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Blind Identification of Underdetermined Mixtures
Based on the Characteristic Function: The Complex
Case

Xavier Lucianf, Member, |IEEE, André L. F. de AlmeidaMember, |IEEE, and Pierre Comorkellow, |EEE

Abstract—Blind identification of underdetermined mixtures
can be addressed efficiently by using the second ChAractetis
Function (CAF) of the observations. Our contribution is twofold.
First, we propose the use of a Levenberg-Marquardt algoritim,
herein called LEMACAF, as an alternative to an Alternating

can often favorably replace Principal Component Analysis
(PCA), when available data measurements can be arranged
in a meaningful tensor forni [13]. Indeed, the CanD comes
with a nice uniqueness property [14]-][18] and some simple

Least Squares algorithm known as ALESCAF, which has been numerical algorithms [10]/T19]/20].

used recently in the case of real mixtures of real sources. 8end,

Due to multiple connections between the two areas, these

we extend the CAF approach to the case of complex sources forgdvantages have been rapidly exploited for Bl purpdsés-[21]

which the previous algorithms are not suitable. We show that
the complex case involves an appropriate tensor stowage, veh
is linked to a particular tensor decomposition. An extensia of
the LEMACAF algorithm, called LEMACAF C is then proposed
to blindly estimate the mixing matrix by exploiting this tensor
decomposition. In our simulation results, we first provide gerfor-
mance comparisons between third- and fourth- order versios
of ALESCAF and LEMACAF in various situations involving
BPSK sources. Then, a performance study of LEMACAK is
carried out considering 4-QAM sources. These results showhat
the proposed algorithm provides satisfying estimations ggecially
in the case of a large underdeterminacy level.

Index Terms—Blind identification, blind source separation,
characteristic function, complex sources, underdetermiad mix-
tures, tensor decompositions

|. INTRODUCTION

LIND Identification of linear mixtures (BI) has now
become a major area of signal processing. For instan
since the theory of Independent Component Analysis (IC%
[1], this subject has been at the center of many theoretiq:ﬁ

[24]. In addition, tensor-based algorithms allow to solie t
problem of underdetermined mixturés(when the number of
sources is greater than the number of sensors), which amises
many practical situations, especially in telecommunarz]
and in which we are presently interested. A first class of
algorithms exploits the trilinear nature of the observagicand
the CanD of the data tensor provides a direct source estimati
For instance, this deterministic approach is widely used in
fluorescence spectroscogdy [10], [11]. When the observation
diversity is not sufficient, one can resort to a second cldss o
algorithms, using the multilinearity properties of Highder
Statistics (HOS)[[20]. A large majority of these algorithms
involves a tensor containing the cumulants of the obsemati
the decomposition of which leads to the blind identification
of the mixing matrix [23], [25]. This is notably the case of
FOOBI [2€], FOOBI2 [22] and 6-BIOME[[27] algorithms,
which use 4th and 6th order cumulant tensors, respectively.
vertheless, a different class of Bl methods not explgitin
mulants but the second ChAracteristic Function (CAF) of
observations, has been proposed_in [28]-[30]. We are par

works while relgted mgthgds f"md algorithm§ have begn SYf€ularly interested in the approach originally propose{29],
cessfully used in applicative fields, notably in telecommunIeading to efficient algorithms such as ALESCAE][30]. In that

cations [2], acoustic[[3] or biomedical engineering [4]] [5

among others; se&][6],][7] for surveys.

work, the authors showed that partial derivatives of th@sdc
characteristic function can be stored in a symmetric tensor

In the megntlme, tensor.anaIy_S|s has gained gttentlon N BHe canD of which provides a direct estimation of the mixing
merous application areas involving data analysis such ps Pfhatrix up to trivial scaling and permutation indetermiresci

cometrics [8], Ar_ithmetic Comple>_(ity[|9] and Chg_mometricqn [30], the ALESCAF algorithm is applied to a data tensor
[10], [11]. In particular, the Canonical Decomposition (@8 ¢,nstrcted from third-order derivatives of the charaster
[8] also known as PARAllel FACtor analysis (PARAFAC)fction. It is worth mentioning that the ALESCAF algorithm

[12] has met with success. One of the reasons is that Caply ,ny heen applied to BI problems involving real sources
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(e.g. BPSK and 4-PAM). The present study notably genealize
the CAF approach to the case of complex mixtures of complex
sources, which often occurs in digital communications amd f
which the ALESCAF algorithm needs non trivial extensions.
The paper is organized as follows. In Sectibh I, the
Bl problem is formulated and the CAF approach is briefly
presented by first considering the case of real sources. A
new LEMACAF algorithm that copes with the real case is

© 2010 IEEE
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also introduced in this section. In Sectibn] Ill, we trangpogunction into the sum of the sources individual generating

the CAF approach to the case of complex sources. A néunctions:

core equation is obtained and an appropriate decomposition

of. the derivative tensor is detailed. In order .to implemgnt fIJZ(u(S)) —logE |exp ZuS)ansk

this more general approach, we propose a suitable algorithm

called LEMACAFC in Section[TV. Computer simulation re-

sults considering both the real and complex cases are egpotsing the source independence property, we get:

respectively in Sections]V and VI. The paper is concluded

in Section[VIl. Matlab codes including notably ALESCAF, ®.(u®) = Zs@k (Z anuS)) ) (1)

LEMACAF and LEMACAFC algorithms can be found at k n

http://www.i3s.unice.frfpcomon/TensorPackage.html.
Notations: In the following, vectors, matrices and tensor

are denoted by lower case boldfa@, upper case boldface

(A) and upper case calligraphicd) letters respectivelya;

is the it coordinate of vectom and a; is the it* column

of matrix A. The (i,7) entry of matrix A is denotedA,; K

and the(i, 7, k) entry of the third order tensad is denoted 07®.(u'?) — ZH wHosk - Hyp oo Goey (2)

. . . . . ni na np SK

Ajji,. Complex objects are underlined, their real and imaginary Otn,un, -+ Oun,

parts are denote®{-} and<{-} respectively. E.] denotes the

expected value of a random variable.

n,k

Equation [(1) is the core equation of the CAF approach in
the real field. Differentiating[{1)P times with respect ta?
components oRY, denotedu,, , un,, -, un, , and defining

def oP (s) X
G & Zorn Marti) e optain:

OUny OUny - OUn p

withn, =1,...,N andp = 1,..., P. These derivatives could
be stored in aP-th order tensor but in practice, the partial
derivatives of®, are computed ir§ points @) - .- u(®) of
R™. The objective is to increase the order of the tensor, aiming
at achieving a better estimation quality. Hence, we now lzave
We consider here the classical linear model of a noigy’ +1)-th order data tensor, the last dimension describing the
mixture of K stationary sources received by an array/of S differentiation points. The key issue of the CAF approach
sensors. The mixture is instantaneous and under-deteimiizethat [2) is nothing else but the ramk-(truncated) CanD

II. PROBLEM FORMULATION AND CAF APPROACH IN THE
REAL CASE

(N < K) and defined by a mixing matrid = [hy, ..., hx] € of the data tensor, which allows the identification of matrix
RN*K  Define alsoz(m) = [z1(m),...,zn(m)]" € RY, H. Indeed, when the number of sources is smaller than the
s(m) = [s1(m),...,sx(m)]T € RE andn(m) € RV as the generic rank of the tensor, this decomposition admits an
m'" realizations of the observation, source and noise vectogssentially unique solution faH and G, (i.e. up to scaling
respectively,n = 1,..., M. According to this linear model and permutation of their columns), whe is the S x K
we have: matrix with entriesG .

z(m) = Hs(m) + n(m). The general structure of CAF algorithms can be summarized

as follows:

Algorithms from the CAF family use the partial derivativefs o
the observations characteristic function to identify thizing
matrix H under the following assumptions: .

®, and store the results in a tenspr

H1. The mixing matrix H does not contain pairwise 3) EstimateH from the rankk” decomposition off"

collinear columns. . o . .
H2. The sources;.....sx are non-Gaussian and mutuNote that the differentiation ordeP is an input parameter
“ally statistically in7dep’endent. of the algorithm. The higher the differentiation order, the

H3. The number of sourcek is known. higher the tensor order, and hence its generic rank for these

It has been shown in former studies 31 [32] thel is dimensions. Co_nseqyentl_y, mcre_asmg.the differentiaticder
. . o , should allow to identify mixtures involving a larger numbmdr
theoretically identifiable under these assumptions.

iere, e b recal he main tep o the CAF approa e 114 0TE2ang he umbe of seors. e pre
originally proposed in[[29]. Let us denot®, and ¢; the hay 1s, ' g9 p

second generating functidhsf the observations and sourke and probably a loss in robustness and accuracy.
g 9 The ALESCAF algorithm resorts to a classical Alternating

1) ChooseS points of RY;
2) Compute for each point orddr partial derivatives of

respectively: Least Squares (ALS) procedure in order to perform the CanD.
oi(z) def log E [exp(zsi)], = € R, Algorithm refinements can be added so as to improve the
convergence speed and avoid local minima, such as the En-

3, (u®) ¥ 10gE [exp(u(S)Tz)} . u® eRY, hanced Line Search (ELS) procedure][33].][20]. Other CanD

algorithms can be used[19], [20]. In order to identify thesino
Replacingz by its model and neglecting the noise contribugyitable algorithm in the CAF context, we have compared the
tion leads to the decomposition of the observation gemegatial S-ELS approach with the gradient-ELS descent and the
1 o _ _ _ _ Levenberg-Marquardt (LM) optimization methods for vasou
In order to simplify notations and calculations, withoutyateoretical

impact, we prefer using the generating function insteadchefaharacteristic tensors following modeI]Z) (reSU|t5 not Shown)- A_mor?g thes
function. the LM method has shown a good compromise in terms
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of convergence speed and estimation accuracy. In addititmeoretical aspects are similar to the real case, the dearac
the successful tensor-based applications of the LM methistic function core equatiori{1) cannot be used directlyhia t

in different applications[[19],[[34],[135] has motivated ts complex field therefore the CanD of the derivatives given in
introduce a LM-based algorithm called LEMACAF, which(@) is no more valid in the complex sources case.

achieves the decomposition of higher-order tensors aactsil The generalization of the CAF approach to the complex case
from the derivatives of the characteristic function asdat: involves the following steps: i) choosing an appropriateeco
Define H(® as the estimated matrix corresponding to thequation, ii) deduce the associated tensor decomposigion b
i'" mode of the CanD[{2); = 1,...,P, and G as the differentiating this core equation and, finally, iii) fortating
estimated matrix corresponding to th& + 1)-th mode. Let an efficient algorithm to estimate the mixing matrix from the
THD,... HP), G) be the tensor built from the estimatedstructure of the obtained tensor decomposition. In thisicec
matrices. Note that ideally we should habE! = H® = we address the two first steps.

-..=HWP) =H andT = T. We consider the minimization

of the following quadratic cost function: )
A. The new core equation

1 , 11
fe(p) = §||e<1>(P)||F = 59@(9)64’@)’ 3) Observationz and sources vectors belong now to the
_ O o . complex field as well as the mixing matrid. .
wherees (p) = veo(7 -7 (H'),... \H!"), G))is the residue The second generating function of the observatidns.can

andp is the parameter vector defined as: still be decomposed into a sum of marginal second generating

p= [ (ved HOT)T ... (vedHPT)T  (veq GT))T T’ functions of sourcespy, k=1---K. IP o.rder to see this,
4) start from the definitions ofp, and ¢, in the complex

where veé.) maps a matrix or a tensor to a column vector bgeld. Generating functions of a complex variable are attual

stacking its columns one below the other. The LM update
iterationk + 1 is given by:

p(k+1) =p(k) - [J7(k)I(k) + AB)I] gk), (6) gy def Sl 1S
where J denotes the Jacobian matrix given by (k) = Su(R{L}, 3{1}) = log E[exp(R{s, }R{L} + 3{s, }S{L})].

—663’;,(?) , g is the gradient vector given ky(k) = J(k)"es(p), In a more compact form we have:

J

§fined by assimilating to R?. Thus the second generating
unction of thek*" source; taken at the point of C is

. defined as a function of the real and imaginary partg: of

or equivalently: g;(k) afg’—(j") and (k) is a positive . B .
regularization parameter. At every iteratiéng, J, p and A Pre(R{L}, 3{1}) = log E[exp(R{L"s,.})] ©6)
are updated. There are many ways to proceed, and we retaipfil pijection also applies td.. Hence,®. taken at the point
the scheme described in [36]: w of CV is actually defined irR?" by

1) ComputeA, (k) = —[J7(k)I(k) + A(k)T] g (k) - '

2) Computep(k + 1) and deduces(p(k + 1)) &, (R{w}, S{w}) € 1og E [exp(x"R{w} + y S{w})],

3) ComputeY = |fo(p(k + 1)) — fa(p(k))| - | fo(p(k +

1)) — fo(p(k))|™" were fo = fa(p) + dZ:fJTeq) + wherex = ®{z} andy = &{z} and thus we have
1d7373d, is the second order approximation ff. ~
2 p o H

4y if T >0 then p(k + 1) is acceptedA(k + 1) = A(k) * . (R{w}, S{w}) = log E [exp(R{w"z})] .

1 3 _ H
maz (3,1 = (20 — 1)) andv = 2. Otherwisep(k+1)  Nqy, replacingz by its model and neglecting the noise
is rejected, A(k + 1) = vA(k) andv = 2 % v. contribution yields:

Compact forms of the gradient vector and Jacobian matrix for

a third order tensor can be found in[34] ahd|[20]. Those canbe  ®.(w) = logE [exp(R{w"Hs})],
easily generalized for higher order tensors. After coneecg,

an estimateH of the mixture is obtained from the average of = logE [exp(?R{EH th%})] ;
HW, ... HP after a column-wise normalization. %

It is worth mentioning that, although ELS refinements and
symmetric constraints are applicable to improve the cenver
gence speed of the LEMACAF algorithm, our preliminary
numerical simulation study has shown no significant improvgvherehk is the k" column of H. Then, using the sources

ment. Therefore, these refinements are not considered h?ﬁﬁ . . . .
. . ; tual statistical ind d hypoth deduce:
Order 3 and 4 versions of the LEMACAF algorithm will be ual stafistical independence hypothesis we can deduce

considered later in Sectidn] V. & (R{w), 3{w}) = ZlogE [exp(R{w'h,5,})]
k

log E [H exp(%{ﬂHhkﬁk})l )
k

IIl. EXTENSION TO THE COMPLEX FIELD )
. . ) and [6) yields:
In this section, we generalize the Bl problem based on
the characteristic function to the complex field, i.e. to the §_(R{w}, S{w}) = Z@ (R{w'h;},S{w'h;}) .
case of complex mixtures of complex sources. Although the o o B T T
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Finally, we define two real matriceA andB so thatH = 1) Order 2 derivatives. At order 2, we obtain:
A + jB. This leads to the new core equation that copes with
the complex case: 2P (w® K K
i et = Y ApAuGl =Y AuBaGE -
O (R{w}, S{w}) =D @ (Z A R{w, }+ v k=1 k=1
% " K K
> BuAgwGi + > BuBuiGEH. (9)
BueS{w,}, Y AuS{w,} - BuR{w,} |. () k=1 k=1
Note that defining®. and ¢, in R*" and R? respectively
instead ofC"¥ and C allows their differentiation. Hence, the 82<i>z(w(5)) K K
next step is the differentiation of](7). Toudn, Z BBy Gl + Z B Agk Gl +
k=1 k=1
B. Differentiation of &, (R{w}, S{w}) K K
— - 12 22
Let us defineu = R{w}, v = S{w} andw = (u,v), ZApkquGSk +ZAPkAquS’“(1O)
so thatw belongs toR?". From these definitions[](7) can be k=1 =1
rewritten as:
i (w) = -
(8) 482(1)2(“/(5)) = iA 1 Bak Gy, + iA kA Gir —
~ - P q s P q s
Z Pk <Z Ankun + BnkUn ) Z AnkUn - Bnkun> ) a’U/pavq —1 —1
k n n K K
where > BuBaGiE = > BprAgG3.(11)
o, RN SR k=1 k=1
w o — P (w). where
We also introduce three functiong, g> and g, respectively
, ) . 25 (s)
defined by: Gl — 9 %O(ksgg(w )25) Ci=1,2:j=1,2.
ga(w) = Z Ay — Bogtin, Th_ereby, each of the three_ second-prder derivatlﬂem)-(l
—~ are given by a sum of four different third-order CanDs involv
and ing the elements of the mixing matrix in different ways. Note
. ) that, since all values g and ¢ are taken into consideration,
g: R —R (9)-(13) cover all the partial second order derivatives.3New
w o g(w) = (g1(w), g2(W)). in Appendix[A how to derive[{9)E(11) fronl18).
Functions@, mapR? to R: 2) Order 3 derivatives: By differentiating both[(P) and(10)

with respect tou!® andv(®, r = 1--- N, we can obtain the

~ . 2

o BT —R four different order 3 equations. Let us define
g — @k(9)-

This yields a compact representation [of (8) as follows:

Go(w) = dr(g(w)).
k

Ghii — 33@ (Q(W(S)))
kT 9gn(w9)dgi(w)dg,; (w)

Using the fact thaG?}! = G12! = G1}2 andG?}! = G122 =

Now, we can compute the partial derivatives ®f(w) with G212 we get:

respect to the realu,,n = 1--- N) and imaginary 4,,n =
1---N) parts of w. Similarly to the real case, in order to N x X
have a sufficient diversity of equations, we have to use Mighm — ZApkAqkArkGlll ZApkAqurszu—

sk T sk

differentiating orders. The objective is to increase thdeor 9urduqdur =1 =1
of the tensor, with the goal of achieving a better estimation K K
quality. In the theoretical part of this study, we limit oehges D A B AnGi' = Bur A AnGEi' +
to second and third orders, being understood that equations ’“;1 ’“;1
_assoc_lat_ed with higher differentiation orders can be oleti ZApkquBrkGiil n ZBpkAqurkGiil‘F
in a similar manner. Pt Pt

The number of equations can also be increased for a fixed K
differentiation order, by computing partial derivativeis®. in By Bar ArkGoi' — Z Bk Bak Bri G2,
S different points ofR*", denoted here ag®) = (u(*), v(*)), =1 k=1
s=1---8. (12)

M=

bl
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0. (w') _ ZA WA B G+ iA DAL A LG It appears that the CanD of these tensors or of any combinatio
upOugdvr PRk TR pREaR R of those is insufficient here. Therefore CanD based algosth
such as ALESCAF are not pertinent in this case.

k=1 k=1

ZApkquBrkGijlcl — > BurAwBrGi' = By applying the same reasoning to third order equations
" e (@2)-{IB), we can build a fifth-order tensdi*® of dimensions
3 3 N,N,N,S,3) as
Z ApkquArngil — Z BpkAqkArngil-i- ( S AV, IV, O,
o = pin P gy 000wl o
Z By By B Gt + Z Bpk By Ari G322, pgrsl — aués)augs)augs) v Ipgrs2 = 3u§,s)8ut(ls)8v§3) ;
k=1 k=1
(13) i )
63CI>Z(W(S)) - 63(I)Z(W(s))
7;7117“53 ; pqt;;%s4 = . (19)

Bv,(,s) Bvés) o’ Bv,(,s) avés) ou')

D, (w'®
7(“/ ) = ZBpkquBrkGék + ZBpkquArkGak +
0vpOvgOvy o . . . ..
k=1 k=1 ur goal is to devise an algorithm capable of jointly
o estimating the real and imaginary paAsandB of the mixing
> BorAgeBrGRi + ZAPkquBrstk T matrix from 72 or 7®3. This issue is addressed in the next
k=1 k=1 .
section.
ZBpkAqkA'rkG221 + ZApkquArstk +
k=1 k=1
K K IV. ALGORITHM FOR THE COMPLEX CASE
AphAge Bk G+ AprAge Ak GE, L .
kzzl e ‘ kZ:l e § A. Building the derivative tensor
(14) First of all, we have to build™*2 or 73 from realizations
of z and [16){(1l) or[(IB)E(T9), respectively.
e (w) EKZB B AL Gl EKZB B..B..G21,  Tensor entries are computed one by one just like in the real
vy OO0, — PRk Sk sk — pREZak Bk sk case. We call’, the first generating function of defined in
K R2N by:
ZBpkAqkArngk +ZApkquArstk - ~ def
k=1 k=1 L.(w®)=E exp(u(S)Tx—i-v(S)Ty)} ) (20)
K
A BrkGEY =S " Apr By Bre G223+ - N
;:: pROAR TRk ; PRk TRk in order that®, = logT',. In practice, the expected value is

estimated by the sample mean over all realizations. Note tha
pkAqkArkGiil ZApkAqurka. this estimator is consistent but it leads to a biased estmat
k=1 of the partial derivatives ob., if the latter are computed by
(15) finite differences of[(20). As i [30], it is preferred to contp
farmal derivatives, and estimate the obtained expressidths
éhe help of sample means.

Let us defineD:(w(*)) as the partial derivatives af. (w(*))
with respect to the components of vectou§” and v(*).
For instance,D;;g(w(S)) is the second-order derivative with
respect to componeni of v(*) and component of u(®,

As we have seen in Secti@d Il, in the real case the secoEdamples of first, second and third order derivatives are:
order derivatives ofp, can be stored in a third-order tensor,

Mw

Thus, in the case of order 3 derivatives, each equation
now given by a sum of eight fourth-order CanDs involvin
the elements of the mixing matrix in different ways.

C. Tensor stowage and decomposition

the CanD of which gives a direct estimation of the mixing i (o) def OL (W) o

. A L . Dy(w') = ———= =z, (w'¥),
matrix. The situation is quite different in the complex casé P Ouy
we still use a tensor approach to jointly exploit the differe
forms of derivatives. Let us first consider the case of second 92T (s) ~

. . . vu (s)y def FZ (W ) (s)
order derivatives. Froni[9)-=(11), we propose to build a flour Dyg(w'™) = T ovon. YpTglz (W),
p q

order tensofl ®2 of dimensiong N, N, S, 3) containing all the
three derivative equations by concatenating all the aatexti

3 & s
decompositions, as follows: DY (v (s )) def 0 ‘I’z(W( ))

= ypyq:rrf‘z (W(S)).

2 5 . par -~ Ov,dv,du,
P2 _ 0 (I)Z(W(S)), T<f>2 _ 0 (I)Z(W(S)). (16) ~
N O PN O S S OF SO The first order derivatives ob, are given by:
92, (w® b (w®)  Du(w® )y  D(w®
T, = 2o ary 220 Diw) 0w D)y

dug vy du, [.(w) vy L.(w)
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At order 2, the elements GF %2 (i.e. second order derivatives) The basic scheme of LEMACAE is thus similar to the
are obtained by differentiating (R1): LEMECAF one. However, in this case, we are dealing with
D (w(®) D (wl) D (wl) highly structured fourth- and fifth-order tensors (when-con

7;%1 - = _ . (22) sidering7®* and 7** respectively). Thereby the parameter
L.(w) IZ(w) vector, the cost function and the construction of the Jamobi
Dy (w®)  DY(w))DY(wl)) matrix and the gradient vector used at each LM update are
T — Ppq _ p q (23) i A ) A )
Pqs2 . (w®) T2(w) ) completely different, involving more complicated caldidas.
: : In the LEMACAFC-2 case, the quadratic cost function is
UV (+5,(8) U (7 (9) v(wi(s) . '
7;q53 = QP‘? W) - Dy (“i ) Dy (w )_ (24) defined as:
I (w() I2(w) 1 , 1.
o o fa(P) = 5lles(P)lF = 5eg(P)es (p),
At order 3 the elements of *3 (i.e. third order derivatives) i
are obtained by differentiating order 2 equations: whereeg (p) = ve(T — 7 *%(p)) is the residue ang is the
(s Wl ()N TV f e (8)N T fn (s arameter vector:
s Dptw®)  2Dp(w)Dy(w)Dr(w) P o
parst o, (w®) B3 (wl®) veqAT)
D (ws)) Dt (wl)) + D (w*)) Dt (wl*)) veqBT)
- P2(wls)) p=| veqG!IT) | € RN +3S)Kx1
 Du(w) D (wl) veq(G12T)
e2(wl) veqG22T)
25 ) .
(29) The LM update at iteratio: + 1 is still given by:
pis - _ D (W) 205w Dy (w) Dy (w) p(k+1) = p(k) = [3(R)I(K) + AR)T] (),
pqrs s T s
q)Z( ) eI(w) whereJ andg denotes the Jacobian matrix and gradient vec-
_ Dy(w) Dy (w)) + Dy (w) Dy (w')) tors respec'uvely These are obtained by computing acalji
2(wls) Jij (k) = 25120 andg (k) = J(k)Teg (p).
D (w() Dur (wl®)) Elements of the Jacobian matrix are given in Appefdix B for
- 2w ; LEMACAFC-2 and LEMACARC-3. At every iterationk, g,
2(w) 26 J, p and \ are updated according to the LEMACAF scheme,
(26) described in sectidn]ll. After convergence of the algorittam
W *) (®) *) estimateH of the mixture is obtained byl = unveqpz; +
Fhs D;Zﬁ’( V) 2Dy (W) Dg(w)Di(w™) - jpst (up to column permutation and scaling).
pqrs3 Z( (S)) (i)g (W(S))
D;’(w(s))Dgg(w(S)) + D;(W(s))pgg(w(s)) V. SIMULATION RESULTS PARTI: THE REAL CASE
B ég(w(s)) In this section, we compare both ALESCAF and
DZ(W(S))D;;:(W(S)) LEMACAF_aIgorithms on mixtures of sy_nthesize(_j_BP_SK
— Y , sources, with the well known 6-BIOME (Blind Identification
PZ(w)) of Overcomplete MixturEs) algorithm [27], also referreda®
(27) “BIRTH" (Blind Identification of mixtures of sources using
Redundancies in the daTa Hexacovariance matrix) when the
és DZZ?( w(®)) 3 2D8(w) DY (w)D:(w'*)  chosen cumulant order is 6. For these comparisons we retaine
pgrsd d.(w(®) B3 (wls) third and fourth order versions of ALESCAF and LEMACAF

Dg(W(S))Dz};(W(S)) i D;(w(s))Dgﬁ(w(s)) (respectively: ALESCAF-3, ALESCAF-4, LEMACAF-3 and
— = LEMACAF-4). Note that as far as we know, ALESCAF-4

03 (w) had never been implemented before. Algorithms are evaluate
_ Dy(w)Dp(wl) according to the Normalized Mean Square estimation Error
P2 (wl®)) ' (NMSE):
(28) f (L) = vedH — H)TveqH — H)
B = T edH) Tved H)

B. Description of the algorithm where the permutation and scaling ambiguities present in

The proposed algorithm is named LEMACE&FO, where H are fixed in the same manner as [in][20].
“O” indicates the order of differentiation. For instance The precision of the estimation relies upon three main
LEMACAFC-2 consists of iteratively fitting the tensgre? global parameters: the "underdeterminacy level”, the nemb
built from model equationg9)-(11) t&*? built from (22)- of observations and the signal to noise ratio (SNR). Their
(24), using the Levenberg-Marquardt method. respective influences on the five algorithms are evaluated us
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[ JALESCAF-4 L] pLEscAT
80 ; ; ; LEMACAF-3 [ ALESCAF-3
I ALESCAF-3 I | EMACAF-3
60| I | EMACAF-3 60 60 I 6-BIOVE
I 6-BIOME
a0l . 30 30
20+t i 0 0
le-5 le-4 le-3 le-2 le-1 le-5 le-4 le-3 le-2 le-1
10000 observations 5000 observations
0 80 80
le-5 le-4 le-3 le-2 le-1
4 sources 60 60
60 . . . . 40 40
20 N 20
0 o l ol il
le-5 le-4 1le-3 le-2 le-1 le-5 le-4 le-3 le-2 le-1
2000 observations 1000 observations
201 . 80 60
60 . :
40
40 :
le-5 le-4 le-3 le-2 le-1 20 20
5 sources
o i ob——  mm ||
80 T T T T le-5 le-4 le-3 le-2 le-1 le-5 le-4 le-3 le-2 le-1
700 observations 500 observations
60} . 7 60 60
A0+ ] 40 40
201 . 20 20
0 0
0 le-5 le-4 1e-3 1le-2 le-1 le-5 le-4 1e-3 1le-2 le-1
le-5 le-4 le-3 le-2 le-1 300 observations 200 observations
6 sources

Fig. 1. Real case, NMSE distribution according to the nundfesources. Fig. 2. Real case, NMSE distribution according to the nunabebservations

distinct Mpnte Carlo simulations. Hence, For each amﬁat algorithms provide some (less thad%) NMSE values under
and algorithm, NMSE values are computed from 100 indepen:_ ; .

o o : . In this case, with about5% of NMSE values under
dent realizations of source and mixing matrices. The num

-2 .
of sensors,N, is always equal to 3. Concerning the CA , order 4 algorithms are clearly better than ordet 3%).

. o . . 6-BIOME is on the average with more th&0%. Once again
algorithms, the derivatives are computed at 8 differenhizoi s
(that is, R — 8), randomly drawn in the rangje-1; 1]". LEMACAF is slightly better than ALESCAF.

d) Conclusion: In this first experiment, it clearly appears
that order 4 algorithms are particularly attractive when th
A. Impact of the number of sources underdeterminacy level is high, at the opposite of order 3

In this first simulation the noise is null, we use 1000@lgorithms, while 6-BIOME has average results. It also appe
observations and we made three Monte-Carlo experimetiiat LEMACAF usually provides a better convergence than
corresponding to three different source numbeis £ 4, ALESCAF.

K = 5, K = 6). Histograms of the identification error are
represented in Fidl 1, for the five algorithms, and summedriz
in table[l.

a) 4sources. Whatever the algorithm most NMSE values Now, the number of sources is set to 4, and the number
range between0~* and10~2 and the largest part is betweerof observations is varied from 200 to 10000. The results are
10~* and 1072, indicating that all algorithms perform well. shown in Fig[2 in the form of histograms. The variation of
There is no significant difference between CAF algorithntbe median value of the NMSE is plotted in Hg. 3.
which all performed slightly better than 6-BIOME. As expected, the performance improves linearly with an

b) 5 sources: All NMSE values are greater thard—%. increase in the number of observations. Globally, beyori50
ALESCAF-4 and LEMACAF-4 provide the best result®{% observations the majority of NMSE values are lower than
of NMSE values are less thard—3) followed by the order 10~*. Between 5000 and 1000 observations the NMSE values
three CAF algorithms30%) and lastly 6-BIOME (les20%). are comprised betweel)—* and10~2. We have observed no
According to the median error values, LEMACAF seems momggnificant differences among the performance of the fouFCA
efficient than ALESCAF. algorithms. On the other hand, according to the median plot

€) 6 sources: A majority of Monte-Carlo runs did not of Fig.[2 , they all give better results than 6-BIOME in all
converge. This holds true for all algorithms. Only the CARhe eight situations. Additionaly, these results also sttioat

%. Impact of the number of observations
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TABLE |
REAL CASE, MINIMAL , MAXIMAL AND MEDIAN VALUE OF THE NMSEACCORDING TO THE NUMBER OF SOURCES COMPUTED FROM00 MONTE-CARLO
RUNS.
4 sources 5 sources 6 sources
min (1e-4) | max | med (1e-3)| min (1e-3) | max | med (1e-2)| min (1e-3) | max | med (1le-1)
ALESCAF4 0.22 1.04 0.33 0.11 0.89 0.24 0.3 1.43 0.3
LEMACAF4 0.22 1.04 0.27 0.11 1.18 0.16 0.3 1.45 0.2
ALESCAF3 0.26 1.54 0.41 0.14 1.77 0.51 1 1.75 5.38
LEMACAF3 0.26 1.54 0.4 0.14 1.58 0.39 1 1.95 4.91
6-BIOME 0.21 2.08 0.56 0.22 1.93 0.33 0.6 1.98 0.84
10” —6— ALESCAF-4| | [C__JALESCAF-4
i —+— LEMACAF-4 LEMACAF-4
~ 80 80 I ALESCAF-3
N % ALESCAF-3 B LEMACAF-3
‘g~ - @ LEMACAF-3 o o I 6-BI0ME
v - ¢ - 6-BIOME
" 40 40
0
% 20 20
0 0
le-5 1le-4 le-3 le-2 le-1 le-5 1e-4 le-3 le-2 le-1
No noise 80dB
80 80
1 1 1 1 1 1 60 60
200 300 500 700 1000 2000 5000 10000
Observation number 40 40
Fig. 3. Real case, evolution of the NMSE median value acogrdd the 0 0
numbers of observations .
0 le-5 le-4 1le-3 le-2 le-1 0 le-5 le-4 le-3 le-2 le-1
50 dB 20dB
the difference between the two classes of algorithms is mc o
significant under 700 observations. © w
40 60
C. Impact of the signal to noise ratio 30
. . . . 0
Finally, the algorithms are compared with the help of si 20 !
Monte-Carlo experiments corresponding to different SNR 10 0
and conS|der|ng.4 sources _and 10090 observations. Th_eses o ol
are presented in FidJ4 in an histogram form, while th 5d8 ods
evolution of the median NMSE value is plotted on Hig. 5.
From an infinite SNR unti20 dB, a large majority (between
i 4
60 and70%) of the NMSE values are comprised betweaern Fig. 4. Real case, NMSE distribution according to the SNR.

and10~3. In the5 dB case this majority is comprised between
10~ and10~2 and betweeri0~2 et 10! for the 0 dB case. 10°
As can be seen in Fig] 5, CAF results are again very clo
to each other. CAF algorithms should be preferred for high
SNRs (above&0 dB) whereas 6-BIOME outperforms themaat

dB SNR. Note that, in this case, very few Monte-Carlo resul
are satisfactory whatever the algorithm. In the middle & tt

-1

SNRs range (i.e. arouriddB), LEMACAF4, ALESCAF4 and 10
6-BIOME present similar performances . Finally, LEMACAF2
is once again slightly better than ALESCAF.

107

D. Discussion

From the previous simulation results, it can be cor
cluded that the CAF algorithms perform similarly in more ;454

2|

—e— ALESCAF-4
—+— LEMACAF-4
% ALESCAF-3

B LEMACAF-3
- & - 6-BIOME

"favourable” scenariosi. when the SNR and the numbet 0

of observations are high and the undeterminacy level is.low)
However a clear distinction between third- and fourth-oade Fig. 5.
gorithms can be made in more difficult cases. As expected, iR

Real case, Evolution

20

SNR (dB)

of the median

NMSE value acogrdo the
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improvement obtained with higher order algorithms becom
significant when the indeterminacy level increases. The
results show that LEMACAF is an interesting alternative t - | | 4S°f‘rce5 Etgmﬁgﬁig:g
ALESCAF. It is worth mentioning that LEMACAF converges B 6-5I0ME
faster than ALESCAF at the price of a higher computation 20l ]
complexity per iteration [20]. Although ALESCAF can stileb
useful with larger tensors, we think that LEMACAF should b 151
recommended in more practical situations.
By properly chosing the differentiation order, the familfy o 10
CAF algorithms arises as a better option than the 6-BIOM

algorithm, especially when the number of observationsus Ic 5
and/or when the underdeterminacy level is high and/or wh 0
the SNR is aboveés dB. Indeed, in many situations, the 6- 0.0001 0.0005 0.001 0.005 0.01  0.05
BIOME algorithm offers similar performance as third-orde NMSE
CAF algorithms however it is consistently overpass by fourt 5 sources
order CAF algorithm. 30
251
VI. SIMULATION RESULTS PARTIl: THE COMPLEX CASE 20

In this section, we compare the performances «
LEMACAFC-3, LEMACAFC-4 and 6-BIOME algorithms 157
considering complex mixtures of synthesized 4-QAM sourci 10}
at different SNRs and underdeterminacy levels. Similaoly 1
the real case, the different algorithms are evaluated imder
of the NMSE. The influence of the SNR and underdetermina ol [owm |
level is evaluated with the help of two distinct Monte-Carlc ~ 0-0001 0.0005  0.001 Sﬁgﬁ 001 005
experiments. For each simulation and algorithm, the MS
values are computed from about 50 realizations of sourc 6 sources
and mixing matrix. The number of sensord’)(is always ‘ ‘ ‘
equal to 3 and the number of observations is set to 20000.
each run, the derivatives used in the LEMAGARIgorithms
are computed at 10 different point& (= 10), the real and
imaginary parts being randomly drawn in the range; 1]V.

a4t

A. Impact of the number of sources

2 L

We have made three different experiments corresponding ﬂ
4,5 and 6 sources. Th_e SNR is_setZthB._An histog_ram of 0%001 0.0‘005 0001 0005 00l 005
the NMSE values is given in Fi] 6. Minimal, maximal anc NMSE
median value of the NMSE according to the number of sour:
are given in tabl&]I.

€) 4sources: Fig.[8 clearly shows that both LEMACAE
algorithms provide statistically the best estimations)csi o _
about 40% of the obtained NMSE values are under3 Fig. 6. Complex case, NMSE distribution according to the benof sources.
against about only 16% for 6-BIOME. Note also that
LEMACAFC-4 performs better than LEMACAE-3: 18% of
its NMSE values are undén—3 against 8% for LEMACAFE-
3 besides only 8% are above.10~3 against 14% for
LEMACAFC-3 (and 20% for 6-BIOME). Tabl&lll confirms
this observation. Note that the maximum value obtained with g) 6 sources. 15 Monte-Carlo runs have been used for
LEMACAFC-4 is only 0.01. this test. This is a difficult situation where the underdater
f) 5 sources. For the three algorithms, there are veryacy level is high. Note that the NMSE values of 6-BIOME

few values underl0—3 whereas a significant number ofdo not decrease under.10~2, contrary to LEMACARC-4
NMSE values are betweerd—2 and5.10~3. LEMACAFC-4 and LEMACAFC-3. In addition 6-BIOME provides only one
dominates with 50% of its NMSE values in this range, againgalues unde.10~3 against 3 for LEMACAR-3 and 6 for
40% for the other algorithms. More generally, in this case EMACAFC-4. However, according to the median values, the
LEMACAFC-3 and 6-BIOME are slightly equivalent. This is6-BIOME algorithm offers a performance that is in between
confirmed by the median values stored in Tdble Il. third- and fourth-order CAF algorithms.
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TABLE

MONTE-CARLO RUNS.

10

COMPLEX CASE, MINIMAL , MAXIMAL AND MEDIAN VALUE OF THE NMSEACCORDING TO THE NUMBER OF SOURCESCOMPUTED FROM SEVERAL

4 sources 5 sources 6 sources
min (1e-4) | max | med (1e-3)| min (1e-4) | max | med (1e-3)| min (1e-3) | max | med (1le-2)
LEMACAF4 2.9 0.01 1 9.1 0.13 32 36 0.32 12
LEMACAF3 4.0 0.03 1 3.0 0.83 45 4.0 0.36 41
6-BIOME 36 0.02 2 53 1.63 49 71 0.14 22
B. Impact of the signal to noise ratio
In the following simulations, the algorithms are compared
for five SNR values § dB, 10 dB, 20 dB, 30 dB and 50
dB), and assuming 4 sources. The results are depicted
Fig. [@ and[8. Regarding the median NMSE plotted in Fi [ ]LEMACAFC-4
[8, it can be observed that performances logically degrade 30 50‘dB I | EMACAFC-3
the SNR decreases. However, one can clearly discrimin; I 6-BIOME
two opposite situations. Above 5dB SNR, LEMACER 20 I
and LEMACARFC-4 offer similar performances and clearly 10
outperform the 6-BIOME algorithm. On the other hand, ¢
around 5dB SNR, 6-BIOM.E pr_ovides Ipetter results. . 0%001 00005 0001 0005 00l 005
The histograms plotted in Fig] 7 refine these observatior NMSE
In the SNR range from 50 dB to 10 dB, the number of NMS| 30dB
values aboves.10~2 remains stable while a large majority 30 ‘
of NMSE values is consistently located betweHr3 and 20t
5.1073. This means that all algorithms perform satisfactoril
in these conditions. 10¢
Now, let us focus on the number of NMSE values locate 0
under10~3. This number gradually decreases with the SNF 0.0001  0.0005 0.001 Sﬁgﬁ 0.01 005
from about 50% to 12% for LEMACAE-4, 40% to 18% 20 dB
for LEMACAFC-3 and 20% to 4% for 6-BIOME, indicating 30 ‘
the superiority of the CAF approach in this range. On tt 20l
other hand, in the 5 dB SNR case, 25% of 6-BIOME NMSI
values are less than.10~3 against about 8 % and 4 % 10t
for LEMACAFC-4 and LEMACARC-3 respectively. In other 0
words, it confirms our previous observations, since for SN 0.0001 0.0005 0.001 0.005 0.01  0.05
values which are higher than 5 dB, CAF algorithms ar ’l‘gA?BE
more attractive than 6-BIOME, otherwise the latter is dligh 40 ‘
more efficient. Furthermore, it is worth noting that at th
exception of the 10 dB SNR case, LEMAC®&H consistently 20l
provides a larger number of NMSE values located urider®
than LEMACARC-3 does. Therefore, higher order versiol
of LEMACAFC still promises a better convergence (from 0%001 0.0005 0.001 0.005 001 005
statistical point view). NMSE
VII. CONCLUSION 30
In this paper we have proposed several new contributio 201
to the blind identification of undertermined mixtures usin 10}
the characteristic function. Notably, we have extended tl
theory of CAF approach to the case of complex mixture 0%001 00005 000l 0005 00l 005
of complex sources. Hence an appropriate core equation v NMSE

developped to cope with the complex case. By differentiatir
this core equation, we obtained a generalized tensor decc
position from which an estimation of the mixing matrix car
be deduced. A Levenberg-Marquardt algorithm, herein dalle

LEMACAFC, was proposed to blindly estimate the mixingrig. 7. Complex case, distribution according to the SNR.

matrix by exploiting the structure this tensor decomponiti
Two performance studies were carried out. In a first partya ne
LEMACAF algorithm, suitable for the real case, was compared
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'L o— LEMACAFC-2 it Wogld pe ir_lter_esting to study unigueness issues and their
@+ LEMACAFC-3 practical implications to the CAF-based Bl problem.
K- | -A-6-BIOME

APPENDIXA
COMPUTATIONAL DETAILS OF FIRST AND SECOND ORDER
DERIVATIVES OF @, (R{w}, S{w})

The differentiation of [(B) with respect ta,, p = 1--- N
gives:

NMSE

0P.(w) i 0fx(9(w))
duy, — ou,
5 10 20 30 50 _ i 9%rk(g) 0g1(w) n 0%k (g) 0g2(w)
SNR (dB) dgr Ouy dga  Oup, )’

E
Il

1

Fig. 8. Complex case, evolution of the NMSE median value m@tiog to
the SNR. =

M=

<3¢k(9) A — o¢i(g) Bpk) ' (29)

on 992

k=1

_ : _ _ .. _Inthe same way, the differentiation with respectjpgives:
to higher order versions of ALESCAF in various situations

involving BPSK sources. In a second part, the performance 0 K 5 >
g9 p P 0. (w) _ Z <8‘Pk(9) B, 0Pk (Q)Ap ) ' (30)

of the LEMACARFC algorithm using third- and fourth-order

e : p —\ 9n 992
derivatives were evaluated from mixtures of 4-QAM sources. k=1
In each situation, the 6-BIOME algorithm was used as gow we differentiate[[29) and{B0) with respectdés) and
reference for the comparison. MO g=1---N

From our simulation results, in both the real and complei] ’
cases, we can recommend the use of the CAF family oRd, (w(*)) K 10264(g) 2?¢r(9)

) ; . . . — Z ok — k)

algorithms, especially in the case of highly underdeteemin Du,du, dg10u, dg20u,
mixtures and the medium-to-high signal to noise ratios,(say k=1 X K«
above5 dB). The choice of the differentiation order is led by _ 0 Z &ﬁk(g)A 0 Z Bgak(g)B
the desired tradeoff between estimation accuracy and campu - 9g1 = Oug P 9ga = Oug ph-
tional cost. In the least favorable situation, we recommntéed ! ! 31)

use of higher order derivatives. In practice it appearsahader
3 versions are enough to compete with (and often outperfor@ybstituting [(2P) into[(31) yields:
an algorithm using 6-order statistics such as 6-BIOME. N x
i 0PP.(wl) 0*¢r(9) 9*Pr(9)
In the case of real sources, although LEMAGAIS appli- z — ZAPk ( Pr\Y Age — Pr\Y qu)
cable, one should prefer ALESCAF or LEMACAF algorithms 9upduyg P 991091 991092

since they are simpler and quicker. Since both offer quite B 5
¢ ¢ \ \ in(a%ok(g)Ak_a%ok(g)Bk)_
=" T 0209y

similar performance in terms of estimation error, the chagc
led by the convergence speed, which means that ALESCAF 992091
is only preferable for large tensors. (32)

Higher order versions of LEMACAE, such as

i i 12 __ 21 i
LEMACAFC-4 algorithm are time consuming. This js-inally, using the fact thattip = G, we obtain ®).
. . . . The same reasoning can be applied to obtain the successive
mainly due to the computation of the Jacobian matrix. Ou

results show that there is generally no need to go beyoOIr fivatives of[(3D) and {29) with respect 49 andv,, hence

order 4, which would be very computationally costly (th ) and [(ZL).

computational complexity dramatically increases with the

differentiation order). Although we have focused our ditem APPENDIXB

on simplest derivatives, other derivative tensors couldeha  JACOBIAN FORMULATION FOR LEMACAFC-2 AND
been constructed for higher differentiation orders, legdo LEMACAFC-3

different versions of the LEMACAE algorithm. For example,  We provide the details of the structure of the Jacobian matri
one can combine derivatives of different differentiatiod&rs used in LEMACARC-2 and LEMACARC-3, (higher orders
to increase diversity, as demonstrated.inl [30] in the reaécacan be obtained in a similar manner). Although the Jacobian
Finally, as we have pointed out previously, the higher-ordean be computed automatically for a given differentiation
derivative tensors that arise when working with complex-miorder, this solution is usually very time consuming. Theref
tures of complex sources follow a decomposition in a sum ofie would rather use the following pre-calculated entiTés
structured CanD blocks. We think that block decompositiomgadient can be directly deduced from the Jacobian and the
[37] can be used to decompose these tensors. In this contextor term.
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A. Jacobian for LEMACAFC-2
e is the multiway error function which is defined as follows:

12

B. Jacobian for LEMACAFC-3

At order 3, we have now a x 6 blocks matrix:

epqst(A,B,Gll,Glz,G22) dCf E?;Et(A B Gll G12 G22) E%gt JAI JBl JGill chll JG?zl JG§22
The Jacobian matrid of e is built as a3 x 5 blocks matrix: JA: JBa JeiU Ja3v jGE' 3632
JA4 gBe gt ger gor T e gm gon gem e go
J=| g% 3B 3o Jo&© Jor JA: 3Ba JGIM geI g gaE
JAs  JBs JGél JG};2 JG§2
and we define
JA« 3B JG' 3G JG¥ contain partial derivatives of
e..+ with respects to the elements 4f B, G'!, G2 and G*? i=(p—-1)SN?*+(¢g—1)N?+ (r —1)N +s,
respectively. For instance, defining:
i=(p—1)SN+(g—1)N +s, Ji=(n—-1N+k,
J1=n—1)N+k, jo=(—1)S +k,
f=(-1)5+k withp=1---N, ¢g=1---N,r=1---N,n=1---N, s =
i — .. - .. - 1... — 1.---8 andk = 1---K Block entries are computed b
with p 1---N, ¢ 1---N, n 1---N, s p y
1...Sandk =1---K we have: differentiation of [(TH-1b).
11 12 22
Jf;f d:cf 6€pqs2(A7Bé§ , G G ) J;‘;; _ 5n (AqkArkGlll _ Aqu'rkG211
nk
A B.Gl g2 g2 — B Ari G211 + By B G27Y)
7;;1152( (g} ) ’ ) AL A A 211
- IA . +5n ( pk Tstk - pkBrkG
_ N _ A GA' + BB G232
Each block has its own analytical formulation. Henck, PRk sk Pk 1;11 )
is computed one block after another. Block entries can be +6m(Ap;€Aqus — Apk Ban Gk

computed term by term by differentiation df] (9)._{10) and
(113). One obtains the following relationships (weféas the
Kronecker delta function):

T =6, (AguGLL —

11
171 qk 5”‘1 Apk Gsk Pk

J0? =

91

5np qusk + qu 5nq sk T Apk

JAs

91

JB

91

qusk + Aqk 5nq

G! Gi7)
G! B G2 GZ%)
Snp G! AGL2 GZ%)
BG? — AG! Onq (BprG GL7)

énp pk

JBe

1

J2 =

131

&) =+ 0ng (
(4 &) =+ Ong (
(B &) =+ Ong (
( £) =+ Ong (
(BakG L + AgrGLr) + 0ng (

S BuGh + ApG3)

5np (BkaiI% + APngi)"‘anq (Aquillc - quGgi)

Jor

132

G3'
Jij2
Jos

172

= 015 (ApkAgr)
= 015 (Bpk. Byk)
= 015 (Apk Bgk)

Gl J—
J172
G3?
Jijs
g5

)2

—0s ( pk Bk + BpkAqk)
= dis (BpkAqk + Apkqu)
= 015 (AprAqk — BprBak)

pk Aqusk + Bpk qu Gsil )

I3 = 0np(Agu BriGi' + Age Ak G
— By Bk G5 — By A G5

+6nq(Apk B G —l—ApkArkGQ”
ok B G2 — Bop A, G5

+0nr (Apk A G2t — A By, G331
BpkAqusk +BpkquGsi2)

)

T8 = 8up(Bop Bk GH + Bop Ak G2
+ Aqurstk + AqkATkGQQQ)
+5nq( PkBTstk + BpkArstk
+ ApkBrngzl + ApkATngiz)
+onr (BpkquGglil + BpkAquglzl

+ Apkqu G?il + ApkAqugl%Q)

JA =,

91

p(Bae Ark G — By B G2
+ A Ak G3Y — Ay B, G2
+0ng(Bpr Ak G2 — Bp B, G232t
+ Ap Ak G%EY — Ay B G
(BpkquGilil + BpkAquglil
+ ApkquGglil + ApkAquiil

)

)
+6nr
)
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ij2

ij2
sl
ij2

fere
ij2
a2
iJ2
a2
iJ2

iJ2

IE = 6p( — A AG2 3 +AqurkG221
+ By Ak G2t — B BinG32)

g — ApkArstk + Ay Bk GH
+ B A G3Y — B B G23)

+nr(— ApkAqusk + ApkquGsk
+ BpuAgpG3' — By By G%2)

Jgf = Opp( — Agp BrGA — Agp A G222

+ Byk Brk G2 + By A G22)
F0ng( — Apk Bk G2t — AprAr G2Z!
+ Bpp By G2 + By Ak G2E2)
4—5nr(z4pkz4qk(;ll zipkl3qk(;211
pkAqusk + BpkquG221)

J2 =6,

91

p(Bak BriG i, + Bor Ak G2}
+ Aqurngil + AqkArngil)

+5nq(BpkBrkG;]1gl + BpkArng}cl
+ ApkBrsz]lgl + ApkArngzl)

+6nr (Bpk By Gi' + Bpr Age G21)
+ ApkquGzllcl + ApkAqu?il)

TB% = 5 (B Ak GLY — B Bry G2
+ AqkATkGﬂ — Ay B G2
+0n ( pkArkG pkBrkG211
+ Apr Ark G2 — Ape B G3Y)
+5”’”( - BPkquGgi pkAqusk
— App Bg G2 — Apk A G32)
G222
= 515 ( pkAqkA k) ; ”21 = —515 (BpkquBrk)
222
= 01 (ApeAgiBri) 5 J52 = 010 (BorBar Avk)
222
= 6ls ( pkquB k) ) 523 = (Sls (ApkAqkArk)
222
= dis ( pkquArk) ; 524 = —0is (ApkAqurk)

1

= 5ls (ApkAqurk + ApkquArk + BpkAqkArk)
1

= 6ls (ApkAqkArk
1

= 6ls (BpkquArk + BpkAqurk + ApkquBrk)

- ApkquBrk - BpkAqurk)

= _5ls (BpkquBrk - BpkAqkArk - ApkquArk)

= 015 (Apk Byt Bri, + Bpk Aqk Bric + Bpi By Avk)
= —015s (Apx Bgr Arke + BprAguAvie — Bpi Bai Bric)
= 015 (BprAqeArk + Apk B Arie + Apr Age Bri)
= —015 (BprAgi Bric + Api Bar Brie — Api Aqre Arkc)
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