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Abstract

This article describes a bridge between POD-based model order reduction tech-
niques and the classical Newton/Krylov solvers. This bridge is used to derive an
efficient algorithm to correct, “on-the-fly”, the reduced order modelling of highly non-
linear problems undergoing strong topological changes. Damage initiation problems
are addressed and tackle via a corrected hyperreduction method. It is shown that
the relevancy of reduced order model can be significantly improved with reasonable
additional costs when using this algorithm, even when strong topological changes are
involved.

Keywords: Model order reduction (MOR); Time-dependant nonlinear mechanical
problems; Proper orthogonal decomposition (POD); Newton/Krylov Solver; Projected
conjugate gradient; System approximation; Hyperreduction; CH-POD; Damage prop-
agation;

1 Introduction

The simulation of failure in complex materials has been one important issue throughout en-
gineering. Micro and mesoscale models have demonstrated their ability to predict complex
phenomena such as crack initiation and propagation in various fields: composite materials
in aeronautics [1, 2], cement-based structures [3] in civil engineering or biostructures [4]
in medical engineering. However, these models usually describe the material at a very fine
scale compared to the size of the structure, and the finite element discretization of the un-
derlying partial differential equations leads to large, potentially highly nonlinear (therefore
requiring a fine discretization in time), numerical problems. Various multiscale computa-
tional strategies have been developed to tackle this important issue, such as enrichment
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techniques [5, 6], homogenization strategies [7, 8], domain decomposition methods [9, 10],
or model order reduction[11, 12]. The most efficient of these techniques couple several of
these advanced tools to efficiently perform multiscale simulations [13, 14, 15, 16, 10, 17, 18].

Among them, Proper Orthogonal Decomposition-based (POD) [11, 12, 19] model order
reduction strategies provide extremely valuable tools for an automatic derivation of a
multiscale computational method (no a priori physical understanding of the different
scales involved is required). They consist in using a set of potential solutions to the initial
problem (snapshot) and extracting, by a spectral analysis a few basis vectors spanning a
space of small dimension in which the solution to the, initially large, numerical problem is
well approximated [20]. These techniques have been proved extremely efficient when speed
is more important that accuracy, for instance if the goal is to provide an approximation
of the response of a complex structure in real-time (an example of biomedical application
is given in [21]), or quasi real-time (in the case of early stage design). This type of
applications is our main focus.

In the context of structural problems involving plasticity or damage, two severe draw-
backs limit the direct application of POD-based model order reduction:

• The initial snapshot might be too poor to represent accurately the solution of the
damaged structure. This can happen if:

– The “a priori” mechanical understanding of the structure is too poor, which
might result in a bad choice of the snapshot simulations.

– The number of parameters involved is too important. The snapshot needed
to compute a relevant reduced basis might be very large, and its reduction
inefficient.

– Strong topological changes in the structure occur. Improvements have been
proposed by Ryckelynk’s team [22] where the reduced basis is enriched during
the computation. When required, a Krylov subspace associated to a linearised
operator of the initial problem is generated, and a few additional basis vectors
are obtained by a spectral analysis of this space. However, it seems that,
when dealing with complex constitutive laws, this adaptive strategy can be
computationally expensive [18].

• The integration of the constitutive law needs to be done at each integration point,
regardless of the dimension of the reduced space. These problems have been handled
in [23] by a technique called hyperreduction, which consists in considering only a few
local residuals to compute the internal forces.

On the other hand, various model order reduction strategies have also been used to de-
rive good initializations and preconditioners for iterative algorithms for complex nonlinear
problems at the fine scale [24, 25, 9, 15, 16].

We propose here a novel strategy that couples these two approaches. Our vision is
that if complex changes in the topology of the structure appear (local crack initiation for
instance), they can only be accurately predicted by solving the fine scale model, at least
locally. This can be done, for instance, by adding the finite element shape functions to the
snapshot, or by using relocalization techniques. However, the long-range effects of these
topological changes do not require the fine description, and can be obtained by solving the
full system very crudely. Hence, when the global residual exceeds a given threshold value,
we propose to perform conjugate gradient iterations on the full system, orthogonally to
the snapshot space by means of a classical projection. The new vector obtained by the
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conjugate gradient does not belong to the initial approximation space and is added to the
reduced basis. It is interpreted as an“on-the-fly” enrichment of the reduced model. The
proposed algorithm largely differs from what had been done in [22] in the sense that only
a single vector belonging to the Krylov algorithm is used to enrich the reduced basis, for
each of the corrections performed within a time step. It thus keeps the size of the reduced
basis to a minimum. In addition, the solution of the current time step is not restarted
after enriching the reduced basis. At last, using the properties of the projected Krylov
during the correction steps automatically ensures the required orthogonality between the
additional reduced basis vectors and the initial reduced basis.

This strategy can be interpreted as a bridge between “exact” Newton-Krylov strate-
gies, and projection-based model order reduction methods (like the POD) for nonlinear
problems. Indeed, setting the residual threshold to a low value leads to the former strat-
egy, while setting it to a high value leads to the latter. An intermediate value yields an
adaptive model order reduction method with control of the global residual. We will show
that this method permits to obtain a correction of the reduced model at cheap price, when
the current reduced basis is no more sufficient to represent the solution accurately.

The paper is organized as follows. In section 1, the nonlinear system of equations
resulting from the discretization of a continuum mechanics problem is introduced, and the
model order reduction and associated time solution procedure are described. In section 2,
we perform the reduction of a damage model, and show that the basic application of the
proper orthogonal decomposition is inadequate. The corrective reduced order modelling
is introduced in section 3, and an exhaustive numerical study of its efficiency is proposed
in section 4. In the last section, this technique is applied to the “on-the-fly” correction of
hyperreduced damage models.

2 Problem statement and classical model order reduction
for nonlinear problems

2.1 Problem statement

2.1.1 Nonlinear structural Problem

Let us consider a structure occupying a continuous domain Ω with boundary ∂Ω. This
structure is subjected to prescribed displacements UD on its boundary ∂Ωu, over time
interval [0, T ]. Let u be the unknown displacement field, it belongs to the space U of
kinematically admissible fields:

U =
{
u ∈ H1(Ω) | u|∂Ωu

= UD

}
(1)

Let U0 be the associated vector space. Prescribed tractions FD are applied on the
complementary boundary ∂Ωf = ∂Ω\∂Ωu. Under the assumptions of quasi-static evolu-
tion of the structure and small perturbations, the weak form of the equilibrium and the
constitutive relation read, at any time t ∈ [0, T ]:

∀u? ∈ U0, find u ∈ U such that:∫
Ω
σ : ε(u?) dΩ =

∫
Ω
f

D
.u? dΩ +

∫
∂Ωf

FD.u
? dΓ

σ = σ
((
ε(u)|τ

)
τ≤t

) (2)

where σ is the Cauchy stress tensor and ε(u) is the symmetric part of the gradient of
displacements. The constitutive relation between σ and ε(u) is nonlinear and described

3



using internal variables (for instance damage or plasticity). It is assumed to be local and
rate-independent.

2.1.2 Space discretization

We perform a standard finite element approximation of the space of unknown displacement
field U (and a similar approximation of the space of test functions U0):

Uh(Ω) =

{
u(x) | u(x) =

nn∑
i=1

Ni(x)ui

}
(3)

where nn is the number of nodes, x is the position vector, (Ni)i∈J1 nnK are the finite element
shape functions, and (ui)i∈J1 nnK the nodal values of the displacement field.

The introduction of the finite element approximation into equations (1) and (2) leads
to the following nonlinear vectorial equation at any time t ∈ [0, T ]:

FInt

((
U|τ

)
τ≤t

)
+ FExt = 0 (4)

where U ∈ Rnu (nu is the number of nodal unknowns) is the vector of nodal displacement
unknowns, FInt ∈ Rnu and FExt ∈ Rnu are the internal forces resulting from the discretiza-
tion of the internal virtual work (left-hand side of (2)) and the external forces resulting
from the discretization of the external virtual work (right-hand side of (2)), respectively.

2.1.3 Time discretization

The nonlinear solution strategy used here is a classical time discretization scheme for
quasi-static and rate-independent problems. This procedure consists in finding a set of
consecutive solutions at times (tn)n∈J0 ntK (see [26]). Hence, the constitutive law (2) is
discrete in time. This time discretization scheme yields the following vectorial system of
nu nonlinear equations at time tn+1:

FInt

((
U|tm

)
m∈J0 n+1K

)
+ FExt = 0 (5)

For the sake of clarity, the dependency of the internal forces with the history of the
unknown fields will not be written explicitly.

2.1.4 Nonlinear solution strategy

At each time tn+1 the nonlinear system of equations is solved by a Newton-Raphson
algorithm. At any iteration (i + 1) of the algorithm, the linearisation of equation (5)
around Ui leads to the following prediction stage:

Ki
T
δUi+1 = −Ri (6)

where we have introduced the residual vector R = FExt + FInt(U), and the correction of
the increment of displacement δUi+1 = Ui+1 −Ui. This linear prediction is followed by
a correction stage:

Ri+1 = FExt + FInt(U
i+1) Ki+1

T
=
∂FInt(U)

∂U

∣∣∣∣
U=Ui+1

(7)
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2.2 Model order reduction

The set of equations (5) can be very large if multiscale problems are simulated (see for
instance [6, 16]). Various strategies can be used to reduce the size of this system without
loosing accuracy. We apply here the classical model order reduction by projection to the
solution of problem (5).

2.2.1 Reduction by projection

The solution vector is searched for in a space of small dimension (several orders smaller
than the number of finite element degrees of freedom). Let us call C the matrix whose
columns form a basis of this space:

C =
(

C1 C2 ... CnC
)

(8)

where nC is the dimension of the reduced space, and (Ck)k∈J1 nCK ∈ (Rnu)nC are the
chosen reduced basis vectors. Applied to the reduction of problem (5), the solution field
is searched for under the form:

U = U|tn + Cα (9)

The residual of equation (5) is constrained to be orthogonal to a space of small dimension,
which can, in theory, be different from the one spanned by (Ck)k∈J1 nCK. Let us limit our
study to the Galerkin procedure, which writes the following constraint:

CT R = 0 (10)

Hence, the reduced form of problem (5) reads:

CT
(
FExt + FInt(U|tn + Cα)

)
= 0 (11)

2.2.2 Solution procedure for the reduced nonlinear problem

At each time step of the time discretization scheme, the reduced problem (11) is solved
by a Newton-Raphson algorithm. The (i+ 1)th prediction stage is performed using the
following set of nC linearised equation:

Ki
T,R

δαi+1 = −Ri
R (12)

where the residual of the reduced nonlinear problem (11) is defined by RR = CT FExt +

CT FInt(U|tn + Cα) and the increment δαi+1 = αi+1 −αi. The correction stage reads:

Ri+1
R = CT FExt+CT FInt(U|tn +Cαi+1) Ki+1

T,R
= CT

∂FInt(U|tn + Cα)

∂α

∣∣∣∣
α=αi+1

(13)

There is a simple link between the previous solution procedure for the reduced problem
(11) and the systematic reduction of the prediction stages performed on the full nonlinear
problem (6) since Ki

T,R
can be expanded as

Ki
T,R

= CT
∂FInt(U|tn + Cα)

∂α

∣∣∣∣
α=αi

= CT ∂FInt(U)

∂U

∣∣∣∣
U=U|tn+Cαi

∂U

∂α

∣∣∣∣
α=αi

= CT Ki
T
C

(14)
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This result can be injected in equation (12), which yields:

CT (Ri + Ki
T

C δαi+1) = 0 (15)

This last equation is a simple reduction by projection of the (i+ 1)th linear prediction of
the Newton-Raphson scheme (6) used to solve the initial problem (5). In other words, the
prediction stage of any Newton iteration performed on the reduced problem yields exactly
the same solution as a reduction of the linear prediction stage used to solve the initial
problem.

2.2.3 POD reduced approximation space

The snapshot-POD is a projection-based model order reduction technique which requires
the knowledge of a representative family of solutions to the global problem. This set of
vectors is called (Sk)k∈J1 nSK and forms an operator S =

(
S1 S2 ... SnS

)
. The aim

is to find an orthonormal basis (Ck)k∈J1 nCK, of dimension nC smaller than nS such that
the distance between spaces Im(C) and Im(S) is minimum (in the sense of the Frobenius
norm).

This problem is classically solved by computing the singular value decomposition of S:

S = U Σ VT =

nS∑
k=1

Σk Uk VkT (16)

where U =
(

U1 U2 ... Unu
)

and V =
(

V1 V2 ... VnS
)

are two orthonormal
matrices of respective sizes nu and nS and the upper block of Σ is a diagonal matrix of

positive entries (Σk)k∈J1 nSK (singular values), ordered decreasingly (the lower block is a

null matrix). One can show that the optimum reduced snapshot basis (Ck)k∈J1 nCK is such
that:

C =
(

U1 U2 ... UnC
)

(17)

2.3 POD for the reduction of damage evolution problems

2.3.1 Damageable lattice structure

We focus on a very simple damageable lattice structure, made of bars under traction or
compression (figure (1)). Each of the elementary bars occupies the domain Ωb such that
Ω =

⋃
b∈J1nbK Ωb, where nb is the number of bars. The direction of the bar is nkl =

PkPl/‖PkPl‖ where Pk and Pl are the two nodes connected to Bar b. The displacement
field in Ωb is searched for under the form:

u = u(ỹ)nkl (18)

where ỹ ∈ [0 ‖PkPl‖]. We suppose that no volume force is applied on the structure,
that the material of each elementary bar is isotropic and homogeneous (constant material
stiffness along the direction of the bar), and that the section of the bars is constant and
equal to (Sb)b∈J1nbK. Hence, the unknown displacement field is linear along the direction
of the bar.

A very basic constitutive law, based on classical damage mechanics [1], is used to
described the behaviour of the lattice structure. The lineic strain energy of each bar
reads:

ed =
1

2
E(1− d)Sbε

2 (19)
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where ε(u) = u,ỹ(ỹ) is the strain measured in the direction of the bar, and d is a damage
variable which ranges from 0 (undamaged material) to 1 (completely damaged material)
and is constant within each elementary bar. Two state equations can be derived from the
strain energy. The first one links the normal force N = Sb n

T
kl.σ.nkl to the strain, while

the second one links a thermodynamic force Y to the strain:

N =
∂ed
∂ε

= E(1− d)Sbε Y = −∂ed
∂d

=
1

2
ESbε

2 (20)

An evolution law is defined to link the damage variable to the thermodynamic force:

d = min

(
1, sup

τ≤t

(
α(Y|τ )β

))
(21)

The results presented in this paper are obtained with the following set of data. The
sections and Young’s modulus are unitary. The material parameters are β = 0.5 and
α =
√

2. Each vertical or horizontal bar has a unitary length.
The finite element discretization of the lattice problem is done by considering that each

bar is a linear finite element. Because of the previously made assumptions on the loading
and geometry, the finite element solution yields the “exact” solution to the problem.

2.3.2 Newton/arc-length solution scheme

0 5 10 15 20
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Sunday, 2 May 2010

Figure 1: Reference problem. The structure is a lattice made of damageable bars in trac-
tion or compression. The problem becomes unstable as damage localizes and propagates.

The family of problems that we want to solve is described in figure (1). The load
is applied on the top surface of the structure, in the y direction. The damage state
represented here (light gray corresponds to d = 0, while darker bars are damaged, and
ruined bars are removed) is obtained in 60 time increments, each of which is converged to
a very low level of error.

This problem being unstable, a local arc-length procedure is combined to the Newton
algorithm. This classical [27, 28] procedure is usually derived for a particular case of
the modified Newton algorithm, namely the updated secant Newton. In our work, we
need a certain versatility to choose the linearised operator. Therefore, the local arc-
length procedure is detailed here for tangent and modified Newton algorithms, in a general
manner.

At time tn+1, this procedure simply consists in relaxing the norm λ of the prescribed
loading, while adding a local constraint on the increments of displacement:

FInt

((
U|tm

)
m∈J0 n+1K

)
+ λFExt = 0

c

((
U|tm

)
m∈J0 n+1K

)
∆U = ∆l

(22)
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where FExt is normalized, and ∆U = U|t=tn+1
− U|t=tn . c is a formal boolean line

operator which extracts the maximum difference of displacement increment undertaken
by an element (whose stiffness is strictly positive) over the current time step:

c

((
U|tm

)
m∈J0 n+1K

)
∆U = max

b ∈ J1nbK
∀M ∈ Ωb, d|M,t=tn < 1

(∆U|Pl
−∆U|Pk

) .nkl (23)

where ∆U|Pk
and ∆U|Pl

are the local increments of displacements over the time interval
[tn, tn+1], respectively at corners Pk and Pl of the bar.

These two equations are linearised around point (λi,Ui), which yields, at step (i+ 1)
of the Newton algorithm, the following linear prediction: δλi+1 =

−Ricont − ci (Ki
T

)−1Ri
eq

ci (Ki
T

)−1FExt

δUi+1 = −(Ki
T

)−1
(
Ri

eq + δλi+1 FExt

) (24)

with the definition of the residuals of system (22), Req = FInt + λFExt, Rcont = ∆l −
c ∆U and the increment δλi+1 = λi+1 − λi. During the correction stage, the tangent
stiffness operator and residuals are updated similarly as described for the classical Newton
algorithm, equation (7), while the new extraction operator is corrected as follows:

ci+1 = c

(
Ui+1,

(
U|tm

)
m∈J0 nK

)
(25)

As suggested in [28, 16], we use a quasi-Newton approximation of the previously de-
scribed tangent Newton-Raphson algorithm. The tangent operator at iteration Ki

T
is

replaced by the stiffness matrix Ki obtained by setting the internal variables to previously
obtained values (i.e.: last converged solution, or last Newton iteration). This procedure
does not yield the quadratic convergence rate of the genuine Newton-Raphson algorithm.
Yet, it is widely applied in damage simulations for its simplicity (no need to compute a
tangent operator) and robustness.

The same arc-length procedure is of course applied when reducing the nonlinear prob-
lem by projection on a reduced basis basis. The expressions of the tangent stiffness and
residual are similar to the one given in section (2.2.2) (the residual is slightly modified
by the introduction of the loading parameter λ). The linear prediction performed on the
reduced problem reads:

δλi+1 =
−Ricont − ci C(Ki

T,R
)−1Ri

R

ci C(Ki
T,R

)−1(CT FExt)

δαi+1 = −(Ki
T,R

)−1
(
Ri
R + δλi+1 CT FExt

) (26)

2.3.3 Model order reduction

In order to reduce the family of problems described in the previous sections by a POD-
based projection method, we compute a snapshot of 7 solutions (loads applied on the top
surface of the lattice, at positions x ∈ {2 5 8 10 12 15 18}), as illustrated in figure (2).
The successive loads have a very low value, so that the structure is virtually undamaged.
This snapshot is reduced to three basis vectors by the computation of a truncated SVD.

Within the family considered to construct the snapshot, the particular problem which
will be simulated in the following is represented in figure (3). The vertical load is applied
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Figure 2: Computation of the snapshot made of seven solutions obtained at the very be-
ginning of the damage process (left) and reduced basis obtained by extracting the singular
vectors associated with the three highest singular values of the resulting snapshot operator
(right)

at points x ∈ {7 8 9}, and the time of the analysis is discretized in 50 time steps. The
reference solution is converged to a very low value of the norm of the residual of the
Newton/arc-length algorithm (norm of the residual scaled by the norm of the right-hand
side term equal to 10−6).

Given the normalized current solution Ũ|t =
U|t
‖U|t‖2

and normalized reference solution

Ũref|t
=

Uref|t
‖Uref|t‖2

, the solution error used to assess the accuracy of the current solution is:

solution error|t =
∥∥∥Ũ|t − Ũref|t

∥∥∥
2

(27)

In the following developments, a single value can be provided for this error. It is the
maximum over time of each of these errors.

In the very early stages of the simulation, the error is very low, which can be seen in
figure (5, right) (the dashed line is the error defined by equation (27) as a function of time,
while the dotted one is the value of the maximum damage in the structure). However, as
damage increases, which eventually leads to the cracked area represented in figure (3), a
simple linear combination of the modes of the reduced snapshot is obviously not sufficient
to reproduce accurately the solution, which results in a high level of error.

3 Error-controlled adaptive model order reduction

3.1 Principle

In order to handle complex changes in the topology of the structure, we propose to enrich
the reduced basis C, “on-the-fly”, during the Newton iterations performed on the reduced
problem (11). Prior to the actual description of the algorithm, let us remark that, at each
iteration of the Newton algorithm, one can compute:

• the relative norm of the residual of the reduced problem (11), i.e.:
‖RR‖2
‖CTFExt‖2
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Figure 3: Superposed reference solution and solution obtained with the C-POD, for νNew =
4.10−1 (top), additional reduced basis vectors obtained as a correction of the reduced basis
(bottom).

• the relative norm of the residual of the initial problem (5), i.e.:
‖R‖2
‖FExt‖2

Our aim is to control both these values during the solution process. More precisely, we
will proceed to the next time increment only if the former is lower than νNew,R and the
latter lower than νNew, with νNew,R � νNew. Typically, νNew,R is set to 10−6 in our tests,
while the value of νNew (which, in our tests, ranges from 10−1 to 8.10−1 ) will determine
the accuracy of the successive Newton solutions, and is an important parameter of the
strategy.

The following algorithm is applied. A sufficient number of Newton iterations are per-
formed on the reduced problem, so that the norm of its residual is small enough (kRes times
smaller than the norm of the residual of the full problem, with kRes > 10 a parameter of
the method which can be tuned depending on the application and implementation). If
the norm of the residual of the full problem is still higher than a desired value νNew, the
following linear prediction is enhanced by performing a few iterations of Conjugate Gra-
dient on the linear prediction of the full problem (5). The resulting solution is eventually
added to the reduced snapshot basis, as detailed in the next sections.

This process is repeated, until convergence of both the reduced problem (‖RR‖2/‖CTFExt‖2 ≤
νNew,R), and the full problem (‖R‖2/‖FExt‖2 ≤ νNew).

3.2 Corrections on the linear predictions by an iterative solver

When required by the previously described algorithm, the enhanced linear prediction is
performed by initializing a projected conjugate gradient and performing a few iterations
on the linearised problem (6). The stopping criterion on the normalized residual is denoted
by νCG and set to a high value, typically of the same order than νNew. The reasons for
choosing this iterative algorithm are the following:

• The construction of a Krylov basis requires only matrix/product operations. There-
fore, no matrix assembly is required, which makes it particularly suitable for parallel
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computing, and ensures the versatility of our method. In the case of serial comput-
ing, no matrix factorization is needed, which permits to save (i) memory, as we keep
the sparsity of the operator (ii) time if only a coarse solution is needed, which is the
case in the following developments.

• The projection framework is an ideal tool for the particular issue of enriching the
reduced basis generated by the POD. Indeed, the initialization of the projected
algorithm is the linear prediction of the reduced problem, equation (12). The com-
plementary part of the solution is searched for is a space orthogonal to the reduced
basis, which extends immediately the solution space and reduces the number of iter-
ations required to reach νCG (left preconditioning). To summarize these ideas, each
iteration of the CG is a correction of the solution to the reduced linear prediction
(12) such that this correction is orthogonal to the initialization.

3.2.1 Projected Krylov solver

The classical projected (or augmented) conjugate gradient [29] is applied to the approxi-
mate solution of (6) (the linearised operator is assumed symmetric, positive and definite),
which is recalled here:

K
T
δU = F (28)

Where the i superscripts indicating the iteration number have been dropped for the sake
of clarity, and F = −R. The chosen augmentation space is the previously defined reduced
snapshot space Im(C).

The fundamental idea of the augmented Krylov algorithms is to split the search space
into two supplementary spaces:

Rnu = Im(C)⊕ Im(C)
⊥K

T (29)

⊥K
T

designing the K
T
−orthogonality. The unknown solution vector is decomposed in

this space under the form:

δU = δUC + δUK where

{
δUC = C δα ∈ Im(C)

δUK ∈ Im(C)
⊥K

T = Ker(CTK
T

)
(30)

The K
T
−orthogonality is ensured by introducing a projector P such that:{

δUK = P δUK

CT K
T

P = 0
(31)

Hence, the decomposition of the correction of the displacement increment reads:

δU = C δα + P δUK (32)

with the classical projector:

P = I
d
−C(CTK

T
C)−1CTK

T
(33)

This separation of the search space into two subspaces Im(C) and Im(P) in direct sum
leads to the following uncoupled equations:

(CT K
T

C) δα = CT F ⇒ δUC = C(CT K
T

C)−1CT F (34)
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(
K

T
P
)
δUK = F−K

T
δUC (35)

Note that RC = F −K
T
δUC = PT F and K

T
P = PT K

T
P. Equation (34) is a coarse

initialization of the projected conjugate gradient. As stated previously, it is equivalent to
the linear prediction of the reduced problem (equation (12)). Equation (35) is the linear

prediction of the full problem projected on Im(C)
⊥K

T . This system is symmetric and can
be solved by a preconditioned conjugate gradient. Hence we solve:

M̃
−1
(
PT K

T
P
)
δUK = M̃

−1
PT RC (36)

where M̃
−1

is a left preconditioner (symmetric, definite and positive). In our test cases,

M̃ is a diagonal matrix whose entries are the elements of the diagonal of K
T

. Algorithm 1
describes the augmented preconditioned conjugate gradient.

Algorithm 1: Augmented preconditioned conjugate gradient

Compute K
T
C, (CTK

T
C)−1 ; (P = I

d
−C

(
CTK

T
C
)−1

CTK
T

);

δUC = C(CTK
T
C)−1CTF and δUK0 = 0;

R0 = R−K
T
δUC;

Z0 = PM̃
−1

R0, W0 = Z0;

for j = 1, . . . , n do
αj−1 = (Rj−1,Wj−1)/(K

T
Wj−1,Wj−1)

δUKj = δUKj−1 + αj−1Wj−1

Rj = Rj−1 − αj−1KT
Wj−1

Zj = PM̃
−1

Rj+1

βj = (K
T
Wj−1,Zj)/(Wj−1,KT

Wj−1)
Wj = Zj − βjWj−1

end

3.2.2 Adaptation of the reduced basis

The augmentation space, also used as reduced space for the projection of the linear pre-
diction performed on the reduced problem, is chosen as:

C =
(

C
POD

C
NewT

C
CG

)
(37)

where:

• C
POD

is the initial reduced snapshot (classical POD). It is not changed, unless the
size of the adaptive reduced basis becomes too large. This issue is discussed in the
following.

• C
NewT

is a set of converged solution vectors obtained during previous time steps,
when at least one enhanced linear prediction has been performed (otherwise the
solution obtained is a simple linear combination of the reduced basis vectors). At
the end of such a time step tn, the solution Ut=tn is orthonormalized with respect to
C

POD
and C

NewT
by a Gram-Schmidt procedure (using the classical Euclidian dot

product). This orthonormalized vector is denoted by Ũt=tn and used to adapt C:

C
NewT|t=tn+1

=
(

C
NewT|t=tn

Ũt=tn

)
(38)
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• C
CG

is a set of solution vectors obtained during the Newton process at the current
time step. let i+1 be the current Newton iteration, the linear prediction requiring an
enrichment by the augmented Conjugate Gradient. If ¯δU

i+1
is the solution obtained

at the end of this projected iterative linear solver, it is added to the reduced basis:

C
CG

i+1 =
(

C
CG

i ¯δU
i+1 − δUC

)
(39)

where δUC is the initialization of the projected iterative solver, given by solving the
first row of system (34). The linearised reduced operator in equation (12) is recom-
puted, and the linear prediction (12) is performed, which yields the new solution

vector Ui+1. Note that ,by construction, ( ¯δU
i+1 − δUC) is K

T
i−orthogonal to the

previous reduced basis Ci.

When the convergence of the current time step is achieved, C
CG

is emptied.

The size of the reduced basis needs to be controlled. Indeed, the size of C
NewT

increases
during the simulation. Several techniques can be used when the number of additional
vectors exceeds nC,NewT,Max:

• Keep only the last vectors of C
NewT

.

• Keep a few linear combination of the vectors of C
NewT

, these linear combination
being extracted by a SVD computation.

• Consider the following operator as a Snapshot:

S̃ =
(

C
POD|t=tn

C̃
NewT|t=tn

)
(40)

where C̃
NewT

is the set of all the previsous converged solutions, and choose as the

new reduced basis the vectors associated to the highest singular values of S̃, in
decreasing order. This new basis is split as follows:

C|t=tn+1
=
(

C
POD|t=tn+1

C
NewT|t=tn+1

)
(41)

where, C
POD|t=tn+1

and C
POD|t=tn

have the same number of columns, and C
NewT|t=tn+1

have a number of columns lower than the one of C
NewT|t=tn

(divided by two in the

following examples). C
POD|t=tn+1

usually contains the information of the initial re-

duced snapshot (strongly uncoupled and associated with singular values greater than
1).

The latter technique is the one used in our examples. It has the advantage to yield a basis
whose vectors have a very weak energetic coupling, hence granting the method stability
(we have observed that the two former ideas, despite the orthogonality, between the vectors
of the reduced basis, easily lead to the stagnation of the Newton process when instabilities
and multiple solutions have to be handled).

4 Behaviour of the adaptative strategy

We have introduced several parameters in the corrective model order reduction strategy
(denoted by C-POD). The aim of this section is to provide an understanding of the sen-
sitivity of the solver to a variation of these parameters, and when possible, to provide
optimal or practical values. This study is not required to understand the method, and the
reader might want to refer directly to the results given in section 4.3.
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Algorithm 2: Corrective model order reduction strategy (the control of the size of
the reduced basis is not taken described)

Load the reduced basis C ;

Initialise the solution of the reduced problem ;
α0 = 0;

for n = 1..nt (time loop) do
Construct the linearized reduced operator

Ki+1
T,R

= CT ∂FInt(Un−1+Cα)

∂α

∣∣∣
α=α0

Compute the initial residuals
R0 = Fn

Ext + FInt(Un−1 + Cα0)

R0
R = CTR0

Save the reduced basis
C0 ← C while

‖RR‖2
‖CTFn

Ext‖2
≥ νNew,R and ‖R‖2

‖Fn
Ext‖2

≥ νNew (Newton loop) do

if
‖RR‖2
‖CTFn

Ext‖2
≤ kRes ‖R‖2‖Fn

Ext‖2
then

Assemble the global stiffness

K
T

=
∂FInt(U)

∂U

∣∣∣
U=Un−1+C0 α0

Save the reduced basis
C

Tmp
← C

Compute the reduced basis correction by the projected conjugate
gradient

δ̃U ≈ −K−1
T

Ri where δ̃U = C α̃ + δ̃UK

Update the reduced basis

C←
(

C
δ̃UK

‖δ̃UK‖2

)
Project the previous solution in the new reduced space

αi ← (CTC)−1
(
CTC

Tmp
αi
)

end
Solve the reduced linearized system

δαi+1 = −(Ki
R

)−1Ri
R

Update the solution
αi+1 = δαi+1 + αi

Compute the residuals
Ri+1 = Fn

Ext + FInt(Un−1 + Cαi+1)

Ri+1
R = CTRi+1

i← i+ 1
end
Update the reduced basis if a correction has been performed ;

C←
(

C0 Ũ
)

;

Initialise the solution of the reduced problem for the next time step ;
α0 = αi

end

14



4.1 Error criteria

In a first set of numerical experiments, we investigate the influence of the precision of the
conjugate gradient iterations on the efficiency and accuracy of the method. We use the
following set of fixed criteria: kRes = 103, nC,NewT,Max = 3. The relative norm of the
residual of the full problem is successively set to (a) νNew = 4.10−1 and (b) νNew = 5.10−2.
The results obtained when decreasing threshold values νCG are reported in table (1),
Experiment A. The following tendencies can be observed:

• If νCG > νNew (i.e.: the conjugate gradients are solved finely compared to the actual
maximum level of error required for the convergence of the adaptive strategy), the
accuracy of the algorithm (i.e: the maximum value over time of the error in solution)
increases with decreasing values of νCG.

• Unless νCG > νNew (i.e.: if the conjugate gradients are solved very loosely), the value
of νNew has no influence on the accuracy of the algorithm.

• The number of enhanced predictions performed to reach a given accuracy is rel-
atively independent on the accuracy of the conjugate gradients resolutions, hence
independent on νCG.

• The number of cumulated iterations of the conjugate gradients increases when the
accuracy of the conjugate gradients resolutions increases (i.e.: νCG decreases), which
results in the global computation costs to increase.

As we want to ensure a certain consistency in the accuracy of the algorithm with respect to
the reduced model error criterion νNew, we set νCG = νNew. Note here that the corrective
algorithm converges even if the convergence threshold on the conjugate gradients, νCG, is
set to a loose value.

In a second numerical experiment, we try to explain the role of kRes (parameter which
sets the maximum value of the reduced residual norm to reach before allowing a correction
to be performed) on the behaviour of the method. The following set of parameters is
used, νNew = 1.10−1, νCG = νNew, nC,NewT,Max = 3 and the results in terms of efficiency
and accuracy with different values of kRes are reported in table (1), Experiment B. The
following remarks can be made:

• The accuracy of the solution is not influenced by kRes.

• The global number of Newton iterations increases when kRes increases, thus increas-
ing the global computation time.

This behaviour can be explained by a qualitative analysis of the influence of kRes on the
solution strategy. During a time step where a correction of the reduced basis is required,
using low values of kRes results in the corrective linear predictions to be performed at the
beginning of the Newton process. Conversely, when kRes is set to a high value, a first
nonlinear prediction is performed with the previous reduced model, and the correction is
done at convergence of this process. As suggested by the results presented here, the former
strategy is more efficient, as a relevant (i.e.: corrected) reduced model is constructed during
the very first iterations of the Newton process.

However, we will see, in section 5, that this conclusion can be jeopardized by the actual
implementation of the strategy.
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EXPERIMENT A (a)

νCG CG CG Newton CPU Solution
corrections iterations iterations time error

8.10−1 6 82 257 20 1.75 %

3.10−1 8 180 291 23 1.93 %

1.10−1 8 224 290 23 1.93 %

3.10−2 8 256 291 23 1.93 %

1.10−2 8 294 291 23 1.93 %

1.10−3 8 318 291 23 1.93 %

EXPERIMENT A (b)

νCG CG CG Newton CPU Solution
corrections iterations iterations time error

8.10−1 42 545 485 38 0.449 %

3.10−1 41 858 496 41 0.382 %

1.10−1 41 1204 498 44 0.380 %

3.10−2 41 1372 498 44 0.380 %

1.10−2 41 1315 498 45 0.380 %

1.10−3 41 1531 498 45 0.380 %

EXPERIMENT B

kRes CG CG Newton CPU Solution
corrections iterations iterations time error

100 31 827 384 36 0.894 %

102 32 895 410 36 0.887 %

104 32 896 453 39 0.887 %

106 32 896 500 42 0.887 %

Table 1: Influence of the parameters of the C-POD on the accuracy and efficiency of the
corrective model order reduction

4.2 Number of additional vectors in the reduced basis

A new set of numerical experiments are performed in order to study the relevancy of the
adaptive reduced model created during the successive time steps. The following set of
parameters fixed parameters is chosen: νNew = 10−1, νCG = νNew, kRes = 103 and the
value of the maximum number of solutions added to the reduced model, nC,NewT,Max is
incremented. The results obtained are given in table (2). The following general tendencies
appear:

• The number of correction steps required to obtain a given accuracy drastically de-
creases as the size of the reduced model (number of additional reduced basis vectors)
increases.

• The global CPU time rapidly decreases when using an increasing, but small, number
of additional reduced basis vectors. Though, when too high a value is given for
nC,NewT,Max, the costs of the assembly steps becomes dominant, and the numerical
efficiency decreases.
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nC,NewT,Max CG CG Newton CPU Solution
corrections iterations iterations time error

0 74 2696 560 60 0.780 %

1 45 1367 435 40 0.773 %

3 32 896 429 38 0.887 %

10 14 370 409 36 1.02 %

20 14 360 418 41 1.02 %

Table 2: Influence of nC,NewT,Max on the efficiency of the corrective algorithm model order
reduction

4.3 Results

We can finally evaluate the suitability of the adaptative algoritm to the purpose for which
it has been designed, namely the automatic correction of a reduced model.

The previously studied parameters are fixed to the following values: νCG = νNew,
kRes = 103 and nC,NewT,Max = 3. Several simulations are performed for different values of
the control parameter νNew (interpreted as the error criterion on the reduced model). The
results are reported in table (3). For comparison, the results obtained with the basic POD
strategy and for a classical Newton algorithms on the complete system are also given.

CG CG Newton CPU Solution
corrections iterations iterations time error

POD 266 17 8.27 %

νNew = 8.10−1 4 46 274 21 4.11 %

νNew = 3.10−1 12 262 334 26 1.61 %

νNew = 1.10−1 32 896 429 38 0.887 %

νNew = 3.10−2 54 1601 556 52 0.263 %

νNew = 1.10−2 73 2107 705 67 0.157%

νNew = 1.10−3 132 4351 1539 144 0.00424 %

Full Newton 824 434

Table 3: Efficiency and accuracy of the corrective model order reduction

The first global observation is that the numbers of corrections and cumulated Newton
iterations increases as νNew decreases. As a consequence, the CPU time increases with
decreasing values of the control parameter. More importantly, the accuracy of the solu-
tion is controlled by νNew. Figure (4, left) shows that the relation between the solution
error and the threshold value is almost linear (log-log scaling). Similarly, figure (4, right)
demonstrates that we obtain a linear relation between the accuracy of the solution and
the CPU time required for the computation. Hence, the adaptive algorithm acts as a
continuous corrective link between the basic POD strategy on the one hand, and a fine
solution scheme for the full nonlinear problem on the other hand.

The results detailed below help to understand how the successive corrections are per-
formed during the simulation. Figure (5, left) presents the evolution of the solution error
with time, for the different values of νNew used in this study. A “zoom” in these results
is plotted in figure (5, right), where we focus on the curve obtained by the application
of the basic POD, and the one obtained by the adaptive algorithm, with νNew = 3.10−1.
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Figure 4: Solution errors obtained with decreasing values of νCG, for νNew = 4.10−1 (left)
and νCG = 2.10−1 (right).

The evolution of the maximum damage in the structure (linear because of the local arc-
length control) is also reported. Each vertical bar point out the time steps where at least
one correction of the reduced basis has been performed. One can see that a correction is
necessary at the very beginning of the simulation, to take into account the specificity of
the loading. The corrected reduced model constructed after the time step is sufficiently
relevant to allow the simulation of the initiation of the damage in the structure, at the
precision required by the predefined value of νNew (a single additional correction is per-
formed at Time step 10). However, when the maximum damage exceeds 1 (Time step 20),
the rate of corrective steps increases as the fast topological changes must be taken into
account in the reduced model.

For illustration, and in the particular case detailed in the previous paragraph, the
solution obtained at the end of the simulation is superimposed to the reference solution
in figure (3). The correction of the reduced basis is also plotted and shows an important
deformation in the region where the damage localises. Elsewhere, the value of this vector
is almost null, which means that, far away from the“crack”, the displacement field is
correctly represented by the initial reduced basis. In other terms, the correction is local,
which obviously leads to the conclusion that multigrid or domain decomposition solvers
could help to reduce the cost of the corrections. This issue will be discussed later on.

4.4 Discussion

We have shown in the previous section that the error-controlled POD-Krylov algorithm is
a bridge between a full Newton/Krylov solver and the basic POD method. This algorithm
can obviously be used to correct the reduced model of various engineering problems. Yet, in
the case of mechanical models involving internal variables, the computation time required
to assemble the reduced stiffness operator (evaluation of internal forces) is far too high
to yield a computationally efficient strategy. Indeed, although the number of unknown
is considerably reduced, the evaluation of the internal variables and internal forces are
done in each element of the structure. In [23], it is proposes to use the hyperreduction to
reduce the cost of these operations. In the next section, we propose to apply the adaptive
algorithm to the hyperreduction of damage models.
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Figure 5: Error in solution for different values of the residual error of the initial prob-
lem νNew (left). Darker curves correspond to lower values of νNew. The dashed curve is
obtained by applying the basic POD and increases significantly with time. When using
the corrective POD (C-POD), the error decreases in a monotonic manner with decreasing
values of νNew. On the right, the dotted line is the maximum damage over the structure.
The dashed line is still obtained by applying the basic POD, is reasonably low in the
initiation phase (no significant topological changes), and increases when damage propa-
gates. The bar corresponds to the time steps being corrected when applying the C-POD
(νNew = 3.10−1). The frequency of correction increases when strong topological changes
occur. The dark line is the resulting error in solution, and is kept to a low level.

5 Krylov corrections for the hyperreduction of damage mod-
els

5.1 Principle of the hyperreduction strategy

The principle of the hyperreduction, which we will denote by H-POD, was first described
in [22], and applied to mechanical problems involving internal variables in [23]. It drasti-
cally reduces the cost of evaluating the internal forces required to compute the successive
linearised operators and residuals in the Newton algorithm for a problem reduced by the
POD. The main idea is to consider only a few of the equations of the initial problem to find
the coefficients associated to each of the reduced basis vectors. If the controlled equations
and the reduced basis vectors are correctly chosen, the norm of the residual due to the
equations which are not controlled will be small. Note that we do not aim at questioning
the validity of this strategy, but to use it as an efficient solver for damage models, and
test the efficiency of the adaptive reduced basis in such a framework

5.2 Petrov-Galerkin formulation of the nonlinear system of equations

The starting point of the strategy is the full system (5), in which the approximation of
the displacement as a linear combination of reduced basis vectors has been introduced:

FInt

(
U|tn + Cα

)
+ FExt = 0 (42)

This system of equations is obviously overconstrained. A solution to this system is obtained
in the classical model order reduction by using the Galerkin orthogonality condition with
respect to the reduced basis. But one can choose any orthogonality conditions leading
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to a well-posed problem. A“natural” choice can be to satisfy only a very few number of
equations nh of (42) (called controlled equations), with nh ≥ nC

ET
(
FInt

(
U|tn + Cα

)
+ FExt

)
= 0 (43)

E is a Boolean operator of nu (number of nodal unknown) rows and nh columns. For

each column of E, the only non-zero value correspond to the ith controlled equation, for
i ∈ J1 nhK, and is set to 1.

In the H-POD, problem (43) is required to satisfy the Galerkin orthogonality condition
with respect to the reduced snapshot, which finally yields the following system:

CTE ET
(
FInt

(
U|tn + Cα

))
+ CTEET FExt = 0 (44)

5.2.1 Nonlinear solver

The Newton Procedure described in section 2.2.2 can be applied to the hyperreduced
problem (44). At iteration i of the Newton algorithm the following linear prediction is
performed,

Ki
T,HR

δαi+1 = −Ri
HR (45)

where Ri
HR = CTE ET (FExt + FInt(U|tn + Cαi)). The correction stage reads:

Ri+1
HR = CTE ETFExt + CT E ETFInt(U|tn + Cαi+1)

Ki+1
T,HR

= CT
∂E ETFInt(U|tn + Cα)

∂α

∣∣∣∣∣
α=αi+1

(46)

The resulting linearized operator Ki
T,HR

is square, fully populated, non-symmetric and of

very small size nh × nh. It is solved by a direct solver (LU factorization).
Note that E ET is not explicitly computed. It simply extracts the internal and external

forces of the controlled equations used to calculate the residuals and linearised operators.
The integration of the internal and external forces needs only be done on a reduced in-
tegration domain Ωh, made of all the elements connected to a controlled node (see figure
(9)).

The same developments can be done for the derivation of the arc-length procedure,
which is used in the examples of this section.

5.2.2 Reduced integration domain

The choice of the controlled equations is the keypoint of the hyperreduction strategy. In
[22, 23], it is shown that in order all the reduced basis vectors to be “observable”, one
should choose to control the equations associated to the nodes whose connected elements
are subjected to the largest strain energy from the reduced basis vectors. Hence, it is
recommended to perform a loop on the nodes and compute the average of the strain
energy due to each individual reduced basis vector in the connected elements. Then, for
each reduced basis vector, one chould choose a given, and small, number of nodes with
the maximum average strain energy observed by the connected elements. Finally, the
controlled equations should correspond to all the degrees of freedom of these particular
nodes, and the connected elements define the reduced integration domain.
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5.3 Modified Error-controlled algorithm

When solving the hyperreduced system by our adaptive algorithm (the resulting strategy
will be called corrective hyperreduction, and denoted by CH-POD), certain operations
become cost-inefficient:

• The calculation of the residual R.

• The assembly of the global stiffness, required to enrich the reduced basis.

• The conjugate gradient itself if not correctly preconditioned.

These issues are discussed next.

5.3.1 Calculation of the damage variables and residual of the initial problem

In the H-POD method, the calculation of the internal variables needs only be done on the
reduced integration domain Ωh. In [23], it is proposed to interpolate these internal vari-
ables over Ω\Ωh thanks to pre-calculated snapshot functions. In our case, this particular
feature is not of interest, for:

• The residual of the global system needs to be controlled.

• The residual of the global system needs to be calculated when required to perform
an enhanced prediction.

Therefore, the internal variables are computed systematically when the relative norm
of the residual of the reduced problem reaches a treshold value. The norm of the full
residual can thus be computed, and if its value is too high, an enhanced linear prediction
(e.e.: a correction of the reduced basis by the Krylov solver) is performed. Note that this
calculation is very expensive compared to the cost of the Newton iterations performed on
the hyperreduced system, and must be limited to a minimum number.

Let us recall that in the former algorithm given in section 3.1, an enhanced linear

prediction could be performed if
‖RR‖2
‖CTFExt‖2

< kRes
‖R‖2
‖FExt‖2

. It requires the computation

of the full residual at any iteration of the Newton solver, which is, in the hyperreduction
strategy, computationally inefficient.

Hence, for this particular application, this comparison of the two norms is bypassed,
and an enrichment of the reduced basis will not be made unless the relative norm of the
reduced problem is lower than νNew,R (convergence criterion on the reduced nonlinear
problem, set to a very low value), thus limiting the number of Newton iterations at which
the internal damage variables must be calculated in Ω\Ωh. An another modification
permits to suppress a large quantity of the numerical costs. The norm of the full residual
is controlled at the first time step, and, if no correction is needed, no control is done during
the following nC,T

thtimestep (nC,T = 2 in the following test cases). The same procedure
is repeated after each controlled time step.

5.3.2 Global stiffnesses operators

Obviously, the assembly of the global stiffness is the weak point of this error-controlled
hyperreduction strategy. Yet, as the conjugate gradient algorithm is only used to enrich
the reduced basis, one does not need to use the current stiffness matrix. The “naive”
technique to suppress the costs associated with this operation would then be to use a
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stiffness matrix assembled during the computation of the snapshot. Though, as the damage
in the structure increases, the relevance of the computed additional reduced basis vectors
can be questioned, leading to a slower convergence of the adaptive strategy, which will be
illustrated later on.

We propose an intermediate technique called the“patch assembly” (PA). Before an
enhanced prediction stage, the residual of the full system is known. We can reasonably
assume that the part of the domain ΩPA of highest local residuals correspond to high
levels of structural changes. Therefore, we get an approximation of the current stiffness
operator by removing the previous elementary stiffnesses corresponding to the elements in
ΩPA from the last stiffness approximation, and replacing them by their updated values.

This procedure is performed in three steps:

1. Identify the nodes corresponding to the highest values of the residual.

2. For each of this nodes, identify the connected elements, whose union defines ΩPA.

3. In the existing approximation fo the stiffness operator K̂
i

T
, remove the elementary

matrices corresponding to the elements in ΩPA:

K̃
T

= K̂
i

T
−

∑
E/ΩE∈ΩPA

AT
E

K
T,E

(ZOld) A
E

(47)

where ZOld represent the state variables and material parameters used to assem-
ble Ki

T
, (A

E
)E∈J1nEK are Boolean assembly operators, which extract the rows of

the global stiffness corresponding to the degrees of freedom of Element E, and
K

T,E
(ZOld) the elementary stiffness operator.

4. Calculate the elementary matrices corresponding to the elements in ΩPA and assem-
ble them in K̃

T
:

K̂
i+1

T
= K̃

T
+

∑
E/ΩE∈ΩPA

AT
E

K
T,E

(Zi) A
E

(48)

The performance of this simple technique will be demonstrated later on.

5.3.3 Preconditionning

As the size of the initial problem increases, the preconditioning of the conjugate gradient
used to enrich the reduced basis becomes an issue. In order to be consistent with the
projection framework that we have introduced, we make use of the Selective Reuse of
Krylov Subspace (SRKS), proposed in [30]. Briefly, the preconditioner itself is unchanged
(diagonal matrix whose entries are the inverse of the diagonal elements of the stiffness
operator), but additional reduced basis vectors are added to the augmentation space:

C̃ =
(

C C
SRKS

)
(49)

The columns of C
SRKS

are made of eigenvectors of the successive linearised operators

projected on Im(C̃
⊥K

T ) during the computation of the snapshot. These eigenvectors
are the converged Ritz vectors obtained when solving the linear systems by a conjugate
gradient (eigenvectors of the complete linearised operator associated with the highest
eigenvalues).

This feature permits to rapidly access the super-convergence of the conjugate gradient.
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5.3.4 Hyperreduced arc-length strategy

The search for the largest increment of displacement in equation (23) is only done on the
reduced integration domain. A sufficient number of point corresponding to the highest
damage rate is set as controlled nodes at the end of each time step. Therefore, one can
expect that the control equations is reasonably satisfied.

5.4 Efficiency for parametric simulations

5.4.1 Presentation of the test cases
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Reinforced frame
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UD
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FD
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Figure 6: Reference problem and associated solutions obtained for different material pa-
rameters and direction of the prescribed load (left), where darker colours correspond to
higher value of damage, and Young’s modulus cosinusoidal distribution in these two cases
(right), where darker colours correspond to higher values of the stiffness parameter.

The test case studied here is a square damageable lattice (the constitutive modelling
is the one given in section 2.3.1) represented in figures (6). The lattice structure is made
of 14,520 bars connected by 3721 nodes. Hence the number of degree of freedom involved
in this problem is 3721 × 2 = 7442. A non-zero homogeneous traction force such that
FD = Fx x + Fy y is applied on the right edge of the structure, while zero-displacement
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are prescribed on its right edge. We define the angle:

φ = arctan

(
Fy
Fx

)
(50)

The load is applied through a reinforced frame occupying domain ΩF. The Young’s
Modulus of the bars belonging to the frame is equal to one, while their damage parameter
α is set to 0.1. Hard inclusions, occupying domain ΩI are located in domain Ω\ΩF (see
their position and shape on figure (6)). The Young’s Modulus of the bars such that Ωb ∈ ΩI

is set to 10 while α = 0.01. Due to these low values of α in ΩF ∪ ΩI, the damage will
localize in the complementary domain ΩC = Ω\(ΩF ∪ΩI), where α is set to 1. The young
modulus of the bars in this domain is defined by the following law:

E|Ωb∈ΩC
= EC

(
1 + εC

(
sin
(
ωC

(
(Xb − X̄) + (Yb − Ȳ )

))
+ sin

(
ωC

(
(Xb − X̄)− (Yb − Ȳ )

))))
(51)

where the position of the barycentre Gb of a bar occupying domain Ωb is

OGb = Xb x+ Yb y (52)

and the position of barycentre G of the structure is defined by:

OG = X̄ x+ Ȳ y (53)

The purpose of our study is to obtain the dissipated energy in the structure, for a
value of the load that is close to the instability point (hence the arc-length control is not
required), as a function of the two following parameters:

• the angle φ, which controls the direction of the force.

• the angular frequency ωC, which controls the spatial distribution of the Young’s
modulus of the bars belonging to ΩC.

The construction of such functions is very classical is stochastic analysis. It is often associ-
ated with the Monte-Carlo method to determine the random distribution of a quantity of
interest (in our case the dissipated energy) as a function of the stochastic input parameters
(here φ and ωC). If an analytical derivation of this function is not possible, the classical
procedure consists in performing a few deterministic simulations, for different values of
the input parameters, and interpolate the value of the quantity of interest between these
points.

Let us recall that the dissipated energy of the chosen damage model is given by:

EDissi =

∫
Ω

(∫ T

t=0

N

Sb
ε̇ dt− 1

2
E(1− d|t=T )ε2

)
dΩ =

∫
Ω

∫ T

t=0

Y

Sb
ḋ dt dΩ (54)

The following values are chosen for the constant parameters: EC = 1, εC = 0.2. Particular
distributions of the Young’s modulus are represented on figure (6, right).

We will consider that the input parameters can vary within the following range:{
ωC ∈ [ωC,1, ωC,2] = [0.05, 0.1]
φ ∈ [φ1, φ2] = [0, 5]

(55)

25 simulations are performed to estimate the response surface (see figure 7):{
ωC ∈ {0.05, 0.625, 0.75, 0.875, 0.1}
φ ∈ {0, 1.25, 2.5, 3.75, 5} (56)
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Figure 7: Estimation of the response surface. The surface relates the dissipated energy
to two structural parameters φ and ωC over a rectangular domain. The values of this
function at 25 nodes (crosses) are computed by performing nonlinear simulations. The
other values are interpolated using a piecewise linear approximation.

The response surface (linear interpolation) obtained when using a direct Newton solver
over 10 time increments is given in figure (8, left). The displacement solutions, damage
maps and Young’s modulus distributions corresponding to the two limit points boxed in
figure (7) are represented in figure (6). Our goal is to limit the costs of these nearby
simulations by using POD-based reduced order model for these 25 successive solutions,
and in particular to test the efficiency of the CH-POD.

5.4.2 Parameters of the hyperreduced model

In order to build a snapshot, we solve successively four problems circled in figure 7. Each
of these simulations is performed in 10 time increments. The final snapshot, made of 40
vectors, is reduced to 8 reduced basis vectors by a singular value decomposition (the ratio
of the first singular value of S over the eighth is 1.9 10−8, which shows that the snapshot
is correctly represented in C).

We construct the reduced integration domain by choosing a list of controlled nodes (2
controlled balance equations per node).

1. The domain is divided into 100 square subdomains. For each of these subdomains,
an arbitrarily chosen node is set as controlled point.

2. 5 nodes are arbitrarily (first ten in the global nodal numbering) chosen for each of
the prescribed boundary conditions (left and right edge of the lattice).

3. For each vector of the reduced basis, 5 nodes whose connected element have the
highest strain energy are set as controlled nodes.

4. 20 additional nodes with the highest damage rate are added to the list, hence allowing
to precisely integrate the constitutive law in this particular elements.

An example of RID obtained during the CH-POD process is given in figure (9).
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Figure 8: Response surface obtained in the reference case, and when using the H-POD.
The error in the dissipated obtained when not correcting the reduced model is very high,
due to the large distance between the solution which is searched for and the a priori
computed snapshot.

5.4.3 Results

The following solvers are to estimate the response surface:

• Newton algorithm on the complete system, the linear prediction being solved by a
direct solver, and νNew = 10−6.

• “basic” hyperreduction (H-POD) with the snapshot and controlled points defined
previously.

• corrective hyperreduction (CH-POD), where νNew,R = 10−6 (threshold value on the
relative norm of the residual of the reduced problem), nC,NewT,Max = 3 (number of
maximum additional vectors added in the reduced basis during the Newton itera-
tions) and νNew successively set to (a) 10−1 ,(b) 3.10−2 and (c) 10−2 (error criterion
on the reduced model).

For each of these solvers we report the total CPU time required to construct the surface,
and the maximum error in the dissipated energy over the 25 simulations (see table (4)).
This latter error is defined as follows:

error =
EDissi|Reference

− EDissi|Current experiment

EDissi|Reference

(57)
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Figure 9: Reduced integration domain (dark bars) obtained at the end the first simulation
performed to estimate the response surface. During the Newton process, the integration
of the internal forces need be done only on this domain, which drastically reduces the
computation costs.

Maximum error CPU time
in dissipation (s)

Full Newton (reference) 3227

H-POD 113 % 618

CH-POD (a) 5.06 % 730

CH-POD (b) 1.98 % 890

CH-POD (c) 0.82 % 1075

Table 4: Error and CPU time obtained when estimating the response surface with the
H-POD and CH-POD compared to a reference response surface obtained by a classical
Newton algorithm on the complete system of equations.

The results given by the hyperreduction are not satisfying. The maximum error ob-
tained exceeds 100%, which can be explained by observing the results presented in figure
(8). One can see that the values of dissipated energy obtained for values of ωC which have
not not been taken into account in the snapshot are wrongly predicted, and especially for
ωC = 0.05. In this latter case, the structure is a lot weaker (greater quantity of bars with
Young’s modulus lower than EC, as appears in figure (6)) than in the cases computed to
create the snapshot. As a consequence, the dissipated energy is overestimated.

The application of the CH-POD permits to retrieve a correctly estimated response
surface for small additional costs. For instance, in experiment (a) (νNew = 10−1), the
maximum error drops to 5% for 18% of additional CPU time compared to the basic
reduced order simulation. The response surface obtained is given in figure (10).

Decreasing values of the reduced model error criterion (νNew) results in a decreasing
value of the error, while slightly increasing the additional CPU costs (see figure (10) and
table (4)). In experiment (c), the difference between the response surface obtained and
the reference one can hardly be notice, and the evolution of the quantity of interest with
respect to the input parameters is correctly taken into account. Yet, this simulation is less
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Figure 10: Response surface obtained in the reference case, and when using the CH-POD
for various values of the reduced model error criterion, and CPU time for each of the 25
simulations (additional CPU times with respect to the ones obtained by applying hyper-
reduction). The error in the dissipated energy monotonically drops when the criterion
decreases. The additional CPU time is concentrated in the simulations whose solution is
far away from the snapshot.
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than two times as costly as the one made using the H-POD.
The CPU time, corresponding to each of the 25 simulations, in case (b), is also reported

in figure (10). The additional costs are due to the solution which is searched for to be far
away, in some sense, from the snapshot. As explained previously, the Young’s modulus
distribution leads to the snapshot being irrelevant, which explains why the costs of the
corrections in the CH-POD increases. Conversely, the variation of the angle, for φ > 0
is correctly taken into account in the uncorrected model order reduction, and the CH-
POD generates very few extra costs in these cases. In the particular case where φ = 0
the solution is not correctly represented by a linear combination of the initial reduced
basis vectors. Indeed, a strictly positive angle in the direction of the load leads to the
localization of damage in one of the corner of the square structure (see figure 6), while
the structure is much stiffer for φ = 0. The CH-POD automatically corrects the resulting
reduced model.

5.4.4 Brief validation of the Patch-assembly

In order the structural changes to be significant in the structure, Experiment A is per-
formed with a higher value of the norm of the final loading (same value of the arc-length,
but greater number of time increments). The evolution of the damage leads to the appari-
tion of cracks in the vicinity of two of the hard inclusions.

We use three different approximation of the global stiffness operator in the ECH-POD
strategy. The threshold value νNew is set to 10−1. In the first case, the stiffness is updated
at the beginning of each time increment, which, as described previously, leads to an inef-
ficiency due to the costs of the global assembly. In the second case, the initial stiffness is
used to perform the enhanced linear prediction. The CPU time slightly decreases but the
number of conjugate gradient calls required to obtain a relevant reduced basis increases
significantly.
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Figure 11: Solution obtained using the arc-length procedure after the limit point (left).
On the right, the black bars are connected to the nodes corresponding to the highest values
of the residual of the complete nonlinear system. They are mainly located in the zone of
high topological changes.

Finally, the Patch-assembly technique is used to yield successive approximation of the
global stiffness matrix. The number of elements in ΩPA is 2440 (in comparison with the
total number of bars: 14250), which gives a decrease of factor 6 of the costs of the global
assembly. Figure (11) shows Domain ΩPA, which is indeed mainly located in the zones
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of high structural changes (the two cracked regions). The resulting CPU time is further
decreased compared to the second experiment, as shown in table 5. Note that the number
of conjugate gradient calls does not increase compared to the one obtain when updating
systematically the stiffness operator, which shows that the approximation of this matrix
is satisfying.

CG CG Newton CPU
corrections iterations iterations time

Updated stiffness 23 424 414 421

Initial stiffness 33 500 412 407

Patch-assembly 22 440 447 335

Table 5: Efficiency of the Patch-assembly

5.5 Discussion

5.5.1 For further efficiency

A few important issues can severely limit the efficiency of the CH-POD derived in this
section.

• The efficiency of the H-POD itself can be put into question for softening behaviour.
Indeed, its numerical complexity is directly dependent on the size of the reduced
integration domain. We have observed that choosing this domain in order to ensure
the stability of the algorithm was not a simple issue, and chosen to use a large number
of controlled nodes. By a better understanding of this behaviour, one should be able
to reduce the size of the reduced integration domain to a minimum, and therefore
diminish the costs.

• The reduced integration domain is updated at each correction of the CH-POD, for
a new reduced basis vector needs to be “observed”. This operation is costly as it
requires to evaluate quantities on the whole domain. This operation needs to be
optimized.

• The price of the correction is still high. As a result, if the solution which is searched
for is far away from the initial snapshot, the method becomes computationally more
expensive than a nonlinear direct solver on the complete system. It is thus limited,
up-to-now, to the correction of reduced models for the resolution of nearby problems.
In a forthcoming paper, we will propose a multilevel approach in order to perform
the correction only in the zones of the structure undergoing the largest topological
changes. This strategy should lead to a significant gain in terms of numerical ef-
ficiency, and especially in the case of localized nonlinearities, as suggested by the
results provided by the patch-assembly procedure.

5.5.2 Extension to finite element problems

The proposed method has only been validated on damageable lattices so far. Slight differ-
ences in the efficiency results might appear when dealing with 2D or 3D softening problems
discretised by the finite element method:
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• the conditioning of lattice problems is usually better than the one obtained when
using finite element discretisation. We have been able to use a very simple precondi-
tioner for the iterative corrections of the reduced basis: deflation orthogonally to a
few Ritz vectors by the SRKS method, and diagonal preconditioner on the resulting
deflated problem. Obviously, an enhanced preconditioner should be preferred when
dealing with finite element problems, in order to keep the costs of the corrections
low.

• the connectivity in lattice structures can be very high. As a result, the reduced
integration domain associated to each of the controlled nodes in the hyperreduc-
tion method is quite large, especially compared to the ones obtained when using
structured finite element meshes. Therefore, the cost reduction associated to this
particular step of the CH-POD should increase when decreasing the connectivity of
nodes.

One of the major issues to be addressed when dealing with FE softening problems
is the question of localization. It is well known that nonlocal damage models should be
used to avoid spurious dependency of the solution to the mesh. The efficiency of the
hyperreduction technique, which focuses on local patches in the structure, has not yet
been investigated in this framework. Its extension does not seem trivial.

5.5.3 Suitability to parallel computing

The extension of our strategy to parallel computing is quite straightforward. The H-POD
can be implemented in parallel as follows: the domain is divided into subdomains, assigned
to separate processors. Solving the small problems resulting from the linearisation of the
reduced problem is done systematically on every processor. The evaluation of the internal
forces is a local operation performed on the reduced integration domain, distributed on the
processors. It only requires an assembly operation, of small numerical costs as involving
only degrees of freedom associated to the controlled nodes.

The corrections performed in the CH-POD are very easy to parallelize as they are
based on a conjugate gradient algorithm. The projection operation itself has been widely
extended to parallel computing (see [9] for example). In addition, using the condensa-
tion method, as proposed in the Schur-complement-based domain decomposition methods
would provide better preconditioner than the one used in this work.

6 Conclusion

We developed an efficient corrective tool for the adaptive model order reduction of highly
nonlinear mechanical problems. The novelty of the approach is that it completely in-
tegrates the corrections inside the projection framework classically used in model order
reduction. More precisely, the corrections are performed using an iterative conjugate gradi-
ent, which is enabled by the strong link between, on the first hand, POD-based model order
reduction and, on the other hand, projected Krylov algorithms. The resulting method es-
tablishes a bridge model order reduction and classical Newton/Krylov solvers, ensuring
its versatility.

The robustness of the strategy has been demonstrated by correcting the reduced model
associated with a very complex case of damage propagation. In terms of raw CPU time,
our algorithm had been coupled to the hyperreduction method in a straightforward way,
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making it computationally efficient in the case of mechanical problems involving internal
variables.

Yet, the corrections are still expensive compared to solving the initial reduced model.
As explained briefly in the last section of the paper, the corrections need not to be done
everywhere in the structure, especially when localization phenomena are involved. This
can lead to prohibitive costs if the solution that is searched for is distant from the snapshot.
Therefore, a possible enhancement to increase the efficiency of the adaptive model order
reduction is to use a multilevel algorithm to perform the corrections.
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