proof. Because g is increasing, we have the decomposition,

Φ̃(g)(y)− g−1(y) =
1

N

N∑
i=1

[
I{ĝ(

i

N
) ≤ y} − I{g(

i

N
) ≤ y}

]
(4.2)

+

N∑
i=1

∫ i
N

i−1
N

[
I{g(

i

N
) ≤ y} − I{g(x) ≤ y} dx

]
.

10
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The absolute value of the second term on the right hand side of (4.2) can be bounded, for

all y ∈ (g(0), g(1)), by

N∑
i=1

∫ i
N

i−1
N

I{g(x) ≤ y < g(
i

N
)} dx ≤

N∑
i=1

∫ i
N

i−1
N

I{g(
i − 1

N
) ≤ y ≤ g(

i

N
)} dx

≤
N∑

i=1

1

N
I{g−1(y) ≤ i

N
≤ g−1(y) +

1

N
} dx ≤ 2

N
.

A bound for the absolute value of the first term on the right hand side of (4.2) is given by

1

N

N∑
i=1

I{ĝ(
i

N
) ≤ y ≤ g(

i

N
)} +

1

N

N∑
i=1

I{g(
i

N
) ≤ y ≤ ĝ(

i

N
)}

and we only consider the second term in the following. It is bounded by

1

N

N∑
i=1

I{g(
i

N
) ≤ y ≤ g(

i

N
) + ||ĝ − g||∞} ≤ 1

N

N∑
i=1

I{g−1(y − ||ĝ − g||∞) ≤ i

N
≤ g−1(y)}

≤ 2
(
g−1(y) − g−1(y − ||ĝ − g||∞)

)
≤ 2|| 1

g′ ||∞||ĝ − g||∞

for all y such that y − ||ĝ − g||∞ ≥ g(0). Otherwise we estimate

sup
y∈[g(0),g(0)+||ĝ−g||∞]

1

N

N∑
i=1

I{g(
i

N
) ≤ y ≤ g(

i

N
) + ||ĝ − g||∞}

≤ 1

N
�{i | g(

i

N
) ≤ g(0) + ||ĝ − g||∞} ≤ 2g−1(g(0) + ||ĝ − g||∞) ≤ 2|| 1

g′ ||∞||ĝ − g||∞

and the assertion of the Proposition follows. �

Proof of Theorem 3.3 (a). Theorem 3.3 (a) follows from Proposition 4.2 in the same way

as Theorem 3.1 (b) is deduced from Proposition 4.1. �

Proposition 4.3 Under the assumptions of Theorem 3.3 (b) for some constant C we have

sup
y∈(g(0),g(1))

|Ψ̃(ĝ)(y) − g−1(y)| ≤ C
(
||ĝ − g||∞(1 +

1

Nan
) +

1

an
||ĝ − g||2∞(1 +

1

Na2
n

)

+
1

a3
n

||ĝ − g||3∞ +
1

N
+

1

N2an

+
1

N3a3
n

+ a2
n

)
.

Proof. We have

|Ψ̃(ĝ)(y) − Ψ(ĝ)(y)| =
∣∣∣ 1

N

N∑
i=1

[
K

(y − ĝ( i
N

)

an

)
− K

(y − g( i
N

)

an

)]
(4.3)

+

N∑
i=1

∫ i
N

i−1
N

[
K

(y − g( i
N

)

an

)
− K

(y − g(x)

an

)]
dx

∣∣∣

11
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and by a Taylor expansion the first term on the right hand side of (4.3) is bounded by

∣∣∣ 1

N

N∑
i=1

1

an
k
(y − g( i

N
)

an

)
(g(

i

N
) − ĝ(

i

N
))

∣∣∣

+
∣∣∣ 1

N

N∑
i=1

1

a2
n

k′
(y − g( i

N
)

an

)
(g(

i

N
) − ĝ(

i

N
))2

∣∣∣ + sup
u∈IR

|k′′(u)| 1

a3
n

||ĝ − g||3∞

≤ ||ĝ − g||∞
∫

1

an

k
(y − g(x)

an

)
dx +

1

an

||ĝ − g||2∞
∫

1

an

∣∣∣k′
(y − g(x)

an

)∣∣∣ dx

+ ||ĝ − g||∞
N∑

i=1

∫ i/N

(i−1)/N

1

an

∣∣∣k
(y − g( i

N
)

an

)
− k

(y − g(x)

an

)∣∣∣ dx

+
1

a2
n

||ĝ − g||2∞
N∑

i=1

∫ i/N

(i−1)/N

∣∣∣k′
(y − g( i

N
)

an

)
− k′

(y − g(x)

an

)∣∣∣ dx

+ sup
u∈IR

|k′′(u)| 1

a3
n

||ĝ − g||3∞

≤ C1

(
||ĝ − g||∞(1 +

1

Nan
+

1

N2a3
n

) +
1

an
||ĝ − g||2∞(1 +

1

Na2
n

) +
1

a3
n

||ĝ − g||3∞
)

for some constant C1, where the last inequality follows by similar calculations as in the

argument given for the second term on the right hand side of (4.3). This one is bounded

uniformly with respect to y by

∣∣∣
N∑

i=1

∫ i
N

i−1
N

1

an
k
(y − g(x)

an

)
(g(

i

N
) − g(x)) dx

∣∣∣

+
∣∣∣

N∑
i=1

∫ i
N

i−1
N

k′
(y − g(x)

an

)(g( i
N

) − g(x))2

a2
n

dx
∣∣∣ + sup

u∈IR
|k′′(u)|

N∑
i=1

∫ i
N

i−1
N

|g( i
N

) − g(x)|3
a3

n

dx

≤ ||g′||∞ 1

N

∫ 1

0

1

an
k
(y − g(x)

an

)
dx + (||g′||∞ 1

N
)2

∫ 1

0

1

a2
n

∣∣∣k′
(y − g(x)

an

)∣∣∣ dx

+ sup
u∈IR

|k′′(u)|(||g′||∞ 1

anN
)3 ≤ C2

( 1

N
+

1

N2an
+

1

N3a3
n

)

for some constant C2, where the last inequality follows from a change of variable z =

(y − g(x))/an in the integrals and because g−1 is bounded. The assertion now follows by

Proposition 4.1. �

Proof of Theorem 3.3 (b). Theorem 3.3 (b) follows from Proposition 4.3 in the same

way as Theorem 3.1 (b) is deduced from Proposition 4.1. �
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