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ABSTRACT 

 Laboratory experiments were carried out  on a boundary layer over a concave 

wall subject to Görtler instability in the presence of forced wavelengths. 

Measurements of the local heat transfer along the concave wall permit calculation of 

the local Stanton number St for various axial positions x, nominal velocity nU , the 

wavelength λ  and strength wd  of the forced initial perturbations.  The relation 

among these variables was constructed by a phenomenological argument in the form 

of classical power law correlations: ( )
dc

b
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x

ReaSt �
�

�
�
�

�

θ
λ

�
�

�
�
�

�= θ . Correlations 

constants are then derived by genetic algorithm methods. The calculated Stanton 

number is in good agreement with the experimental results. In this paper we propose 

correlations for the calculation of heat transfer on concave surfaces (such as gas 
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turbine blade pressure side) where the flow is complex due to the presence of 

streamwise vortices. 

Key words: Görtler instability, concave boundary layer, thermal boundary layer, 

wall heat transfer, heat transfer intensification, genetic algorithm, correlations, gas 

turbine blade cooling 

 
 
NOMENCLATURE  

 

 

 

Cp heat capacity ( )K.kg/J  

wd  wire diameter (m) 

θG  
Görtler number 

R
U n θ

υ
θ

 

H height of the counter wall, H=0.15 (m) 

∞T  free-stream temperature (K) 

wT  wall temperature (K) 

U longitudinal component of velocity (m/s) 

nU  Free-stream velocity or nominal velocity 
(m/s)  

pwU

 

potential wall velocity, 

�
�

�
�
�

� −
=

R
H

1ln
H
R

U
U n

pw (m/s) 

x streamwise direction (m) 

y normal to the wall direction (m) 

z spanwise direction (m) 

Pr Prandtl  number, k/Pr υ=  
R wall radius of curvature (m) 
Re Reynolds number υ/xU n  
St Stanton number 

( )∞−ρϕ TTUC/ wallpwpw  

α  wave number of initial perturbations: 
λπ=α /2  

K thermal diffusivity ( )s/²m  
υ  kinematic viscosity ( )s/²m  
ρ  density (kg/m3) 

wϕ  wall heat flux ( )²m/w  

θ  Blasius momentum thickness 

2/1(Re)x664.0 −=θ   

Nu Local Nusselt number θ∆λϕ= /Nu xp
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INTRODUCTION  

 Boundary layers with concave streamlines arise in several situations of 

practical importance such as the pressure side of gas turbine blade, combustion 

chamber, diffusers etc. In laminar regimes such boundary layers are susceptible to 

hydrodynamic centrifugal instability, generally called Görtler instability after the 

original work of Görtler [1]. At the start of the instability, the boundary layer is still 

a laminar boundary layer over which an array of streamwise vortices (called Görtler 

vortices) is superposed, as is shown on figure 1. Görtler vortices in their nonlinear 

stage of development drastically modify momentum and heat transfer on the wall. 

 The control parameter θG , called the Görtler number, is defined as 

2/1

R
U

G �
�

�
�
�

� θ
υ

θ
= ∞

θ , where ∞U , θ, and R are freestream velocity, momentum 

thickness and radius of curvature of the concave wall respectively, and υ  is the 

kinematic viscosity of the fluid. 

 The Görtler number can be recast as 2/3)(G αθΛ= λθ , where λΛ  is the 

wavelength parameter, defined as 
2/3

R
RU

�
�

�
�
�

� λ
υ

=Λ ∞
λ , and � the vortex wavelength 

�
�

�
�
�

�

α
π=λ 2

. The parameter λΛ  is constant in an experiment. with a given 

wavelength. 

Centrifugal instabilities have a great influence on the heat transfer over curved 

surfaces such as gas turbine blades [2]&[3]. The heat transfer is enhanced over a 

concave surface while it is inhibited over a convex wall. In the special case of gas 

turbine blades Görtler vortices play an important role. In fact, for calculation of 

thermal stresses in the turbine blade one needs to know the amount of heat 

transferred from the combustion products to the blade. Heat transfer correlations 

existing in the open literature do not take into account the extra thermal load caused 

by the streamwise vortices. Therefore, they underestimate the convective heat 

transfer coefficient which is used as a boundary condition for the calculation of 

blade thermal stress loading. This coefficient is also crucial for the design of blade 
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internal cooling.  In the blade film cooling Görtler vortices can be harmful. 

Duchêne[4] showed that the Görtler vortices exist on the pressure side of the gas 

turbine blades and strongly interact with the longitudinal vortices generated by the 

film cooling jets. In this special case he demonstrated that the Görtler instability is 

responsible for a slight reduction in the cooling efficiency. 

In the present work we measure detailed heat transfer rates for different 

Görtler vortex wavelengths and two upstream perturbation strengths. The initial 

disturbances are generated by means of fixed manipulation grids made up of a series 

of forcing wires of diameter 0.18 mm or 0.80 mm and with 5, 10, 20, 30, 40, 50, and 

60 mm spanwise wavelengths. The grid is placed vertically 4 mm upstream of the 

leading edge of the concave wall. The principal role of the perturbation 

(manipulator) grid is to fix the distance between vortices and their spanwise 

positions. The concave wall is heated with a constant heat flux ²/200 mWp =ϕ  

using double-layered resistive sheets. Wall temperature was measured with one 

hundred and ninety chromel-alumel-type thermocouples of 80 µm diameter 

embedded in the wall. Thermocouples are placed in such a way that the longitudinal 

evolution of the wall temperature can be followed as well as its spanwise variation at 

several longitudinal positions.  

The vortex wavelength of the measurements carried out in this work  covers a very 

large range in λΛ , between 58 to 3841, corresponding to regions in the damped 

zone of the linear theory, passing through the most amplified Görtler vortex 

( ≈Λ 210) and extending into the weak amplification ( ≈Λ 3841) zone. Data used in 

the present work was obtained from more than 44 experimental configurations with 

constant wall radius of curvature. 

In previous work, Momayez et al. [5] have demonstrated the difficulties in 

reducing the number of governing parameters for heat transfer on a concave wall. 

Those complex situations have not been expressed in terms of correlations. The 

problem arises either from the number of parameters (4) or from the unknown 

mechanisms that influence the heat transfer. 
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In this paper we derive and optimize correlations for the convective heat transfer 

coefficient in a boundary layer over a concave wall by using Genetic Algorithm 

(GA) methods.   

 

1. EXPERIMENTAL SET UP AND METHODS 

Experiments were carried out in the boundary layer on a concave-convex model 

mounted in a laminar open-loop wind tunnel described in [5]. The nominal free-

stream velocity could vary between 1.5 and 10 m/s with constant turbulence 

intensity of 0.7%. 

The concave-convex model (Figure 2) has four main parts: 

– the leading edge in the shape of a thick laminar airfoil (NACA-0025) 

– the concave part (radius of curvature 65 cm) in which the measurements were 

made   

– the convex part (radius of curvature 15 cm) 

– the trailing edge, a flat plate that can rotate around the center of curvature of the 

convex section 

In order to minimize the longitudinal pressure gradient, a Plexiglass counter 

wall (opposite to the concave wall) was fixed on top of the model. The origin of the 

curvilinear axial coordinate x is fixed at the leading edge and the concave wall starts 

at x = 9 cm. Görtler vortices are generated as the result of the amplification by the 

centrifugal instability of upstream perturbations entering the concave boundary 

layer. In this study the spanwise position of the Görtler vortices was fixed by forcing 

predetermined wavelengths upstream of the leading edge. This was done by a 

manipulation (perturbation) grid made of variable-diameter wires with different 

wavelengths (spanwise distances λ ) placed vertically 4 mm upstream of the leading 

edge. In order to analyze the response of the boundary layer to the upstream 

perturbations, we study the reference case ( ∞=λ , no forcing) and then the cases 

corresponding to increasing numbers of wires: λ = 6, 5, 4, 3, 2, 1 and 0.5 cm, with a 

small wire diameter of wd = 0.18 mm (weak perturbations) and a large wire 

diameter wd = 0.8 mm (strong perturbation).  
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The model surface was covered with a thin (130 µm) resistance film made of 

a 70 µm constantan layer glued to a 60 µm Kapton film and was heated by the Joule 

effect. 196 chromel-alumel thermocouples of 80 µm bead measured the temperature 

on the Kapton side of the film. To reduce heat loss from the back of the model wall, 

it was insulated with phenolic foam (k = 0.02 W/mK) in which eight thermocouples 

were implanted. Measurements showed that heat losses by conduction from the back 

of the model were 6 to 8 W/m², that is, between 3 and 4% of the imposed heat flux 

on the wall. Thermocouples were used to measure the wall temperature along three 

streamwise paths and several spanwise lines. Fluid temperature in the boundary 

layer was measured by a thermocouple probe similar to that used by Blackwelder 

and Moffat (Blackwelder and Moffat [6]). Experiments were carried out at nU  = 2, 

3, 4.8, 7 m/s and the wall heat flux was ϕ = 200 W/m². The nominal flow velocity 

out of the boundary layer was measured upstream of the model’s leading edge by a 

Pitot tube. In the present experiments pwU nU88.0≈  is obtained theoretically by 

calculating the potential velocity )y(U p  at y=0 (Momayez [7]). 

2. EFFECTS OF GÖRTLER INSTABILITY ON THE WALL HEAT 

TRANSFER  

The cross-sectional heat advection brought about by Görtler vortices in an 

unstable boundary layer over a concave wall makes the heat transfer very different 

from that in a plain laminar boundary layer. Görtler vortices at their onset are very 

weak (Floryan [8], Peerhossaini and Wesferid [9]). According to the linear theory, 

the boundary layer becomes unstable at some critical Görtler number (for instance, 

at θG  = 0.46 in Floryan and Saric [10]), and its linear amplification (half of its 

growth in terms of axial distance) occurs before any disturbance can be detected. 

The first effect of Görtler vortices on wall heat transfer thus appears in the nonlinear 

state of the vortices. This fact is evident in Figure 3, which plots Stanton number 

versus Reynolds number for five nominal velocities. This figure shows the results 

for the reference case of nU = 3 m/s without a vortex-triggering grid. The results are 
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also compared with Blasius heat transfer correlation for a laminar boundary layer 

(laminar flat-plate) and the correlation for a turbulent boundary layer on a flat plate 

(Kays and Crawford [11]) with constant wall heat flux.  

On Figure 3 we have shown the evolution of the Stanton number as a 

function of Reynolds number for Un=3m/s in the absence of the vortex-triggering 

grid (for simplicity). Note that in this Figure the experimental points follow the 

laminar flat-plate curve up to certain Reynolds numbers, confirming the initial very 

weak or zero effect of curvature on heat transfer. The measurements then diverge 

from the laminar flat-plate curve and after a constant-Stanton-number “plateau”, 

heat transfer increases drastically before being saturated by turbulence. On Figure 3 

laminar flat plate (Blasius) and turbulent flat plate boundary layer  curves are used 

as reference for the evolution of heat transfer along the concave surface. 

Four different stages in the longitudinal evolution of the boundary layer can be 

distinguished in Figure4:  

• zone OA: this zone corresponds to the leading edge and its junction with 

the concave part. In this zone St follows approximately the curves corresponding to 

the laminar boundary layer on the flat plate (2D steady-laminar flow). Deviation of 

the first few points is due to flow acceleration at the leading edge.  

• zone AB: here heat transfer on the concave wall deviates gradually from the flat 

plate by the appearance of a “plateau” with roughly constant Stanton number. This 

heat-transfer intensification is related to the growth of the Görtler vortices under the 

effect of centrifugal instability (3D steady-laminar flow). 

• zone BC: the heat transfer coefficient gradually reaches values close to or above 

turbulent boundary layer values on a flat plate. This rapid increase in heat transfer 

coefficient (St) is due to the secondary instability of the Görtler vortices (Toé et al. 

[12]). Indeed, once the Görtler vortices reach sufficient strength, subsequent 

longitudinal velocity gradients cause inflection points where shear instability 

develops (3D unsteady flow); this secondary instability grows rapidly and induces a 

premature (compared to the flat plate) boundary-layer transition to turbulence.  
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• zone CD: heat transfer ceases to increase and follows the flat-plate turbulent 

curve. It has been observed (Ajakh et al. [13]) that turbulent spots are present in the 

boundary layer at these Görtler numbers. As Kestoras and Simon [14] and also Toé 

et al. [15] have noted, the heat-transfer level of the turbulent boundary layer is 

higher on the concave wall than on a flat plate. This heat-transfer enhancement in 

the turbulent regime can be explained by the mechanisms responsible for heat-

transfer enhancement in the laminar flow: the primary Görtler instability induces 

longitudinal vortices that are not completely broken down by transition and thus are 

still weakly present. The secondary instability induces large-scale coherent vortices 

in the turbulent flow that are more efficient for transport than the smaller fine grain 

turbulent scales.   

An attempt to correlate the variations of Stanton number with Görtler or Reynolds 

number has not given a conclusive result. In fact, Momayez et al.[5] plotted 

experimentally obtained values of the Stanton number versus Reynolds and Görtler 

number as shown on Figures 3 and 5. Instead of collapsing together the curves show 

a certain dispersion, implying that probably neither Gr nor  Re is the proper control 

parameter of the problem.  Question rises as to whether an other combination of the 

problem variables ( nU , λ ,  R, X, ) can better correlate the results. For this purpose 

and given the very large number of the data collected in 44 series of measurement 

we have used the Genetic Algorithm method to search such correlations.  

3.  GENETIC ALGORITHM 

 Genetic algorithm is a branch of evolutionary computing, a swiftly 

growing area of reproduction intelligence, which is a search-and-optimization 

technique based on natural selection. Genetic algorithms (GAs) are motivated by 

Darwin’s theory of evolution. Simply put, problems are solved by an evolutionary 

process that yields a best (fittest) solution (survivor) — in other words, the solution 

evolves.  The GA is a computer simulation of such evolution in which the user 

provides the environment (function) in which the population must evolve. 

Evolutionary computing was introduced in the 1960s by Rechenberg in his book 
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Evolution strategies 1 and was later developed by other researchers. GAs were 

created by John Holland [16] and developed by him, his students and colleagues, 

culminating in Holland’s 1975 book, Adaptation in Natural and Artificial Systems. 

In 1992 John Koza [17][18][19] used GA to develop programs to carry out certain 

tasks, calling his method ‘genetic programming’ (GP). If we are solving a problem, 

we are usually looking for a solution that is better than all others. The space of all 

reasonable solutions (the set of solutions among which the desired solution resides) 

is called the search space (also state space). Each point in the search space 

represents one possible solution. Each possible solution is distinguished by its value 

(or fitness) for the problem. With GA we look for the best solution, represented by 

one point in the search space, among a number of possible solutions. Looking for a 

solution is then equivalent to looking for some extreme value (minimum or 

maximum) in the search space. At times the search space may be well defined, but 

usually only a few points in it are known. The process of finding solutions in GA 

generates other points (possible solutions) as evolution proceeds.  

In the field of acoustics, Sato et al. [20] used GA to design a concert hall with 

optimal acoustic properties, maximizing the sound quality for the audience, the 

conductor, and the on-stage musicians. Porto et al. [21] used evolutionary 

programming to train neural networks to distinguish between sonar reflections from 

different types of objects: man-made metal spheres, seamounts, fish and plant life, 

and random background noise. Tang et al. [22] survey the uses of genetic algorithms 

in acoustics and signal processing. 

In aerospace engineering, Obayashi et al. [23] used a multiple-objective GA to 

design the wing shape for a supersonic aircraft. Williams et al [24] applied genetic 

algorithms to spacing satellite orbits in order to minimize coverage black-outs. 

Keane and Brown [25] used a GA to design a load-bearing truss or boom to be 

assembled in orbit and used for satellites, space stations and other aerospace 

construction projects. 

                                                           
1 Rechenberg, I., / Evolutionsstrategie: Optimierung technischer  Systeme und Prinzipien der biologischen Evolution /, Frommann-

Holzboog, Stuttgart, 1973 
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The GA used in this study is written in C. A MATLAB® .Implementation of the 

algorithm in MATLAB simplifies its use and also gives access (from the command 

line) to some of its main parameters in order to increase performance in particular 

cases. It is designed to minimize/maximize complex functions and is based on real 

number encoding. It can handle various characteristics (discontinuity, multimodality, 

and the like) without being optimized for a particular type of function and returns 

good results with the most common benchmark functions and with new ones as well 

[25] [27] [28]. The algorithm integrates classic and new features, such as the ability 

to shape the sampling bias and a new sampling type for the BLX-� crossover 

operator [29][30][31][32]. We recommend this GA for solving problems on which 

traditional methods fail to return the global minimum/maximum and especially 

when the function characteristics are not known.  

 

3.1. CHOICE OF THE CONTROL PARAMETER 

In a first correlation among the different problem parameters we assume that the 

wall temperature depends on , , ,U x Rλ∞ , that is: T ( )R,,x,U λ∞ . In classical 

dimensionless heat transfer form it can be reduced to )Re,,G(St xΛθ , where θG  

(Görtler number based on momentum thickness) is the principal parameter and  Λ  

is the non-dimensional wavelength in the Görtler instability. For this case we assume 

the correlation law d
x

cb ReaGSt Λ= θ , where a, b, c, d are the unknown coefficients 

determined by the GA program. The coefficients are calculated separately for each 

zone (OA, AB, BC and CD).  Table 2 presents the values of mean error (%) for this 

correlation calculated for different nominal velocities Un and perturbation strength 

(wire diameter). 

In a second try for correlation we consider the influence of the curvature 

through the dimensionless number R/x , which represents the local angle of 

rotation of flow streamlines. This choice gives more weight to the radius of 

curvature of the concave wall. The influence of nU  is still taken into account by the 
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Reynolds number or the Görtler number, and we naturally nondimensionalize the 

wavelength with the boundary-layer thickness. Then the expected relation becomes: 

( )
dc

b
dcb

R
x

a
R
xR

GaSt �
�

�
�
�

�
�
�

�
�
�

�=�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
=

θ
λ

θ
λ

θ θθ Re  

 

Coefficients a, b, c, and d are calculated for different zones (OA, AB, BC, CD) 

and shown in Table 1 (to save space we have shown the coefficients only for this 

correlation which, as we see later,  fits the best the experimental results). Values of 

mean errors are shown in Table 2. In the third try for correlation we attempted to 

take into account all dimensional parameters in a minimum number of dimensionless 

numbers: 
cb

n

R
U

aSt �
�

�
�
�

� θ
��
�

�
��
�

�

υ
λ

= .  Again we have calculated by GA the values of a, b, 

c, for the different zones; the mean errors are shown in Table 2. 

3.2. RESULTS  

Before presenting the results we recall that the range of parameters covered in 

the experiments and in simulations reported in this work is given in Table 3. 

From the construction point of view, the third correlation is obviously the worst 

fit, clearly because the hypothesized law lacks enough parameters to follow the 

complex experimental results. The two other correlations both have four control 

parameters and give roughly the same uncertainty. The final decision was made by 

putting in the three correlations the (flow and geometrical) parameters 

corresponding to 44 experimental configurations and comparing the Stanton-number 

versus Görtler-number curves obtained from the correlations with the corresponding 

experimental curves. The best results were obtained with the second correlation, 

where the effect of axial distance, relative curvature and relative wavelength are 

explicitly taken into account. Figures 6 and 7 compare the results of the second 

correlation with the corresponding experimental results. We have chosen only a few 

cases among the 44 optimization cases and are compared with 44 corresponding 

experimental cases.  

In Table 1 the relative magnitudes of coefficients (b, c and d) reveal the 

sensitivity of the heat transfer to the Reynolds number, curvature and wavelength 
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respectively. In zone OA, b is larger than c and d, which is consistent with a nearly 

2D steady laminar flow. Otherwise, in zone AB, c is larger than b and d, implying 

that curvature is the dominant mechanism of heat transfer sensitivity. This is in 

agreement with a strong 3D steady laminar flow which dominates in this zone. In 

zone BC, we again have a strong Reynolds-number effect with sensitivity to the 

wavelength. This result is in agreement with a 3D unsteady flow with transition 

governed by the secondary Görtler instability. Finally in zone CD, the dominant 

parameter is the Reynolds number with sensitivity to curvature since in this zone the 

flow is fully turbulent therefore, the organized vortex structure is already 

disappeared and the notion of wavelength has lost its significance. However, the 

centrifugal effects due to the curvature are still active.  

Zones in which each set of constants is valid are defined in terms of the value of 

the non-dimensional  Görtler number. Therefore, in applying the correlations these 

sets of constants should also be valid in the same range of Görtler number defined 

based on the parameters of the problem in hand.. 

4.  CONCLUSIONS 

Heat transfer enhancement by streamwise Görtler vortices is considered. Passive 

flow manipulation for heat transfer intensification is due to the centrifugal instability 

caused by wall curvature. Previous results of the authors show however, that this 

heat transfer enhancement is sensitive to the wavelength and strength of the Görtler 

vortices. Therefore, perturbation grids were fixed upstream of the concave wall to 

manipulate and to force the wavelength of the vortices. Following a parametric study 

a large number of experimental data (in the form of the Stanton number as a function 

of the different flow and geometrical parameters of the problem) is now available. 

However, it has not been possible to establish a correlation between these 

parameters which fits the experimental data properly. Searching for such optimal 

correlation is a nonlinear optimization problem. There exit many methods for this 

optimization, we have opted for Genetic Algorithm. It can rapidly give sufficiently 

satisfactory solutions. 
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By a phenomenological procedure three possible correlations were submitted to the 

GA estimator used in search for global optimal estimation of the correlation 

coefficients. Given the very distinct behavior of the Stanton number in a large range 

of the Görtler number (which covers 2D laminar, 3D laminar, transitional and 

turbulent regimes) optimization and evaluation of the mean values of errors were 

carried out for each zone separately. The results of the correlations were then 

compared with experimental results. This optimization was also performed for two 

values of perturbation strength. It was concluded that the most optimal correlation is 

in the form of ( ) ( ) ( )dcb /R/xRaSt θλ= θ , with values of constant coefficients as 

given in table 1. 
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FIGURE CAPTIONS 

Figure 1 : Görtler vortices in the boundary layer at x=490 mm from the leading edge ( nU  = 2 m/s). 

Figure 2. Schematic diagram of the concave-convex model. 

Figure 3. Evolution of the Stanton number as a function of Reynolds number for various free-stream 

velocities in the absence of the vortex triggering grid 

Figure 4. Evolution of Stanton number versus Reynolds number for Un=3m/s in the absence of the 

vortex-triggering grid. 

Figure 5. Evolution of the Stanton number as a function of Görtler number for various free-stream 

velocities in the absence of the vortex triggering grid. 

Figure 6. Comparison between experimental (filled) and simulated (empty) evolution of Stanton 

number versus Görtler number for different � and Un=3m/s, dw=0.18mm. Simulation results are 

obtained from the second correlation. 

Figure 7 Comparison between experimental (filled) and simulated (empty) evolution of Stanton 

number versus Görtler number for different U and λ =30mm, dw=0.18mm. Simulation results are 

obtained from the second correlation. 
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Figure 2 : Görtler vortices in the boundary layer at x=490 mm from the leading edge 

( nU  = 2 m/s). 
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Figure 2. Schematic diagram of the concave-convex model 
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Figure 3. Evolution of the Stanton number as a function of Reynolds number for 

various free-stream velocities in the absence of the vortex triggering grid 
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Figure 4. Evolution of Stanton number versus Reynolds number for 

Un=3m/s in the absence of the vortex-triggering grid. 
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Figure 5. Evolution of the Stanton number as a function of Görtler number for 

various free-stream velocities in the absence of the vortex triggering grid. 

 

 



ACCEPTED MANUSCRIPT 
 

24 
 

 

²

 

Figure 6. Comparison between experimental (filled) and simulated (empty) 

evolution of Stanton number versus Görtler number for different � and Un=3m/s, 

dw=0.18mm. Simulation results are obtained from the second correlation. 
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Figure 7 Comparison between experimental (filled) and simulated (empty) evolution 

of Stanton number versus Görtler number for different U and λ =30mm, 

dw=0.18mm. Simulation results are obtained from the second correlation. 
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dw(mm) a(OA) b(OA) c(OA) d(OA) a(AB) b(AB) c(AB) d(AB) 
0.18 0.182 -0.891 -0.352 -0.067 0.012 -0.106 0.201 -0.163 
0.8 0.208 -0.825 -0.341 -0.140 0.023 -0.022 0.036 -0.179 

         
dw(mm) a(BC) b(BC) c(BC) d(BC) a(CD) b(CD) c(CD) d(CD) 
0.18 0.018 -0.212 0.060 -0.115 0.08 -0.495 0.229 -0.074 

0.8 0.083 -0.517 0.149 -0.048 0.100 -0.573 0.198 0 
 

Table 3: Values of different coefficients for second 

correlation: ( ) ( ) ( )dcb /R/xRaSt θλ= θ . 
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 U(m/s) 2 3 4.8 7 
 first correlation 6.09 4.76 7.63 10.15 
 second correlation 5.18 5.03 7.17 9.07 
 third correlation 7.99 7.75 11.704 14.45 

 

(a) 

U(m/s) 2 3 4.8 7 
first correlation 2.79 5.57 6.23 4.86 
second correlation 6.23 6.32 6.64 6.22 
third correlation 6.96 7.10 10.15 8.02 

 

 

(b) 

Table 4: Mean values of errors (%) for different experimental 

configurations in the present work, for first correlation d
x

cb ReaGSt Λ= θ , 

for second correlation ( ) ( ) ( )dcb /R/xRaSt θλ= θ , and for third 

correlation 
cb

n

R
U

aSt �
�

�
�
�

� θ
��
�

�
��
�

�

υ
λ

=  , (a) wd =0.18mm, (b) wd =0.80mm 
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θG  
1-14 

nU (m/s) 
2-9 

λ (cm) 
0.5-6 

xRe  
55 104102.0 ×−×  

X(cm) 
0-70 

R (cm) 
65 

 

Table 3: The range of parameters covered in the experiments and in 

simulations reported in this work . 




