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Abstract 
The prediction of crack nucleation at stress concentration points in brittle and quasi-
brittle materials may generally rely on either an Irwin-like criterion, involving a critical 
value of the generalized stress intensity factor of the singularity associated to the 
stress concentration, or on cohesive zone models. Leguillon’s criterion enters the first 
category and combines an energy condition and a stress one. Thanks to matched 
asymptotics procedures, the associated numerical values at crack initiation under 
quasi-static monotonic loadings are shown to be comparable to those obtained using 
the Dugdale cohesive zone model. Both approaches are therefore adapted to the 
description of brittle and quasi-brittle fracture. A macroscopic Paris-like propagation 
law is derived from the Dugdale model through a relevant cumulating law at the 
microscopic scale of the process zone. Comparisons with experimental results are 
performed and display good agreement. The important matter of nucleation and 
growth of a fatigue crack at the root of a V-notch is finally addressed. A general Paris 
law featuring the elastic singularity exponent and then dependent on the V-notch 
angle can be expressed for small cyclic loadings in the early growth stage. 
 
Keywords: quasi-brittle materials, failure criterion, cohesive zone model, static 
loading, fatigue loading, Paris law.  
 
 
 
1. Introduction 
 
The brittle fracture theory (Lawn 1993) deals with the conditions of propagation of a 
pre-existing crack in brittle and quasi-brittle materials, but it is unable to address the 
emergence of a new crack at a stress concentration point like a V-notch root. Many 
efforts have been made to answer this question with a general criterion without going 
into the details of micro mechanisms.  
Two approaches can be highlighted, one goes through a non-local criterion and 
enters a general theoretical context while the other uses the cohesive zone models 
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which have been developed and are more often used in a computational structures 
background. These two approaches share a common feature, they require two failure 
parameters to choose among the following three: the material toughness denoted 
either cG  (J.m-2) or IcK  (MPa.m1/2), the tensile strength cσ  (MPa) and a characteristic 
length cl  (m).   
Within the non local approach, a first family is based on a point-stress condition (Mc 
Clintock 1958, Leguillon 2002, Leguillon, Yosibash 2003, Taylor 2008): failure occurs 
if the tensile stress exceeds a given critical value at a given distance of the V-notch 
root. Leguillon’s criterion enters this family but the critical distance is no longer a 
material property, it depends on the local geometry. Its definition relies on an energy 
balance equation in addition to the maximum tensile stress condition (Leguillon 
2002). This approach is naturally extended to the average stress criterion: failure 
occurs if the tensile stress averaged on a given distance exceeds a given critical 
value (Novozhilov 1969, Seweryn 1994, Seweryn, Mroz 1998, Seweryn, Lukaszewicz 
2002). The stress condition is generally transcribed into a condition on the 
generalized stress intensity factor (GSIF) characterizing the influence of the singular 
field associated with the V-notch, leading to an Irwin-like criterion. A second family is 
based on the strain energy density concept, failure occurs if the strain energy density 
(SED) exceeds a given value over a given volume (Sih 1973, Yosibash et al. 2004) 
encompassing the stress concentration point. This second approach is generally less 
accurate. 
After the pioneering works of Dugdale (1960) and Barenblatt (1962), the cohesive 
zone models (Tvergaard, Hutchinson 1992, Planas, Elices 1992-1993, Xu, 
Needleman 1994, Bazant, Planas 1998) were originally developed for studying the 
fracture of interfaces in heterogeneous materials and particularly the mechanisms of 
delamination in composite laminates (Needleman 1990, Allix, Ladeveze 1992, Mi et 
al. 1998, Alfano, Crisfield 2001).  They model a process zone ahead of the crack tip 
or the stress concentration point. In this zone the material yields or damages but 
cohesive forces still act until the final fracture. Different profiles of the force/opening 
curve are proposed by authors (Alfano 2006), they are characterized either by a peak 
stress and a critical opening or by a peak stress and a fracture energy corresponding 
to the surface located below the curve.  
All these approaches are in general dedicated to quasi-static monotonic loadings; the 
literature becomes sparse when looking at the effects of fatigue loads in the vicinity of 
stress concentration points in quasi-brittle materials. Most of the papers agree to 
recognize that the GSIF is a relevant parameter at least to describe the appearance 
of short cracks, i.e. the life time at initiation (Taylor 1999, Atzori et al. 2002-2003, 
Lazzarin et al. 2003, Madi et al; 2004, Livieri, Lazzarin 2005), although some others 
prefer using the SED (Lazzarin, Zambardi 2001). The influence of the blunting of the 
V-notch is taken into account by a modified GSIF according to a parameter called the 
notch acuity (Boukharouba et al. 1995). Anyway these papers focus on different 
points like the fatigue strength presenting Kitagawa-Takahashi diagrams, the life time 
at initiation and the total life time assessments through S-N and Manson-Coffin 
curves, but none mentions the influence of the V-notch on a propagation law of Paris 
type.  
In a broader context, we find the coupling between a cohesive law and a fatigue 
loading in different papers which share the same point of view. The damage 
irreversibility is obtained from a complementary mechanism to the cohesive law: a 
hysteresis due to different loading and unloading paths (Nguyen et al. 2001, Yang et 
al. 2001, Maiti, Geubelle 2005, Bouvard et al. 2009, Ural et al. 2009). 
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In this work, sections 3 to 6 are devoted to the comparison between the cohesive 
zone model of Dugdale and Leguillon’s criterion for monotonic loading. They resume 
with more details the results established by Henninger et al. (2007). The two models 
give similar results for the prediction of crack nucleation at the root of a V-notch 
under monotonic loading. They are both well adapted to the description of the 
fracture of brittle or quasi-brittle materials. Furthermore, since the first model does not 
allow straightforward introduction of the concept of cumulative fatigue, it is naturally 
the second model which is used in the sequel to extend the results to the case of 
cyclic loadings. For such fatigue loads we exploit an idea proposed by Jaubert and 
Marigo (2006) and then used by Abdelmoula et al. (2009 a and b). They suggest 
employing the opening cumulated during the cycles at a point instead of the 
instantaneous opening, and compare this parameter to the critical opening of the 
Dugdale law (section 7). Clearly the two concepts coincide for a monotonic loading. 
In section 8 we establish the fatigue law for a pre-existing crack in a simpler way than 
that proposed by Jaubert and Marigo. We observe that the selected cumulated law 
provides a poor agreement with experiments. Then a modified law is proposed in 
section 9 and the resulting calibration is used to predict the onset of a fatigue crack at 
the root of a V-notch (sections 10 and 11). Results strongly depend on the opening 
angle of the V-notch and can be written in the form of a Paris-like law featuring the 
elastic singularity exponent and then dependent on the V-notch angle during the 
early growth stage.  
 
 
2. The Dugdale model 
 
Preceding the pioneering work of Barenblatt (1962) on cohesive forces, Dugdale 
(1960) proposed a very simple law which can be considered in a way as a simplified 
model of plasticity prior to fracture. For a mode I pre-existing crack, it is assumed that 
the opening component � �2Uδ =  (see figure 1 for the axis) of the displacement 
jumps ahead of the crack tip and that a constant cohesive tension 22 cσ σ=  still acts if 
the opening does not exceed a given value cδ  (figure 1).  
 

 
Figure 1. The Dugdale cohesive zone model 

 
This cohesive force tends to close the zone and the cohesive zone length is such 
that no singularity (infinite values of the stress field) takes place at its end, the two 
faces come smoothly into contact (figure 1 left). 
Dedicated to a crack, this model can be extended to any geometrical situation where 
a crack can nucleate due to stress concentrations. In quasi-brittle materials the 
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cohesive peak force cσ  is chosen as the tensile strength of the material. In order to 
match the Griffith theory, the surface below the curve must equal the toughness cG  
(figure 1). The result is a relationship between the three parameters (Bazant, Planas 
1998) 
 

 c
c

c

G
δ

σ
=  (1) 

 
In this paper we make a distinction between the incubation and the nucleation 
phases, especially for fatigue loadings. During the incubation phase, damage 
appears and the cohesive zone length can increase, i.e. the right end in figure 1 (left) 
moves, but the critical opening cδ  is not reached and the zone remains pinned at its 
left end. Nucleation takes place when the condition cδ δ≥  is fulfilled, i.e. when the left 
end starts to move. 
 
 
3. Matched asymptotics and Dugdale zone 
 
Let us consider a V-notched specimen loaded symmetrically so that fracture occurs 
along the bisector of the opening angle. We fit this line with a Dugdale cohesive zone 
and assume a priori that its length l  is much smaller than the dimensions of the 
specimen (the depth of the V-notch and the width of the remaining ligament in 
particular, figure 2).  
 

 
Figure 2. The V-notched specimen and the Dugdale cohesive zone. 

 
The elastic solution lU  depends on this length which is unknown making the problem 
non linear.  
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where Ωl  is the domain embedding the cohesive zone. The notation x∇  stands for 
the gradient operator with respect to the space variables ix , C  is the stiffness matrix, 
F  is the tensile load applied on the upper and lower parts of the specimen and cσ  is 
the cohesive force acting on the two faces of the cohesive zone with length l . At this 
step, it is assumed that the opening at the end O  does not exceed its critical value 

/c c cGδ σ= . 
The solution to eqns. (2) can be expanded as follows (so called outer expansion) 
 
 0

1 2 1 2( , ) ( , )  small correctionU x x U x x= +l  (3) 
 
where 0U  is solution to the same problem but neglecting the small cohesive zone 
(i.e. 0→l  leading to the unperturbed domain Ω0 ).  
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Eqn. (3) is a good approximation except in the close vicinity of the V-notch root. For 
more details in this area, we stretch the space variables /i iy x= l , so that the 
cohesive zone has now a dimensionless fixed length equal to 1 in the domain 
spanned by the iy ’s (figure 2). As →l 0  the stretched domain Ωin  becomes 

unbounded and the solution U l  must fulfil the set of equations  
 

 

. 0 in  (balance)

: in  (constitutive law)

. on the two faces of the cohesive zone

. 0 on the two faces of the V-notch

prescribed behaviour at infinity

in
y

in
y

c

U

n

n

σ

σ

σ σ

σ

⎧−∇ = Ω
⎪
⎪ = ∇ Ω
⎪⎪
⎨ = −
⎪
⎪ =
⎪

+⎪⎩

l

l l

l

l

%

%

% l

%

C
 (5) 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ARTICLE IN PRESS

Here the notation y∇  stands for the gradient operator with respect to the stretched 
dimensionless space variables iy . The remote boundary conditions (eqn. (2)3) 
disappear and are replaced by a condition at infinity which remains to be defined. By 
superposition, the above problem splits into two parts called A and B 
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where AU  and BU  depend on the iy ’s and in addition BU  linearly depends on l . In 
problem A, it must be pointed out that, due to the stress free conditions, the cohesive 
zone plays the role of a crack. A similar interpretation can be given to the second 
problem, the crack is subjected to a “negative” pressure on both faces. 
The missing conditions at infinity in problem A are derived from a matching rule. 
Since BU  vanishes at infinity, the behaviour of  AU   when y yρ = + →∞2 2

1 2  must 

match the behaviour of 0U  in the vicinity of the origin O  located at the notch root (i.e. 

when r x x= + →2 2
1 2 0 ). In the vicinity of a re-entrant corner, it is known that 0U  has 

a singular behaviour (Leguillon, Sanchez-Palencia 1987) and expands as 
 
 ( , ) ( )  ( ) ... ( )  ( ) ...0 0 0

1 2U x x U O k r u U O k uλ λ λθ ρ θ= + + = + +l  (8) 
 
where r  and θ  are the polar coordinates emanating from O  and /rρ = l . The 
exponent λ  ( / λ≤ ≤1 2 1) and the angular function ( )θu  are the singular exponent 
and the associated mode. They only depend on the opening angle ω , in particular 
they are independent of the global geometry of the specimen and of the applied load. 
The weight k  (MPa.m1-λ) is the generalized stress intensity factor (GSIF). It is 
proportional to the intensity of the applied load and coincides with the usual stress 
intensity factor (SIF) in case of a crack. 
 
Remark 1: The singular modes are normalized so that the tensile component of the 
stress field along the bisector is 1

22 1/ r λσ −= . For a crack this normalization is usually 
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22 1/ 2 rσ π= , thus in this particular case the present value of the SIF differs from the 

usual one by a multiplier 2π .  
 
Finally eqns. (6) to (8) and the matching rule lead to an expansion (so-called inner 
expansion) 
 
 ( , ) ( , ) ( )  ( , )  ( , ) ...0

1 2 1 2 1 2 1 2
A B

cU x x U y y U O k V y y V y yλ σ= = + + +l l
l l l l  (9) 

 
where AV  and BV  (MPa-1) are solutions to problems derived from eqns. (6) and (7) 
(the notation σ%  is kept without confusion) 
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The functions AV  and BV  are computed once and for all for each opening value ω  
by finite elements, the infinite domain inΩ  being artificially bounded at a large 
distance from the origin ( 200R =  which is large compared to 1 i.e. to the cohesive 
zone dimensionless size). 
 
Obviously, this asymptotic approach only works for cohesive zone models featuring a 
threshold. An elastic slope for small openings (figure 3 (a)) is incompatible with the 
assumption of smallness of the cohesive zone length made here. Such a line spring 
model can be used to simulate a thin low stiffness adhesive layer for instance; the 
thickness is neglected and replaced by a displacement jump defined by the cohesive 
law and it is true all along the layer. The slope relies on the stiffness and the 
thickness of the layer (Rose 1987). 
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Figure 3. Other cohesive zone models 

 
But in general, for fracture in a homogeneous material it can be a major drawback. 
Why would the material open on the entire presupposed cohesive zone when only a 
small area is damaged near the notch root? It is well known that this initial slope often 
encountered in the cohesive zone models (for numerical reasons in particular) can 
lead to an error on the overall stiffness of a structure if the cohesive elements are 
distributed throughout the mesh for example. 
This mismatch holds true also for cohesive zone models without critical opening cδ  
(figure 3 (b)), like in polynomial and exponential models (Alfano 2006). Nevertheless, 
cohesive forces that never vanish can be questionable. Such an assumption is well 
suited for damage models but it is difficult to employ for fracture, as the initiation of a 
crack cannot be clearly defined except if one introduces a threshold tension beyond 
which the crack is supposed to be established. 
 
  
4. Nucleation of a crack at the V-notch root – Monotonic loading 
 
As a consequence of the previous section, the cohesive zone can be represented as 
a crack with two different ways of loading (figure 2), a remote load due to the 
structure (problem A eqn. (10)) which tends to open the crack and a local load due to 
the cohesive forces (problem B eqn. (11)) which tends to close the crack. In both 
cases, the crack tip O′  (the end of the cohesive zone) undergoes the usual crack tip 
singularity, the mode I stress intensity factor (SIF) A

IK  being positive in one case and 
negative in the other ( B

IK ) 
 
 1 2 1 2( , ) ( ) ( ) ... and   ( , ) ( ) ( ) ...A A I B B IA B

I IV y y V O K u V y y V O K uρ θ ρ θ′ ′ ′ ′ ′ ′= + + = + + (12) 
 
where ρ′  and θ ′  are the polar coordinates emanating from O′  in the stretched 
domain. The dimensionless SIF’s A

IK  and B
IK  can be extracted from AV  and BV  

using any known method, in our approach we employ a path independent integral 
which works for both SIF’s and GSIF’s (Leguillon, Sanchez-Palencia 1987). 
Considering the inner expansion (9), the actual SIF at O′  takes the following form 
 
  ...A B

I I c IK k K Kλ σ= − +l l  (13) 
 
As a consequence of the cohesive zone theory, the stress must be bounded and thus 
the cohesive zone length (the crack length) must adapt so that the resulting SIF IK  
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vanishes (eqns. (13) and (14)), i.e. the singularity disappears. It gives a relation 
between the unknown length l  and the applied load through k  (Henninger et al. 
2007) 
 
   0A B

I c Ik K Kλ σ− =l l  (14) 
 
Note that the coefficient IK  (MPa.m) in eqn. (13) is not the actual SIF of the 
singularity at the tip O′ , i.e. that of the singular term expressed in physical 
coordinates ( )Ir u θ′ ′  but that of ( )Iuρ θ′ ′  (stretched coordinates). Nevertheless, 
they only differ by a multiplier l , which does not alter eqn. (14). 
 
Remark 2: In the particular case 180ω = , O  is no longer a singular point, 1λ =  and 

( )ru θ  in eqn. (8) corresponds to the uniform vertical tension, k is its intensity. The 
problems in the unknown functions AV  and BV  are strictly equivalent by a 
superposition principle and A B

I IK K= . Then, either ck σ<  and 0=l  or ck σ=  and l  
cannot be specified. 
 
The opening at any point of the cohesive zone with abscissa x y=1 1l  ( y≤ ≤10 1) is 
 

 ( ) ( ) ( ) ( ) ( )  ( )1 2 1 2 1 2 1 2 1 1

B
A B A BI

c c cA
I

Kx k V y V y V y V y y
K

λδ σ σ σ δ
⎛ ⎞

= − = − =⎜ ⎟
⎝ ⎠

� � � � � � � � %l l l l� � � � � � � �� � � � � � � �  (15) 

 
with  

 ( ) ( ) ( )1 2 1 2 1

B
A BI

A
I

Ky V y V y
K

δ = −� � � �%
� � � �� � � � (16) 

 
The brackets ��.  denote a discontinuity (here the displacement jump of AV  and BV  
normal to the cohesive zone). This is illustrated in figure 4. 
 
Remark 3: The term ( )yδ 1

%  involved in the aperture along the cohesive zone depends 
on the opening angle ω  of the V-notch (figure 2). But once it has been normalized 
(i.e. the opening at the V-notch root y =1 0  equal to 1 whatever ω ), it appears to be 
almost independent of ω , all the curves merge. Thus, it can be defined once and for 
all using the analytical formulas known for ω = 0  (a crack) and derived from Tada’s 
formula (Tada et al. 2000) 
 
 1

1 1 1 1( ) (0) 1 tanh ( 1 )y y y yδ δ −⎡ ⎤= − − −⎣ ⎦
% %  (17) 

 
This will be used in the sequel whatever the geometrical configuration. 
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Figure 4. The aperture ( )yδ 1

%  along the cohesive zone for ω =0, 60, 90, 120, 160 
(Deg.), (lines 0 and 30 merge).  

 
The opening condition at the end of the cohesive zone, i.e. at the root of the V-notch, 
gives an equation for the length 0l  at nucleation 
 
 ( )  ( ) /00 0c c c cGδ σ δ δ σ= = =%l  (18) 
 
and finally, the critical value D

ck  of the GSIF k  can be derived from eqn. (14) (see 
eqn. (22) below). 
All these results are summarized in table 1 for V-notched specimens made of PMMA 
(E = 3250 MPa, ν =0.3, cG =350 J.m-2, cσ = 75 MPa). The critical opening is 

.δ =c 4 7 µm and one can verify that the length at nucleation 0l  remains small 
compared to the specimen size in figure 6 (tens of millimeters) for instance, which 
validates the reasoning based on asymptotic expansions.  
 
Table 1. Various parameters involved in the Dugdale model. The last two lines 
concern critical values at nucleation. 
ω  (Deg.) 0 30 60 90 120 160 

λ  0.5 0.502 0.512 0.545 0.616 0.819 
A
IK  0.993 0.995 0.987 0.966 0.932 0.851 
B
IK  0.634 0.635 0.634 0.646 0.670 0.735 

( )δ 0%  (MPa-1) 7.11 10-4 7.08 10-4 6.83 10-4 6.46 10-4 5.57 10-4 2.80 10-4 

0l  (µm) 88 88 91 96 112 216 
D
ck  

(MPa.m1-λ) 
0.45 0.46 0.51 0.75 1.64 14.06 
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5. Comparison with Leguillon’s criterion at nucleation 
 
Leguillon’s criterion is a twofold condition to predict crack nucleation at stress 
concentration points in brittle materials (Leguillon 2002) and especially at singular 
points like the V-notch root of figure 6. Both stress and energy conditions must be 
fulfilled, the first condition involves the tensile strength cσ  whereas the second one 
involves the material toughness cG . The form taken by these conditions rely on 
expansion (8). The stress condition gives an upper bound of the admissible crack 
lengths c  ( 1 0λ − < ) 
 
 1

22 22 ckc sλσ σ−= ≥  (19) 
 
whereas the energy condition provides a lower bound ( 2 1 0λ − > ) 
 
 2 2 1

cG Ak c Gλ−= ≥  (20) 
 
where 22s  is a dimensionless constant derived from ( )u θ , and according to remark 1 

22s =1 if the crack grows along the bisector of the V-notch. The parameter A  (MPa-1) 
is another constant depending on the opening ω  and the crack direction (Leguillon 
2002). It is plotted in figure 5 for a crack along the bisector in the dimensionless form 

* *A AE=  (with * /( )E E ν= − 21 , E  and ν  being the Young modulus and the Poisson 
ratio of the material).  
The compatibility between these two inequalities allows eliminating c  and results in 
an Irwin-like condition settled in terms of the GSIF k  instead of the classical SIF 
 

 
1

2 1L c
c c

Gk k
A

λ
λσ

−
−⎛ ⎞≥ = ⎜ ⎟

⎝ ⎠
 (21) 

 
For a crack (ω = 0  and /λ =1 2) condition (21) coincides with the Irwin criterion. For a 
straight edge, the limit case without stress concentration ( 180ω =  and λ =1), it 
coincides with the maximum tensile stress condition. 
At nucleation, eqns. (14) and (15) lead to writing the Dugdale condition in a similar 
manner to eqn. (21) (Henninger et al. 2007) 
 

 
/(1 ) 1/(1 )1

2 1
2 2    with     (0) (0)

A A
D A Bc I I
c c B B

I I

G K Kk k A V V
A K K

λ λ λλ
λσ

− −−
− ⎛ ⎞ ⎛ ⎞⎛ ⎞≥ = = −⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
� � � �
� � � �� � � �  (22) 

 
The dimensionless coefficient A AE=* *  is compared to *A  in figure 5. Obviously, 
there is no significant difference, thus both criteria give similar critical values of the 
GSIF at crack nucleation (table 2). 
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Figure 5. The dimensionless coefficients *A  (solid line) and A *  (diamonds) vs. the V-

notch opening ω  (Deg.). 
 
Table 2. The critical GSIF’s D

ck  (Dugdale) and L
ck  (Leguillon) at nucleation (see 

remark 1 on the singular modes normalization). 
ω  (Deg.) 0 30 60 90 120 160 

D
ck  0.45 0.46 0.51 0.75 1.64 14.06 
L
ck  0.45 0.46 0.52 0.77 1.70 13.72 

 
 
Remark 4: Leguillon’s criterion uses a critical length at initiation cl (Leguillon 2002), a 
generalization of Irwin’s length 
 

 2
c

c
c

G
Aσ

=l  (23) 

 
Assuming, as checked above, that A A=  and using eqns. (16) and (18), there is a 
relationship between this critical length and the cohesive zone length 0l  
 

 
1/(1 )

0

B
I

c A
I

K
K

λ−
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

l l  (24) 

 
The two lengths share the same order of magnitude (except for 1λ =  i.e. 180ω =  
where they can no longer be specified), thus the smallness assumption holds 
simultaneously for the two laws. 
 
The use of the GSIF k  is very convenient but does not reflect the exact intensity of 
the load for different openings. Moreover, it does not allow comparisons since units 
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(MPa.m1-λ) vary from one opening to another. However, this factor is proportional to 
the intensity of the load: the greater the critical value of the GSIF, the higher the load 
to achieve it, as seen in experiments carried out on specimens of PMMA (figure 6) 
(Leguillon et al. 2009). The measured forces at failure are reported on figure 7 and 
compared to Leguillon’s criterion prediction (almost similar to Dugdale’s condition 
according to table 2). 
 

 
Figure 6. V-notch specimen of PMMA, the notch root is in the middle of the 

specimen. 
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Figure 7. The applied load F  at failure on V-notch specimens vs. the opening ω , 

prediction using Leguillon’s criterion (solid line), experiments (diamonds) (Leguillon et 
al. 2009). 

 
 
6. Crack stability at onset 
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Figure 8. The stretched Dugdale zone with the opened crack. 

 
The crack growth simulation can be carried out in the same way using matched 
asymptotics. The only difference is now that l  is the total sum of the cohesive zone 
length and the open crack length a  and that this parameter must still be small so that 
the reasoning based on asymptotics remains valid. In particular the two basic 
equations (14) and (15) are almost unchanged (in the stretched domain /aμ = l  
holds for the dimensionless crack length (figure 8)) 
 
  ( ) 0A B

I c Ik K Kλ σ μ− =l l  (25) 
 

 ( )( ) ( ) ( , )  ( )  for  1 2 1 2 1 1 1 1
B

A BI
c cA

I

Kx V y V y y y
K
μδ σ μ σ δ μ

⎛ ⎞
= − = ≤ ≤⎜ ⎟

⎝ ⎠
� � � � %l l� � � �� � � �  (26) 

 
Then using remark 3, it comes 
 

 1 1
1 1 1 1 1( ) ( ) 1 tanh ( 1 )   with  

1
yy y y y y μδ δ μ

μ
− −⎡ ⎤′ ′ ′ ′= − − − =⎣ ⎦ −

% %  (27) 

 
The main difference is that B

IK  as well as the functions BV  and δ%  depend now on the 
dimensionless open crack length μ  (figure 8). 
 
A feature of Leguillon’s criterion is that it predicts nucleation as a brutal process, the 
crack jumps a given length at onset (except possibly for a pure crack, i.e. if ω = 0 ). 
The question is now: does the Dugdale model also predict this instability?  
To answer this question, we solve problems A (eqn. (10)) and B (eqn. (11)) by finite 
elements and compute the aperture 0δ  of the cohesive zone at the V-notch root. 
Then we unbutton the corresponding node of the FE mesh, the cohesive forces no 
longer act along the first element of the mesh and μ  equals the mesh size (figure 8). 
We compute the new total length 1l  and the opening 1δ  at the next node. At failure 

0 cδ δ= , then if 1 0δ δ> , the next node must also be unbuttoned and so on, leading to 
an unstable process. It is illustrated in figure 9. The aperture remains constant for 

0ω =  (and almost constant for 30ω = ), the leading terms in the expansion (8) do not 
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allow a conclusion, and stability is governed by the sign of the next term in the 
expansions (Leguillon 1993). For 30ω > , the aperture increases and even literally 
explodes for 160ω = , the crack nucleation is an unstable process for these openings 
(indeed it is theoretically true as soon as 0ω > ). 
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Figure 9. The aperture at the end of the cohesive zone for ω = 0, 60, 90, 120, 160 

(Deg.) (lines 0 and 30 merge). 
 
Dugdale's law is discontinuous with a sudden drop in the value of the cohesive force 
(figure 1). It is possible that the observed instability results from this property. What 
would happen with a continuous cohesive law like illustrated in figure 3(b) (Alfano, 
Crisfield 2001, Alfano 2006) for example? 
 
 
7. The fatigue model – Incubation phase (stage 0) 
 
For the fatigue model we take inspiration from an idea proposed in (Jaubert, Marigo 
2006, Abdelmoula et al. 2009 a and b). The aim of these authors is to use the same 
fracture rule for a monotonic and a fatigue loading. They suggest to employ the 
opening 1( )xΔ  cumulated during the cycles at point 1x  instead of the instantaneous 
opening 1( )xδ . Thus the crack will start to grow if (0) cδΔ ≥ . Clearly the two concepts 
coincide for a monotonic loading.  
 

 
Figure 10. The loading cycles expressed in terms of the GSIF k . 
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Let us consider the incubation phase (i.e. the phase during which damage increases 
ahead of the notch root but prior to any crack nucleation, a kind of stage 0). We set 

/ 1
c

D
Mk kα = ≤  (figure 10), then eqns. (21) and (22) give ( 0l  is defined in eqn. (18)) 

 
 1/(1 ) 1/(1 )

0   and  (0) c
λ λα δ α δ− −= =l l  (28) 

 
After n cycles (0) (0)nδΔ = , thus the nucleation phase (stage 1) takes place after 

1/(1 )(1/ )n λα −=  cycles. It is illustrated in table 3 for 0.1α = , and once again the values 
noticeably explode in the case 160ω = . 
 
Table 3. The maximum length of the cohesive zone (in the middle of the cycles at the 
peak of the load) prior to nucleation and the number n  of cycles of the incubation 
phase for / 0.1

c

D
Mk kα = = . 

ω  (Deg.) 0 30 60 90 120 160 

l  (µm) 0.88 0.86 0.81 0.61 0.28 0.6 10-3 

n  
( 0.1α = ) 

100 102 112 158 402 > 3 105 

 
Remark 5: One can also interpret this law as the basic Dugdale model (section 2) 
and a cyclic degradation of the parameter cδ  and thus of cG . Roe and Sigmund 
(2003) had a similar approach where the coupling of a cohesive zone model and a 
fatigue loading occurs by a cyclic degradation of another parameter of the model, the 
peak stress cσ . 
 
 
8. The fatigue model – Stationary growth of a crack (stage 2) 
 
In a first step we limit our study to a crack ( 0ω = , 1/ 2λ = ) in a stationary state, the 
so-called stage 2. It means that the cohesive zone has a fixed length 2

0α=l l  and 
that it is shifted by an offset /a da dn=&  at each cycle. To model the mechanism, the 
main difficulty lies in calculating the cumulated opening at any point along the 
presupposed crack path. To this aim, let us consider a point 1x  ahead of the crack tip 
and out of the cohesive zone, thus 1( ) 0xΔ = . Since the crack advances, at a given 
cycle this point will be at the tip of the cohesive zone, then 1x = l  and 1( )xΔ  still 
vanishes. At the next cycle the point is inside the cohesive zone at a distance a&  
behind the tip and 1( ) ( )x aδΔ = − &l . One cycle later the point will be located at a 
distance 2a&  of the tip of the cohesive zone and 1( ) ( ) ( 2 )x a aδ δΔ = − + −& &l l  and so on. 
After m cycles 
 
 1( ) ( ) ( 2 ) ... ( )x a a maδ δ δΔ = − + − + + −& & &l l l  (29) 
 
Remark 6: Such an accumulation law can be interpreted in terms of a dissipation 
process. The dissipation rate at each point corresponds to the rate of work of opening 
(figure 11)  
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 1
1 1

( )( ) ( ) c c
c

xd x x Gδδ σ
δ

= =  (30) 

 
It can be considered in a way as a perfect plastic law, the residual deformation being 
neglected in the computation according to the assumption of small displacements 
(remember that the maximum opening is .δ =c 4 7µm for PMMA). 
 

 
Figure 11. The dissipation at each step (grey zone). 

 
If a&  is small compared to the cohesive zone length (this will be a posteriori checked, 
next to figures 12 and 13) then 
 

 [ ]
1

1
1 1( ) ( ) ( 2 ) ... ( )  ( )d

x
x a a a ma z z

a a
δ δ δ δΔ = − + − + + − ∫

l
& & & &l l l �

& &
 (31) 

 
In a stationary state, the crack grows at each step thus the fatigue criterion 

(0) cδΔ = is reached at each step at the end O  of the cohesive zone. Then using eqn. 
(26) (and the change of variables /s z= l ) 
 

 
2 4 21 10

0 0 0

1 1(0)  ( )d  ( )d (0)   since  ( )d
3 3

c c
cz z s s s s

a a a
σ σ α

δ δ δ δ δΔ = = = =∫ ∫ ∫
l l l% % %�

& & &
 (32) 

 
A Paris power law derives from this equation using the definition of α  (the SIF and 
GSIF and their critical values coincide) 
 

 
4 4 2

0 (0)  with  
3

cM IM
D
c Ic c

k Ka D D D
k K

σ δ
δ

⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

%l
&  (33) 

 
It differs from the Paris law deduced in Jaubert, Marigo (2006) by the exponent (3 in 
Jaubert and Marigo 2006). The fatigue law is obtained in this paper as a limit law 
when the opening at each step becomes infinitely small. This difference is hardly 
surprising since their result is closely related to the geometry of the studied problem, 
the tearing of a thin film; in particular it is a simplified 1D problem. On the contrary, 
the above exponent coincides with that found in Abdelmoula et al. (2009 a and b) 
who used the Jaubert and Marigo approach. They consider successively 2D out of 
plane and in plane elastic problems: a mode III and a mode I cracks. But, in any 
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case, this exponent appears low when compared to data from Suresh (1998) on 
PMMA (figure 12).  
A joint use of a fatigue law and a cohesive zone model of Dugdale can be found in 
Okawa et al. (2006). But in this case the Dugdale zone is used to take into account in 
a simplified way the plastic effects of crack closure and crack blunting. The Paris 
propagation law is postulated independently. 
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Figure 12. Crack advance per cycle a&  vs. the SIF IK  in PMMA, according to eqn. 
(33) (solid line), following data from Suresh (1998) (dashed line). Note that using data 
of section 4 = 1.12IcK  MPa.m1/2 for PMMA. 
 
The smallness assumption of a&  with respect to l  is not rigorously verified 
numerically in figure 12 for all values of / 1IM IcK Kα = ≤ . It is observed that &a  drops 
below /10l  for α < 0.5  ( / 34l  for α = 0.3  for instance) and it equals / 3l  for α = 1. 
Thus the approximation used in eqn. (31) probably restricts the validity of the derived 
fatigue law to α < 0.5 . 
 
9. The fatigue model – A modified cumulating law 
 
The Paris law found in section 8 (figure 12) is not totally in agreement with the 
experimental results found in Suresh (1998). The curves diverge from each other as 
α  decreases, making the exponent 4 unlikely for small α . To change the Paris law 
exponent i.e. the slope in figure 12, it is necessary to modify the cumulated opening 
law. A law which involves the square of the opening instead of the opening itself 
gives less importance to small loads and would be closer to the experimental results. 
It must be emphasize that this does not interfere with the Dugdale cohesive law 
which remains unchanged. Moreover, as before, the same law can be used both for 
fatigue and monotonic loading.  
 
For a crack ( 0ω = ), under the assumption that the advance per cycle a′&  is small 
compared to l , the modified cumulating law can be written 
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 2 2 2
1( ) ( ) ( 2 ) ... ( )x a a maδ δ δ′ ′ ′ ′Δ = − + − + + −& & &l l l  (34) 

 

 
1

2 2 2 2
1

1 1( ) ( ) ( 2 ) ... ( )  ( )d
x

x a a a ma z z
a a

δ δ δ δ′ ′ ′ ′ ′⎡ ⎤Δ = − + − + + −⎣ ⎦′ ′ ∫
l

& & & &l l l �
& &

 (35) 

 
Remark 7: It is still possible to associate a dissipation rate to this accumulation law 
(remark 6) as a part of the opening work 1( ) cxδ σ  (see eqn. (30) and figure 11) 
 

 
2

1 1
1 1

( ) ( )( ) ( )c c
c c

x xd x G xδ δ δ σ
δ δ

⎛ ⎞
′ = =⎜ ⎟

⎝ ⎠
 (36) 

 
However, it is probably better now to consider this law as purely phenomenological. 
  
The fatigue criterion 2(0) cδ′Δ = is reached at each step at the end O  of the cohesive 
zone. Then using eqn. (26) (and the change of variables /s z= l ) 
 

 
2 3 2 6 3 2

1 02 2 2

0 0

(0)1(0)  ( )d  ( )d 0.188 c c
cz z s s

a a a
σ σ α δ

δ δ δ′Δ = = =
′ ′ ′∫ ∫

l
%l l

%�
& & &

 (37) 

 
Since 

1 2

0
( )d 0.188s sδ =∫ % , and then the following Paris law can be derived 

 

 
6 2 3 2

0
2

(0)
  with  0.188 c

c

IM
D
Ic

Ka D D
K

σ δ
δ

⎛ ⎞
′ ′ ′= =⎜ ⎟

⎝ ⎠

%l
&  (38) 

 
It is clear on figure 13 that the agreement with experiments (Suresh 1998) is better 
with this modified cumulating law ′Δ  (compare figures 12 and 13). 
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Figure 13. Crack advance per cycle a′&  vs. the SIF IK  for the modified cumulating law 
′Δ , according to eqn. (38) (solid line), following data from Suresh (1998) (dashed 

line). 
 
The same verification can be carried out about the smallness of a′&  with respect to l  
in figure 13. It drops below /10l  for α < 0.8  ( / 200& � la  for α = 0.4  for instance), it 
equals / 5l  for α = 1. Thus it can reasonably be expected that the fatigue law 
remains valid up to α 0.8�  and does not deteriorate too much further. 
 
Remark 8: In this simplified approach, the cyclic loading (figure 10) varies from 0 to 
the peak value Mk . A more general situation deals with cycles varying from a non 
vanishing value mink  to max Mk k=  (characterized by the so-called load ratio 

min max/R k k= ).  It is now the amplitude of the opening along the cohesive zone, 
instead of the opening δ  itself, that must me considered. But things become more 
intricated, eqns. (29) and (34) must be reconsidered. The lengths of the cohesive 
zones are not the same at the bottom and the top of the cycle and depend on the 
load intensity (eqn. (28)) inducing in addition a dependency on the average 

min max( ) / 2k k+ . It must be pointed out that if R  is small, the cohesive zone length 

minl  and the opening min 1( )xδ  at the bottom of the cycle are negligible compared to 
the same parameters max =l l  and max 1 1( ) ( )x xδ δ=  at the top of the cycle as a first 
approximation. According to eqn. (28), the ratios min max/l l  and min 1 max 1( ) / ( )x xδ δ  vary 
like 2R  for a crack and even higher powers for V-notches. In any case, this is beyond 
the scope of this work and will be investigated in a forthcoming work. 
 
10. The fatigue model – Nucleation phase at a V-notch (stage 1)  
 
It seems obvious from figure 9 that no stationary growth can be expected during the 
nucleation phase if 0ω > . The instability observed under static loading will lead to 
cracks accelerating at each cycle under a fatigue loading.  
The following reasoning is carried out using the modified cumulating law (denoted 
with a prime), nevertheless it can be developed for the primary law (without prime) as 
well. Tables in this section propose a comparison between the two laws.  
The main difficulty lies again in calculating the total opening 1( )x′Δ  at any point 1x  
along the presupposed crack path. The incubation phase ends after 

2 /(1 ) 2(1/ )n nλα −′ = =  cycles when 2 2(0) (0) cn δ δ′ ′Δ = =  (see table 3 for values of n ).  
Prior to the first step of the nucleation phase, the total opening is straightforwardly 
given by eqn. (26) with 2

0α=l l  and the opening at the left end of the cohesive zone 
2 2(0) (0) cn δ δ′ ′Δ = = . An additional cycle after the incubation phase leads to an 

increase in the total length (cohesive zone + crack) 1n ′+′&l  and the appearance of a 
crack with length 1na ′+′& . The index is used in this section to recall that these 
parameters generally vary with the number of cycles during the nucleation phase, 
note that 0j′ =&l  and 0ja′ =&  for j n′≤ , i.e. during the incubation phase. These two 

values are obtained solving the non linear equation 2
1( ) cx δ′Δ =  thanks to a Newton 

algorithm. This is illustrated in table 4.  
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Table 4.  The crack length and total length (cohesive zone + crack) advances 1na +
&  

and 1n+
&l  (resp. 1na ′+′&  and 1n′+′&l ) during the first nucleation cycle (i.e. after the n  (resp. 

2n n′ = ) cycles of the incubation phase) vs. the opening angle ω , for  0.1α = . The 
prime denotes the modified cumulating law. 
 
ω  (Deg.) 0 30 60 90 120 160 

1na +
&  (µm) 3.0 10-3 2.9 10-3 2.6 10-3 1.5 10-3 0.3 10-3 ∼ 10-9 

1n+
&l  (µm) 3.1 10-3 3.0 10-3 2.8 10-3 1.8 10-3 0.4 10-3 ∼ 10-8 

1na ′+′&  (µm) 1.5 10-5 1.5 10-5 1.2 10-5 0.5 10-5 0.4 10-6 ∼ 0 

1n′+′&l  (µm) 1.6 10-5 1.5 10-5 1.3 10-5 0.6 10-5 0.6 10-6 ∼ 0 

 
 
To go further, the total length m′l  and the open crack length ma′  must be stored after 
each cycle 1m n′ ′≥ + . Thus, it is possible to trace the history of the successive 
openings at any point using eqn. (26). At the end of cycle m′  the cumulated opening 
at the left end of the cohesive zone is cδ  and an additional cycle leads to an increase 
in the total length (cohesive zone + crack) 1m+′&l  and in the crack length 1ma +′& . It must 
be pointed out that if 1 1m ma + +′ ′= && l  then the cohesive zone length is unchanged and 
simply shifted. Surprisingly, it can be seen on figures 14 and 15 plotted for 0.1α = , 
that no acceleration occurs during the first 10000 cycles, the cohesive zone length 
remains constant and is simply shifted by a constant value whatever the opening. 
This can be observed undoubtedly up to 0.3α = , the acceleration begins to be 
visible for 0.5α =  and 120ω =  as illustrated on figure 16. It becomes definitely 
obvious for 0.5α =  and 160ω =  (figure 17). The same features and especially the 
same crack lengths can be observed with the primary cumulating law but of course 
after a much smaller number of cycles. 
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Figure 14. The crack length after the incubation phase for 0.1α =  and different 

openings for the modified cumulating law (line 160 is not plotted because not visible). 
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Figure 15. The total length (cohesive zone + crack) after the incubation phase for 

0.1α =  and different openings for the modified cumulating law (line 160 is not plotted 
because not visible). 
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Figure 16. The total length (cohesive zone + crack, dotted line) and the crack length 

(solid line) after the incubation phase for 0.5α =  and different openings for the 
modified cumulating law (lines 0 and 30 almost merge and line 160 is plotted 

separately). 
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Figure 17. The total length (cohesive zone + crack, dotted line) and the crack length 
(solid line) after the incubation phase for 0.5α =  and 160ω =  for the modified 

cumulating law. 
 

According to these remarks, for small values of α , one can assume that the 
nucleation phase is a stationary state, i.e. the crack advances per cycle a&  and a′&  are 
constant. Then formulas (28), (31) and (35) can be used to provide an analytical 
definition of the corresponding Paris fatigue law 
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 (39) 

 
In eqn. (39) the dependence of a&  and a′&  on the opening ω  occurs through the terms 

0l  and (0)δ%  (table 1) and of course through the singularity exponent λ . The results 
are shown in table 5, the calculated values of a&  and a′&  can be compared to those 
extracted at the first nucleation cycle by the numerical procedure used to compute 
the crack advance in the general case (table 4). 
 
Table 5.  The Paris exponents q  and q′ , the constants D  and D′and the crack 
advances per cycle a&  and a′&  for 0.1α =  under the assumption of a stationary state. 
ω  (Deg.) 0 30 60 90 120 160 
q  4 4 4.1 4.4 5.2 11 

D  (µm) 29.5 29.4 30.3 31.9 37.4 69.9 

a&  (µm) 2.95 10-3 2.94 10-3 2.41 10-3 1.27 10-3 0.23 10-3 ∼ 0 

q′  6 6 6.1 6.6 7.8 16.6 

D′  (µm) 16.7 16.6 17.0 17.9 21.1 38.3 

a′&  (µm) 1.7 10-5 1.7 10-5 1.4 10-5 4.5 10-6 3.3 10-7 ∼ 0 

 
 

 
11. Conclusion 
 
Within the framework of quasi-brittle materials and thanks to a Dugdale cohesive 
zone model, the aim of Jaubert, Marigo (2006) to apply a single failure law being 
valid for both monotonic and fatigue loads with no additional dissipation process 
seems feasible. The failure law takes into account the cumulated opening during the 
cycles in the cohesive zone and the failure criterion is based on a critical value of this 
cumulated opening. Nevertheless, to be consistent with the experiments, the power 
β  involved in the cumulating law must be adjusted. With the previous reasoning 
already encountered in sections 8-9, one may write for a crack ( 0ω = ) 
 
 1( ) ( ) ( 2 ) ... ( )x a a maβ β βδ δ δ′′ ′′ ′′ ′′Δ = − + − + + −& & &l l l  (40) 
 
then 
 

 
2( 1) 1

1 0

0

(0)
  with  ( )d   and   c
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Thus, if a Paris exponent p  can be identified from experiments on a crack growing 
under a fatigue loading (stage 2), the best fit gives / 2 1pβ = − . As a consequence, 
for small fatigue loadings ( / 0.3D

m ck kα = ≤ , i.e. loadings smaller than 30% of the 
failure load) a fatigue law for cracks nucleating at the root of a V-notch ( 0ω ≥ ) can 
be written 
 

 
2(1 )

p

Im
D
Ic

Ka D
K

λ−⎛ ⎞
′′ ′′= ⎜ ⎟

⎝ ⎠
&  (42) 

 
where λ  is the singular exponent of the elastic solution in the vicinity of the notch 
root. In the early growth stage (stage 1), the material seems to behave in an 
increasingly brittle way as the opening increases. For higher loadings such a 
stationary law is no longer valid. In particular, for large openings the initial crack 
growth is very slow, but it speeds up cycle after cycle as shown in figures 16 and 17. 
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