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Blind Identification of Underdetermined Mixtures
Based on the Characteristic Function: The Complex

Case
Xavier Luciani∗, Member, IEEE, André L. F. de Almeida,Member, IEEE, and Pierre Comon,Fellow, IEEE

Abstract—Blind identification of underdetermined mixtures
can be addressed efficiently by using the second ChAracteristic
Function (CAF) of the observations. Our contribution is twofold.
First, we propose the use of a Levenberg-Marquardt algorithm,
herein called LEMACAF, as an alternative to an Alternating
Least Squares algorithm known as ALESCAF, which has been
used recently in the case of real mixtures of real sources. Second,
we extend the CAF approach to the case of complex sources for
which the previous algorithms are not suitable. We show that
the complex case involves an appropriate tensor stowage, which
is linked to a particular tensor decomposition. An extension of
the LEMACAF algorithm, called LEMACAF C is then proposed
to blindly estimate the mixing matrix by exploiting this tensor
decomposition. In our simulation results, we first provide perfor-
mance comparisons between third- and fourth- order versions
of ALESCAF and LEMACAF in various situations involving
BPSK sources. Then, a performance study of LEMACAFC is
carried out considering 4-QAM sources. These results show that
the proposed algorithm provides satisfying estimations especially
in the case of a large underdeterminacy level.

Index Terms—Blind identification, blind source separation,
characteristic function, complex sources, underdetermined mix-
tures, tensor decompositions

I. I NTRODUCTION

BLIND Identification of linear mixtures (BI) has now
become a major area of signal processing. For instance,

since the theory of Independent Component Analysis (ICA)
[1], this subject has been at the center of many theoretical
works while related methods and algorithms have been suc-
cessfully used in applicative fields, notably in telecommuni-
cations [2], acoustic [3] or biomedical engineering [4], [5]
among others; see [6], [7] for surveys.

In the meantime, tensor analysis has gained attention in nu-
merous application areas involving data analysis such as Psy-
cometrics [8], Arithmetic Complexity [9] and Chemometrics
[10], [11]. In particular, the Canonical Decomposition (CanD)
[8] also known as PARAllel FACtor analysis (PARAFAC)
[12] has met with success. One of the reasons is that CanD
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can often favorably replace Principal Component Analysis
(PCA), when available data measurements can be arranged
in a meaningful tensor form [13]. Indeed, the CanD comes
with a nice uniqueness property [14]–[18] and some simple
numerical algorithms [10], [19], [20].

Due to multiple connections between the two areas, these
advantages have been rapidly exploited for BI purposes [21]–
[24]. In addition, tensor-based algorithms allow to solve the
problem of underdetermined mixtures (i.e. when the number of
sources is greater than the number of sensors), which arisesin
many practical situations, especially in telecommunications,
and in which we are presently interested. A first class of
algorithms exploits the trilinear nature of the observations, and
the CanD of the data tensor provides a direct source estimation.
For instance, this deterministic approach is widely used in
fluorescence spectroscopy [10], [11]. When the observation
diversity is not sufficient, one can resort to a second class of
algorithms, using the multilinearity properties of High-Order
Statistics (HOS) [20]. A large majority of these algorithms
involves a tensor containing the cumulants of the observations,
the decomposition of which leads to the blind identification
of the mixing matrix [23], [25]. This is notably the case of
FOOBI [26], FOOBI2 [22] and 6-BIOME [27] algorithms,
which use 4th and 6th order cumulant tensors, respectively.
Nevertheless, a different class of BI methods not exploiting
cumulants but the second ChAracteristic Function (CAF) of
the observations, has been proposed in [28]–[30]. We are par-
ticularly interested in the approach originally proposed in [29],
leading to efficient algorithms such as ALESCAF [30]. In that
work, the authors showed that partial derivatives of the second
characteristic function can be stored in a symmetric tensor,
the CanD of which provides a direct estimation of the mixing
matrix up to trivial scaling and permutation indeterminacies.
In [30], the ALESCAF algorithm is applied to a data tensor
constructed from third-order derivatives of the characteristic
function. It is worth mentioning that the ALESCAF algorithm
has only been applied to BI problems involving real sources
(e.g. BPSK and 4-PAM). The present study notably generalizes
the CAF approach to the case of complex mixtures of complex
sources, which often occurs in digital communications and for
which the ALESCAF algorithm needs non trivial extensions.

The paper is organized as follows. In Section II, the
BI problem is formulated and the CAF approach is briefly
presented by first considering the case of real sources. A
new LEMACAF algorithm that copes with the real case is
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also introduced in this section. In Section III, we transpose
the CAF approach to the case of complex sources. A new
core equation is obtained and an appropriate decomposition
of the derivative tensor is detailed. In order to implement
this more general approach, we propose a suitable algorithm
called LEMACAFC in Section IV. Computer simulation re-
sults considering both the real and complex cases are reported
respectively in Sections V and VI. The paper is concluded
in Section VII. Matlab codes including notably ALESCAF,
LEMACAF and LEMACAFC algorithms can be found at
http://www.i3s.unice.fr/∼pcomon/TensorPackage.html.

Notations: In the following, vectors, matrices and tensors
are denoted by lower case boldface(a), upper case boldface
(A) and upper case calligraphic(A) letters respectively.ai
is the ith coordinate of vectora and ai is the ith column
of matrix A. The (i, j) entry of matrix A is denotedAij

and the(i, j, k) entry of the third order tensorA is denoted
Aijk. Complex objects are underlined, their real and imaginary
parts are denotedℜ{·} andℑ{·} respectively. E[.] denotes the
expected value of a random variable.

II. PROBLEM FORMULATION AND CAF APPROACH IN THE

REAL CASE

We consider here the classical linear model of a noisy
mixture of K stationary sources received by an array ofN

sensors. The mixture is instantaneous and under-determined
(N < K) and defined by a mixing matrixH = [h1, . . . ,hK ] ∈
RN×K . Define alsoz(m) = [z1(m), . . . , zN(m)]T ∈ RN ,
s(m) = [s1(m), . . . , sK(m)]T ∈ RK andn(m) ∈ RN as the
mth realizations of the observation, source and noise vectors,
respectively,m = 1, . . . ,M . According to this linear model
we have:

z(m) = Hs(m) + n(m).

Algorithms from the CAF family use the partial derivatives of
the observations characteristic function to identify the mixing
matrix H under the following assumptions:

H1. The mixing matrix H does not contain pairwise
collinear columns.

H2. The sourcess1, . . . , sK are non-Gaussian and mutu-
ally statistically independent.

H3. The number of sourcesK is known.

It has been shown in former studies [31] [32] thatH is
theoretically identifiable under these assumptions.

Here, we briefly recall the main steps of the CAF approach
originally proposed in [29]. Let us denoteΦz and ϕk the
second generating functions1 of the observations and sourcek
respectively:

ϕk(x)
def
= logE [exp(xsk)] , x ∈ R,

Φz(u
(s))

def
= logE

[
exp(u(s)Tz)

]
, u(s) ∈ R

N .

Replacingz by its model and neglecting the noise contribu-
tion leads to the decomposition of the observation generating

1In order to simplify notations and calculations, without any theoretical
impact, we prefer using the generating function instead of the characteristic
function.

function into the sum of the sources individual generating
functions:

Φz(u
(s)) = logE


exp



∑

n,k

u(s)
n Hnksk




 .

Using the source independence property, we get:

Φz(u
(s)) =

∑

k

ϕk

(
∑

n

Hnku
(s)
n

)
. (1)

Equation (1) is the core equation of the CAF approach in
the real field. Differentiating (1)P times with respect toP
components ofRN , denotedun1 , un2 , · · · , unP

, and defining

Gsk
def
=

∂pϕk(
∑

n Hnku
(s)
n )

∂un1∂un2 ···∂unP

we obtain:

∂pΦz(u
(s))

∂un1∂un2 · · ·∂unP

=

K∑

k=1

Hn1kHn2k · · ·HnP kGsk, (2)

with np = 1, . . . , N andp = 1, . . . , P . These derivatives could
be stored in aP -th order tensor but in practice, the partial
derivatives ofΦz are computed inS points (u(1) · · ·u(S)) of
R

N . The objective is to increase the order of the tensor, aiming
at achieving a better estimation quality. Hence, we now havea
(P +1)-th order data tensor, the last dimension describing the
S differentiation points. The key issue of the CAF approach
is that (2) is nothing else but the rank-K (truncated) CanD
of the data tensor, which allows the identification of matrix
H. Indeed, when the number of sources is smaller than the
generic rank of the tensor, this decomposition admits an
essentially unique solution forH andG, (i.e. up to scaling
and permutation of their columns), whereG is the S × K

matrix with entriesGsk.
The general structure of CAF algorithms can be summarized

as follows:

1) ChooseS points ofRN ;
2) Compute for each point orderP partial derivatives of

Φz and store the results in a tensorT ;
3) EstimateH from the rank-K decomposition ofT .

Note that the differentiation orderP is an input parameter
of the algorithm. The higher the differentiation order, the
higher the tensor order, and hence its generic rank for these
dimensions. Consequently, increasing the differentiation order
should allow to identify mixtures involving a larger numberof
sources without increasing the number of sensors. The price
to pay is, of course, an increase in the algorithm complexity
and probably a loss in robustness and accuracy.

The ALESCAF algorithm resorts to a classical Alternating
Least Squares (ALS) procedure in order to perform the CanD.
Algorithm refinements can be added so as to improve the
convergence speed and avoid local minima, such as the En-
hanced Line Search (ELS) procedure [33], [20]. Other CanD
algorithms can be used [19], [20]. In order to identify the most
suitable algorithm in the CAF context, we have compared the
ALS-ELS approach with the gradient-ELS descent and the
Levenberg-Marquardt (LM) optimization methods for various
tensors following model (2) (results not shown). Among these,
the LM method has shown a good compromise in terms

http://www.i3s.unice.fr/~pcomon/TensorPackage.html
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of convergence speed and estimation accuracy. In addition,
the successful tensor-based applications of the LM method
in different applications [19], [34], [35] has motivated usto
introduce a LM-based algorithm called LEMACAF, which
achieves the decomposition of higher-order tensors constructed
from the derivatives of the characteristic function as follows:
Define Ĥ(i) as the estimated matrix corresponding to the
ith mode of the CanD (2),i = 1, . . . , P , and Ĝ as the
estimated matrix corresponding to the(P + 1)-th mode. Let
T̂ (Ĥ(1), · · · , Ĥ(P ), Ĝ) be the tensor built from the estimated
matrices. Note that ideally we should havêH(1) = Ĥ(2) =
· · · = Ĥ(P ) = H and T̂ = T . We consider the minimization
of the following quadratic cost function:

fΦ(p) =
1

2
‖eΦ(p)‖

2
F =

1

2
eTΦ(p)eΦ(p), (3)

whereeΦ(p) = vec
(
T −T̂ (Ĥ(1), · · · , Ĥ(P ), Ĝ)

)
is the residue

andp is the parameter vector defined as:

p =
[
(vec(Ĥ(1)T))T . . . (vec(Ĥ(P )T))T (vec(ĜT))T

]T
,

(4)
where vec(·) maps a matrix or a tensor to a column vector by
stacking its columns one below the other. The LM update at
iterationk + 1 is given by:

p(k + 1) = p(k)−
[
JT (k)J(k) + λ(k)I

]
−1

g(k), (5)

where J denotes the Jacobian matrix given by:Jij(k) =
∂eΦi(p)

∂pj
, g is the gradient vector given byg(k) = J(k)T eΦ(p),

or equivalently: gj(k) = ∂fΦ(p)
∂pj

and λ(k) is a positive
regularization parameter. At every iterationk, g, J, p andλ

are updated. There are many ways to proceed, and we retained
the scheme described in [36]:

1) Compute∆p(k) = −
[
JT (k)J(k) + λ(k)I

]
−1

g(k)
2) Computep(k + 1) and deducefΦ(p(k + 1))
3) ComputeΥ = |fΦ(p(k + 1)) − fΦ(p(k))| · |f̂Φ(p(k +

1)) − fΦ(p(k))|
−1 were f̂Φ = fΦ(p) + dT

p J
T eΦ +

1
2dT

p J
TJdp is the second order approximation offΦ.

4) if Υ > 0 thenp(k + 1) is accepted,λ(k + 1) = λ(k) ∗
max

(
1
3 , 1− (2Υ− 1)3

)
andν = 2. Otherwisep(k+1)

is rejected, λ(k + 1) = νλ(k) andν = 2 ∗ ν.
Compact forms of the gradient vector and Jacobian matrix for
a third order tensor can be found in [34] and [20]. Those can be
easily generalized for higher order tensors. After convergence,
an estimatêH of the mixture is obtained from the average of
Ĥ(1), . . . , Ĥ(P ) after a column-wise normalization.

It is worth mentioning that, although ELS refinements and
symmetric constraints are applicable to improve the conver-
gence speed of the LEMACAF algorithm, our preliminary
numerical simulation study has shown no significant improve-
ment. Therefore, these refinements are not considered here.
Order 3 and 4 versions of the LEMACAF algorithm will be
considered later in Section V.

III. E XTENSION TO THE COMPLEX FIELD

In this section, we generalize the BI problem based on
the characteristic function to the complex field, i.e. to the
case of complex mixtures of complex sources. Although the

theoretical aspects are similar to the real case, the character-
istic function core equation (1) cannot be used directly in the
complex field therefore the CanD of the derivatives given in
(2) is no more valid in the complex sources case.

The generalization of the CAF approach to the complex case
involves the following steps: i) choosing an appropriate core
equation, ii) deduce the associated tensor decomposition by
differentiating this core equation and, finally, iii) formulating
an efficient algorithm to estimate the mixing matrix from the
structure of the obtained tensor decomposition. In this section
we address the two first steps.

A. The new core equation

Observationz and sources vectors belong now to the
complex field as well as the mixing matrixH.

The second generating function of the observations,Φ̃z , can
still be decomposed into a sum of marginal second generating
functions of sources,̃ϕk, k = 1 · · ·K. In order to see this,
start from the definitions ofΦ̃z and ϕ̃k in the complex
field. Generating functions of a complex variable are actually
defined by assimilatingC to R

2. Thus the second generating
function of thekth sourceϕ̃k taken at the pointl of C is
defined as a function of the real and imaginary parts ofl:

ϕ̃k(ℜ{l},ℑ{l})
def
= logE [exp(ℜ{sk}ℜ{l}+ ℑ{sk}ℑ{l})] .

In a more compact form we have:

ϕ̃k(ℜ{l},ℑ{l}) = logE [exp(ℜ{l∗sk})] . (6)

This bijection also applies tõΦz . Hence,Φ̃z taken at the point
w of CN is actually defined inR2N by

Φ̃z(ℜ{w},ℑ{w})
def
= logE

[
exp(xTℜ{w}+ yTℑ{w})

]
,

wherex = ℜ{z} andy = ℑ{z} and thus we have

Φ̃z(ℜ{w},ℑ{w}) = logE
[
exp(ℜ{wHz})

]
.

Now, replacing z by its model and neglecting the noise
contribution yields:

Φ̃z(w) = logE
[
exp(ℜ{wHHs})

]
,

= logE

[
exp(ℜ{wH

∑

k

hksk})

]
,

= logE

[
∏

k

exp(ℜ{wHhksk})

]
,

wherehk is the kth column ofH. Then, using the sources
mutual statistical independence hypothesis we can deduce:

Φ̃z(ℜ{w},ℑ{w}) =
∑

k

logE
[
exp(ℜ{wHhksk})

]

and (6) yields:

Φ̃z(ℜ{w},ℑ{w}) =
∑

k

ϕ̃k

(
ℜ{wTh∗

k},ℑ{w
Th∗

k}
)
.
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Finally, we define two real matricesA andB so thatH =
A+ B. This leads to the new core equation that copes with
the complex case:

Φ̃z(ℜ{w},ℑ{w}) =
∑

k

ϕ̃k

(
∑

n

Ankℜ{wn}+

Bnkℑ{wn} ,
∑

n

Ankℑ{wn} −Bnkℜ{wn}

)
. (7)

Note that definingΦ̃z and ϕ̃k in R
2N and R

2 respectively
instead ofCN andC allows their differentiation. Hence, the
next step is the differentiation of (7).

B. Differentiation of Φ̃z(ℜ{w},ℑ{w})

Let us defineu = ℜ{w}, v = ℑ{w} and w = (u,v),
so thatw belongs toR2N . From these definitions, (7) can be
rewritten as:

Φ̃z(w) =

∑

k

ϕ̃k

(
∑

n

Ankun +Bnkvn ,
∑

n

Ankvn −Bnkun

)
,

(8)

where

Φ̃z : R
2N −→ R

w 7−→ Φ̃z(w).

We also introduce three functionsg1, g2 and g, respectively
defined by:

g1(w) =
∑

n

Ankun +Bnkvn,

g2(w) =
∑

n

Ankvn −Bnkun,

and

g : R
2N −→ R

2

w 7−→ g(w) = (g1(w), g2(w)).

Functionsϕ̃k mapR2 to R:

ϕ̃k : R
2 −→ R

g 7−→ ϕ̃k(g).

This yields a compact representation of (8) as follows:

Φ̃z(w) =
∑

k

ϕ̃k (g(w)) .

Now, we can compute the partial derivatives ofΦ̃z(w) with
respect to the real (un, n = 1 · · ·N ) and imaginary (vn, n =
1 · · ·N ) parts ofw. Similarly to the real case, in order to
have a sufficient diversity of equations, we have to use higher
differentiating orders. The objective is to increase the order
of the tensor, with the goal of achieving a better estimation
quality. In the theoretical part of this study, we limit ourselves
to second and third orders, being understood that equations
associated with higher differentiation orders can be obtained
in a similar manner.

The number of equations can also be increased for a fixed
differentiation order, by computing partial derivatives of Φ̃z in
S different points ofR2N , denoted here asw(s) = (u(s), v(s)),
s = 1 · · ·S.

1) Order 2 derivatives: At order 2, we obtain:

∂2Φ̃z(w
(s))

∂up∂uq

=

K∑

k=1

ApkAqkG
11
sk −

K∑

k=1

ApkBqkG
12
sk −

K∑

k=1

BpkAqkG
12
sk +

K∑

k=1

BpkBqkG
22
sk. (9)

∂2Φ̃z(w
(s))

∂vp∂vq
=

K∑

k=1

BpkBqkG
11
sk +

K∑

k=1

BpkAqkG
12
sk +

K∑

k=1

ApkBqkG
12
sk +

K∑

k=1

ApkAqkG
22
sk, (10)

∂2Φ̃z(w
(s))

∂up∂vq
=

K∑

k=1

ApkBqkG
11
sk +

K∑

k=1

ApkAqkG
12
sk −

K∑

k=1

BpkBqkG
12
sk −

K∑

k=1

BpkAqkG
22
sk. (11)

where

G
ij
sk =

∂2ϕ̃k(g(w
(s)))

∂gi(w(s))∂gj(w(s))
; i = 1, 2 ; j = 1, 2.

Thereby, each of the three second-order derivatives (9)-(11)
are given by a sum of four different third-order CanDs involv-
ing the elements of the mixing matrix in different ways. Note
that, since all values ofp and q are taken into consideration,
(9)-(11) cover all the partial second order derivatives. Weshow
in Appendix A how to derive (9)-(11) from (8).

2) Order 3 derivatives: By differentiating both (9) and (10)
with respect tou(s)

r andv(s)r , r = 1 · · ·N , we can obtain the
four different order 3 equations. Let us define

G
hij
sk =

∂3ϕ̃k(g(w
(s)))

∂gh(w(s))∂gi(w(s))∂gj(w(s))
.

Using the fact thatG211
sk = G121

sk = G112
sk andG221

sk = G122
sk =

G212
sk , we get:

∂3Φ̃z(w
(s))

∂up∂uq∂ur

=

K∑

k=1

ApkAqkArkG
111
sk −

K∑

k=1

ApkAqkBrkG
211
sk −

K∑

k=1

ApkBqkArkG
211
sk −

K∑

k=1

BpkAqkArkG
211
sk +

K∑

k=1

ApkBqkBrkG
221
sk +

K∑

k=1

BpkAqkBrkG
221
sk +

K∑

k=1

BpkBqkArkG
221
sk −

K∑

k=1

BpkBqkBrkG
222
sk ,

(12)
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∂3Φ̃z(w
(s))

∂up∂uq∂vr
=

K∑

k=1

ApkAqkBrkG
111
sk +

K∑

k=1

ApkAqkArkG
211
sk −

K∑

k=1

ApkBqkBrkG
211
sk −

K∑

k=1

BpkAqkBrkG
211
sk −

K∑

k=1

ApkBqkArkG
221
sk −

K∑

k=1

BpkAqkArkG
221
sk +

K∑

k=1

BpkBqkBrkG
221
sk +

K∑

k=1

BpkBqkArkG
222
sk ,

(13)

∂3Φ̃z(w
(s))

∂vp∂vq∂vr
=

K∑

k=1

BpkBqkBrkG
111
sk +

K∑

k=1

BpkBqkArkG
211
sk +

K∑

k=1

BpkAqkBrkG
211
sk +

K∑

k=1

ApkBqkBrkG
211
sk +

K∑

k=1

BpkAqkArkG
221
sk +

K∑

k=1

ApkBqkArkG
221
sk +

K∑

k=1

ApkAqkBrkG
221
sk +

K∑

k=1

ApkAqkArkG
222
sk ,

(14)

∂3Φ̃z(w
(s))

∂vp∂vq∂ur

=

K∑

k=1

BpkBqkArkG
111
sk −

K∑

k=1

BpkBqkBrkG
211
sk +

K∑

k=1

BpkAqkArkG
211
sk +

K∑

k=1

ApkBqkArkG
211
sk −

K∑

k=1

BpkAqkBrkG
221
sk −

K∑

k=1

ApkBqkBrkG
221
sk +

K∑

k=1

ApkAqkArkG
221
sk −

K∑

k=1

ApkAqkBrkG
222
sk .

(15)

Thus, in the case of order 3 derivatives, each equation is
now given by a sum of eight fourth-order CanDs involving
the elements of the mixing matrix in different ways.

C. Tensor stowage and decomposition

As we have seen in Section II, in the real case the second
order derivatives ofΦz can be stored in a third-order tensor,
the CanD of which gives a direct estimation of the mixing
matrix. The situation is quite different in the complex casebut
we still use a tensor approach to jointly exploit the different
forms of derivatives. Let us first consider the case of second
order derivatives. From (9)-(11), we propose to build a fourth-
order tensorT Φ̃2 of dimensions(N,N, S, 3) containing all the
three derivative equations by concatenating all the associated
decompositions, as follows:

T Φ̃2
pqs1 =

∂2Φ̃z(w
(s))

∂u
(s)
p ∂u

(s)
q

; T Φ̃2
pqs2 =

∂2Φ̃z(w
(s))

∂v
(s)
p ∂v

(s)
q

; (16)

T Φ̃2
pqs3 =

∂2Φ̃z(w
(s))

∂u
(s)
p ∂v

(s)
q

. (17)

It appears that the CanD of these tensors or of any combination
of those is insufficient here. Therefore CanD based algorithms
such as ALESCAF are not pertinent in this case.

By applying the same reasoning to third order equations
(12)-(15), we can build a fifth-order tensorT Φ̃3 of dimensions
(N,N,N, S, 3) as:

T Φ̃3
pqrs1 =

∂3Φ̃z(w
(s))

∂u
(s)
p ∂u

(s)
q ∂u

(s)
r

; T Φ̃3
pqrs2 =

∂3Φ̃z(w
(s))

∂u
(s)
p ∂u

(s)
q ∂v

(s)
r

; (18)

T Φ̃3
pqrs3 =

∂3Φ̃z(w
(s))

∂v
(s)
p ∂v

(s)
q ∂v

(s)
r

; T Φ̃4
pqrs4 =

∂3Φ̃z(w
(s))

∂v
(s)
p ∂v

(s)
q ∂u

(s)
r

. (19)

Our goal is to devise an algorithm capable of jointly
estimating the real and imaginary partsA andB of the mixing
matrix from T Φ̃2 or T Φ̃3. This issue is addressed in the next
section.

IV. A LGORITHM FOR THE COMPLEX CASE

A. Building the derivative tensor

First of all, we have to buildT Φ̃2 or T Φ̃3 from realizations
of z and (16)-(17) or (18)-(19), respectively.
Tensor entries are computed one by one just like in the real
case. We call̃Γz the first generating function ofz defined in
R2N by:

Γ̃z(w
(s))

def
= E

[
exp(u(s)Tx+ v(s)Ty)

]
, (20)

in order thatΦ̃z = log Γ̃z. In practice, the expected value is
estimated by the sample mean over all realizations. Note that
this estimator is consistent but it leads to a biased estimation
of the partial derivatives of̃Φz , if the latter are computed by
finite differences of (20). As in [30], it is preferred to compute
formal derivatives, and estimate the obtained expressionswith
the help of sample means.

Let us defineD�

�

(w(s)) as the partial derivatives of̃Γz(w
(s))

with respect to the components of vectorsu(s) and v(s).
For instance,Dvu

pq (w
(s)) is the second-order derivative with

respect to componentp of v(s) and componentq of u(s).
Examples of first, second and third order derivatives are:

Du
p (w

(s))
def
=

∂Γ̃z(w
(s))

∂up

= xpΓ̃z(w
(s)),

Dvu
pq (w

(s))
def
=

∂2Γ̃z(w
(s))

∂vp∂uq

= ypxqΓ̃z(w
(s)),

Dvvu
pqr (w

(s))
def
=

∂3Φ̃z(w
(s))

∂vp∂vq∂ur

= ypyqxrΓ̃z(w
(s)).

The first order derivatives of̃Φz are given by:

∂Φ̃z(w
(s))

∂up

=
Du

p (w
(s))

Γ̃z(w(s))
;
∂Φ̃z(w

(s))

∂vp
=

Dv
p(w

(s))

Γ̃z(w(s))
. (21)
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At order 2, the elements ofT Φ̃2 (i.e. second order derivatives)
are obtained by differentiating (21):

T Φ̃2
pqs1 =

Duu
pq (w

(s))

Γ̃z(w(s))
−

Du
p (w

(s))Du
q (w

(s))

Γ̃2
z(w

(s))
, (22)

T Φ̃2
pqs2 =

Dvv
pq (w

(s))

Γ̃z(w(s))
−

Dv
p(w

(s))Dv
q (w

(s))

Γ̃2
z(w

(s))
, (23)

T Φ̃2
pqs3 =

Duv
pq (w

(s))

Γ̃z(w(s))
−

Du
p (w

(s))Dv
q (w

(s))

Γ̃2
z(w

(s))
. (24)

At order 3 the elements ofT Φ̃3 (i.e. third order derivatives)
are obtained by differentiating order 2 equations:

T Φ̃3
pqrs1 =

Duuu
pqr (w

(s))

Φ̃z(w(s))
−

2Du
p (w

(s))Du
q (w

(s))Du
r (w

(s))

Φ̃3
z(w

(s))

−
Du

r (w
(s))Duu

pq (w
(s)) +Du

p (w
(s))Duu

qr (w
(s))

Φ̃2
z(w

(s))

−
Du

q (w
(s))Duu

pr (w
(s))

Φ̃2
z(w

(s))
,

(25)

T Φ̃3
pqrs2 =

Duuv
pqr (w

(s))

Φ̃z(w(s))
−

2Du
p (w

(s))Du
q (w

(s))Dv
r (w

(s))

Φ̃3
z(w

(s))

−
Dv

r (w
(s))Duu

pq (w
(s)) +Du

p (w
(s))Duv

qr (w
(s))

Φ̃2
z(w

(s))

−
Du

q (w
(s))Duv

pr (w
(s))

Φ̃2
z(w

(s))
,

(26)

T Φ̃3
pqrs3 =

Dvvv
pqr (w

(s))

Φ̃z(w(s))
−

2Dv
p(w

(s))Dv
q (w

(s))Dv
r (w

(s))

Φ̃3
z(w

(s))

−
Dv

r (w
(s))Dvv

pq (w
(s)) +Dv

p(w
(s))Dvv

qr (w
(s))

Φ̃2
z(w

(s))

−
Dv

q (w
(s))Dvv

pr (w
(s))

Φ̃2
z(w

(s))
,

(27)

T Φ̃3
pqrs4 =

Dvvu
pqr (w

(s))

Φ̃z(w(s))
−

2Dv
p(w

(s))Dv
q (w

(s))Du
r (w

(s))

Φ̃3
z(w

(s))

−
Du

r (w
(s))Dvv

pq (w
(s)) +Dv

p(w
(s))Dvu

qr (w
(s))

Φ̃2
z(w

(s))

−
Dv

q (w
(s))Dvu

pr (w
(s))

Φ̃2
z(w

(s))
.

(28)

B. Description of the algorithm

The proposed algorithm is named LEMACAFC-O, where
“O” indicates the order of differentiation. For instance
LEMACAFC-2 consists of iteratively fitting the tensor̂T Φ̃2

built from model equations (9)-(11) toT Φ̃2 built from (22)-
(24), using the Levenberg-Marquardt method.

The basic scheme of LEMACAFC is thus similar to the
LEMECAF one. However, in this case, we are dealing with
highly structured fourth- and fifth-order tensors (when con-
sideringT Φ̃2 and T Φ̃3 respectively). Thereby the parameter
vector, the cost function and the construction of the Jacobian
matrix and the gradient vector used at each LM update are
completely different, involving more complicated calculations.
In the LEMACAFC-2 case, the quadratic cost function is
defined as:

fΦ̃(p) =
1

2
‖eΦ̃(p)‖

2
F =

1

2
eT
Φ̃
(p)eΦ̃(p),

whereeΦ̃(p) = vec
(
T − T̂ Φ̃2(p)

)
is the residue andp is the

parameter vector:

p =




vec(ÂT)

vec(B̂T)

vec(Ĝ11T)

vec(Ĝ12T)

vec(Ĝ22T)




∈ R
(2N+3S)K×1,

The LM update at iterationk + 1 is still given by:

p(k + 1) = p(k)−
[
JH(k)J(k) + λ(k)I

]
−1

g(k),

whereJ andg denotes the Jacobian matrix and gradient vec-
tors respectively. These are obtained by computing analytically
Jij(k) =

∂eΦ̃i(p)

∂pj
andg(k) = J(k)T eΦ̃(p).

Elements of the Jacobian matrix are given in Appendix B for
LEMACAFC-2 and LEMACAFC-3. At every iterationk, g,
J, p andλ are updated according to the LEMACAF scheme,
described in section II. After convergence of the algorithm, an
estimateĤ of the mixture is obtained bŷH = unvec{p

Â
+

jp
B̂
} (up to column permutation and scaling).

V. SIMULATION RESULTS PART I: THE REAL CASE

In this section, we compare both ALESCAF and
LEMACAF algorithms on mixtures of synthesized BPSK
sources, with the well known 6-BIOME (Blind Identification
of Overcomplete MixturEs) algorithm [27], also referred toas
“BIRTH” (Blind Identification of mixtures of sources using
Redundancies in the daTa Hexacovariance matrix) when the
chosen cumulant order is 6. For these comparisons we retained
third and fourth order versions of ALESCAF and LEMACAF
(respectively: ALESCAF-3, ALESCAF-4, LEMACAF-3 and
LEMACAF-4). Note that as far as we know, ALESCAF-4
had never been implemented before. Algorithms are evaluated
according to the Normalized Mean Square estimation Error
(NMSE):

fH(H, Ĥ) =
vec(H− Ĥ)Tvec(H− Ĥ)

vec(H)Tvec(H)
,

where the permutation and scaling ambiguities present in
Ĥ are fixed in the same manner as in [20].

The precision of the estimation relies upon three main
global parameters: the ”underdeterminacy level”, the number
of observations and the signal to noise ratio (SNR). Their
respective influences on the five algorithms are evaluated using
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Fig. 1. Real case, NMSE distribution according to the numberof sources.

distinct Monte-Carlo simulations. Hence, For each simulation
and algorithm, NMSE values are computed from 100 indepen-
dent realizations of source and mixing matrices. The number
of sensors,N , is always equal to 3. Concerning the CAF
algorithms, the derivatives are computed at 8 different points
(that is,R = 8), randomly drawn in the range[−1; 1]N .

A. Impact of the number of sources

In this first simulation the noise is null, we use 10000
observations and we made three Monte-Carlo experiments
corresponding to three different source numbers (K = 4,
K = 5, K = 6). Histograms of the identification error are
represented in Fig. 1, for the five algorithms, and summarized
in table I.

a) 4 sources: Whatever the algorithm most NMSE values
range between10−4 and10−2 and the largest part is between
10−4 and 10−3, indicating that all algorithms perform well.
There is no significant difference between CAF algorithms
which all performed slightly better than 6-BIOME.

b) 5 sources: All NMSE values are greater than10−4.
ALESCAF-4 and LEMACAF-4 provide the best results (40%
of NMSE values are less than10−3) followed by the order
three CAF algorithms (30%) and lastly 6-BIOME (less20%).
According to the median error values, LEMACAF seems more
efficient than ALESCAF.

c) 6 sources: A majority of Monte-Carlo runs did not
converge. This holds true for all algorithms. Only the CAF
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Fig. 2. Real case, NMSE distribution according to the numberof observations
.

algorithms provide some (less than10%) NMSE values under
10−3. In this case, with about45% of NMSE values under
10−2, order 4 algorithms are clearly better than order 3 (15%).
6-BIOME is on the average with more than30%. Once again
LEMACAF is slightly better than ALESCAF.

d) Conclusion: In this first experiment, it clearly appears
that order 4 algorithms are particularly attractive when the
underdeterminacy level is high, at the opposite of order 3
algorithms, while 6-BIOME has average results. It also appears
that LEMACAF usually provides a better convergence than
ALESCAF.

B. Impact of the number of observations

Now, the number of sources is set to 4, and the number
of observations is varied from 200 to 10000. The results are
shown in Fig. 2 in the form of histograms. The variation of
the median value of the NMSE is plotted in Fig. 3.

As expected, the performance improves linearly with an
increase in the number of observations. Globally, beyond 5000
observations the majority of NMSE values are lower than
10−4. Between 5000 and 1000 observations the NMSE values
are comprised between10−4 and10−2. We have observed no
significant differences among the performance of the four CAF
algorithms. On the other hand, according to the median plot
of Fig. 2 , they all give better results than 6-BIOME in all
the eight situations. Additionaly, these results also showthat



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, FEB. 2011 8

TABLE I
REAL CASE, MINIMAL , MAXIMAL AND MEDIAN VALUE OF THE NMSE ACCORDING TO THE NUMBER OF SOURCES COMPUTED FROM100 MONTE-CARLO

RUNS.

4 sources 5 sources 6 sources
min (1e-4) max med (1e-3) min (1e-3) max med (1e-2) min (1e-3) max med (1e-1)

ALESCAF4 0.22 1.04 0.33 0.11 0.89 0.24 0.3 1.43 0.3
LEMACAF4 0.22 1.04 0.27 0.11 1.18 0.16 0.3 1.45 0.2
ALESCAF3 0.26 1.54 0.41 0.14 1.77 0.51 1 1.75 5.38
LEMACAF3 0.26 1.54 0.4 0.14 1.58 0.39 1 1.95 4.91

6-BIOME 0.21 2.08 0.56 0.22 1.93 0.33 0.6 1.98 0.84

200 300 500 700 1000 2000 5000 10000
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Fig. 3. Real case, evolution of the NMSE median value according to the
numbers of observations .

the difference between the two classes of algorithms is more
significant under 700 observations.

C. Impact of the signal to noise ratio

Finally, the algorithms are compared with the help of six
Monte-Carlo experiments corresponding to different SNRs,
and considering 4 sources and 10000 observations. The results
are presented in Fig. 4 in an histogram form, while the
evolution of the median NMSE value is plotted on Fig. 5.

From an infinite SNR until20 dB, a large majority (between
60 and70%) of the NMSE values are comprised between10−4

and10−3. In the5 dB case this majority is comprised between
10−3 and10−2 and between10−2 et 10−1 for the 0 dB case.
As can be seen in Fig. 5, CAF results are again very close
to each other. CAF algorithms should be preferred for higher
SNRs (above20 dB) whereas 6-BIOME outperforms them at0
dB SNR. Note that, in this case, very few Monte-Carlo results
are satisfactory whatever the algorithm. In the middle of the
SNRs range ( i.e. around5 dB), LEMACAF4, ALESCAF4 and
6-BIOME present similar performances . Finally, LEMACAF
is once again slightly better than ALESCAF.

D. Discussion

From the previous simulation results, it can be con-
cluded that the CAF algorithms perform similarly in more
”favourable” scenarios (i.e. when the SNR and the number
of observations are high and the undeterminacy level is low).
However a clear distinction between third- and fourth-order al-
gorithms can be made in more difficult cases. As expected, the
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Fig. 4. Real case, NMSE distribution according to the SNR.
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improvement obtained with higher order algorithms becomes
significant when the indeterminacy level increases. These
results show that LEMACAF is an interesting alternative to
ALESCAF. It is worth mentioning that LEMACAF converges
faster than ALESCAF at the price of a higher computational
complexity per iteration [20]. Although ALESCAF can still be
useful with larger tensors, we think that LEMACAF should be
recommended in more practical situations.

By properly chosing the differentiation order, the family of
CAF algorithms arises as a better option than the 6-BIOME
algorithm, especially when the number of observations is low
and/or when the underdeterminacy level is high and/or when
the SNR is above5 dB. Indeed, in many situations, the 6-
BIOME algorithm offers similar performance as third-order
CAF algorithms however it is consistently overpass by fourth-
order CAF algorithm.

VI. SIMULATION RESULTS PART II: THE COMPLEX CASE

In this section, we compare the performances of
LEMACAFC-3, LEMACAFC-4 and 6-BIOME algorithms
considering complex mixtures of synthesized 4-QAM sources
at different SNRs and underdeterminacy levels. Similarly to
the real case, the different algorithms are evaluated in terms
of the NMSE. The influence of the SNR and underdeterminacy
level is evaluated with the help of two distinct Monte-Carlo
experiments. For each simulation and algorithm, the MSE
values are computed from about 50 realizations of sources
and mixing matrix. The number of sensors (N ) is always
equal to 3 and the number of observations is set to 20000. At
each run, the derivatives used in the LEMACAFC algorithms
are computed at 10 different points (R = 10), the real and
imaginary parts being randomly drawn in the range[−1; 1]N .

A. Impact of the number of sources

We have made three different experiments corresponding to
4, 5 and 6 sources. The SNR is set to20 dB. An histogram of
the NMSE values is given in Fig. 6. Minimal, maximal and
median value of the NMSE according to the number of source
are given in table II.

e) 4 sources: Fig. 6 clearly shows that both LEMACAFC
algorithms provide statistically the best estimations, since
about 40% of the obtained NMSE values are under10−3

against about only 16% for 6-BIOME. Note also that
LEMACAFC-4 performs better than LEMACAFC-3: 18% of
its NMSE values are under10−3 against 8% for LEMACAFC-
3 besides only 8% are above5.10−3 against 14% for
LEMACAFC-3 (and 20% for 6-BIOME). Table II confirms
this observation. Note that the maximum value obtained with
LEMACAFC-4 is only 0.01.

f) 5 sources: For the three algorithms, there are very
few values under10−3 whereas a significant number of
NMSE values are between10−3 and5.10−3. LEMACAFC-4
dominates with 50% of its NMSE values in this range, against
40% for the other algorithms. More generally, in this case,
LEMACAFC-3 and 6-BIOME are slightly equivalent. This is
confirmed by the median values stored in Table II.
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Fig. 6. Complex case, NMSE distribution according to the number of sources.

g) 6 sources: 15 Monte-Carlo runs have been used for
this test. This is a difficult situation where the underdetermi-
nacy level is high. Note that the NMSE values of 6-BIOME
do not decrease under5.10−3, contrary to LEMACAFC-4
and LEMACAFC-3. In addition 6-BIOME provides only one
values under5.10−3 against 3 for LEMACAFC-3 and 6 for
LEMACAFC-4. However, according to the median values, the
6-BIOME algorithm offers a performance that is in between
third- and fourth-order CAF algorithms.
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TABLE II
COMPLEX CASE, MINIMAL , MAXIMAL AND MEDIAN VALUE OF THE NMSE ACCORDING TO THE NUMBER OF SOURCES, COMPUTED FROM SEVERAL

MONTE-CARLO RUNS.

4 sources 5 sources 6 sources
min (1e-4) max med (1e-3) min (1e-4) max med (1e-3) min (1e-3) max med (1e-2)

LEMACAF4 2.9 0.01 1 9.1 0.13 3.2 3.6 0.32 1.2
LEMACAF3 4.0 0.03 1 3.0 0.83 4.5 4.0 0.36 4.1

6-BIOME 3.6 0.02 2 5.3 1.63 4.9 7.1 0.14 2.2

B. Impact of the signal to noise ratio

In the following simulations, the algorithms are compared
for five SNR values (5 dB, 10 dB, 20 dB, 30 dB and 50
dB), and assuming 4 sources. The results are depicted in
Fig. 7 and 8. Regarding the median NMSE plotted in Fig.
8, it can be observed that performances logically degrade as
the SNR decreases. However, one can clearly discriminate
two opposite situations. Above 5dB SNR, LEMACAFC-3
and LEMACAFC-4 offer similar performances and clearly
outperform the 6-BIOME algorithm. On the other hand, at
around 5dB SNR, 6-BIOME provides better results.

The histograms plotted in Fig. 7 refine these observations.
In the SNR range from 50 dB to 10 dB, the number of NMSE
values above5.10−3 remains stable while a large majority
of NMSE values is consistently located between10−3 and
5.10−3. This means that all algorithms perform satisfactorily
in these conditions.

Now, let us focus on the number of NMSE values located
under10−3. This number gradually decreases with the SNR,
from about 50% to 12% for LEMACAFC-4, 40% to 18%
for LEMACAFC-3 and 20% to 4% for 6-BIOME, indicating
the superiority of the CAF approach in this range. On the
other hand, in the 5 dB SNR case, 25% of 6-BIOME NMSE
values are less than5.10−3 against about 8 % and 4 %
for LEMACAFC-4 and LEMACAFC-3 respectively. In other
words, it confirms our previous observations, since for SNR
values which are higher than 5 dB, CAF algorithms are
more attractive than 6-BIOME, otherwise the latter is slightly
more efficient. Furthermore, it is worth noting that at the
exception of the 10 dB SNR case, LEMACAFC-4 consistently
provides a larger number of NMSE values located under10−3

than LEMACAFC-3 does. Therefore, higher order version
of LEMACAFC still promises a better convergence (from a
statistical point view).

VII. C ONCLUSION

In this paper we have proposed several new contributions
to the blind identification of undertermined mixtures using
the characteristic function. Notably, we have extended the
theory of CAF approach to the case of complex mixtures
of complex sources. Hence an appropriate core equation was
developped to cope with the complex case. By differentiating
this core equation, we obtained a generalized tensor decom-
position from which an estimation of the mixing matrix can
be deduced. A Levenberg-Marquardt algorithm, herein called
LEMACAFC, was proposed to blindly estimate the mixing
matrix by exploiting the structure this tensor decomposition.
Two performance studies were carried out. In a first part, a new
LEMACAF algorithm, suitable for the real case, was compared
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Fig. 7. Complex case, distribution according to the SNR.
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Fig. 8. Complex case, evolution of the NMSE median value according to
the SNR.

to higher order versions of ALESCAF in various situations
involving BPSK sources. In a second part, the performance
of the LEMACAFC algorithm using third- and fourth-order
derivatives were evaluated from mixtures of 4-QAM sources.
In each situation, the 6-BIOME algorithm was used as a
reference for the comparison.

From our simulation results, in both the real and complex
cases, we can recommend the use of the CAF family of
algorithms, especially in the case of highly underdetermined
mixtures and the medium-to-high signal to noise ratios (say,
above5 dB). The choice of the differentiation order is led by
the desired tradeoff between estimation accuracy and computa-
tional cost. In the least favorable situation, we recommendthe
use of higher order derivatives. In practice it appears thatorder
3 versions are enough to compete with (and often outperform)
an algorithm using 6-order statistics such as 6-BIOME.

In the case of real sources, although LEMACAFC is appli-
cable, one should prefer ALESCAF or LEMACAF algorithms
since they are simpler and quicker. Since both offer quite
similar performance in terms of estimation error, the choice is
led by the convergence speed, which means that ALESCAF
is only preferable for large tensors.

Higher order versions of LEMACAFC, such as
LEMACAFC-4 algorithm are time consuming. This is
mainly due to the computation of the Jacobian matrix. Our
results show that there is generally no need to go beyond
order 4, which would be very computationally costly (the
computational complexity dramatically increases with the
differentiation order). Although we have focused our attention
on simplest derivatives, other derivative tensors could have
been constructed for higher differentiation orders, leading to
different versions of the LEMACAFC algorithm. For example,
one can combine derivatives of different differentiation orders
to increase diversity, as demonstrated in [30] in the real case.

Finally, as we have pointed out previously, the higher-order
derivative tensors that arise when working with complex mix-
tures of complex sources follow a decomposition in a sum of
structured CanD blocks. We think that block decompositions
[37] can be used to decompose these tensors. In this context,

it would be interesting to study uniqueness issues and their
practical implications to the CAF-based BI problem.

APPENDIX A
COMPUTATIONAL DETAILS OF FIRST AND SECOND ORDER

DERIVATIVES OF Φ̃z(ℜ{w},ℑ{w})

The differentiation of (8) with respect toup, p = 1 · · ·N
gives:

∂Φ̃z(w)

∂up

=

K∑

k=1

∂ϕ̃k(g(w))

∂up

,

=

K∑

k=1

(
∂ϕ̃k(g)

∂g1

∂g1(w)

∂up

+
∂ϕ̃k(g)

∂g2

∂g2(w)

∂up

)
,

=

K∑

k=1

(
∂ϕ̃k(g)

∂g1
Apk −

∂ϕ̃k(g)

∂g2
Bpk

)
. (29)

In the same way, the differentiation with respect tovp gives:

∂Φ̃z(w)

∂vp
=

K∑

k=1

(
∂ϕ̃k(g)

∂g1
Bpk +

∂ϕ̃k(g)

∂g2
Apk

)
. (30)

Now we differentiate (29) and (30) with respect tou(s)
q and

v
(s)
q , q = 1 · · ·N .

∂2Φ̃z(w
(s))

∂up∂uq

=

K∑

k=1

(
∂2ϕ̃k(g)

∂g1∂uq

Apk −
∂2ϕ̃k(g)

∂g2∂uq

Bpk

)
,

=
∂

∂g1

K∑

k=1

∂ϕ̃k(g)

∂uq

Apk −
∂

∂g2

K∑

k=1

∂ϕ̃k(g)

∂uq

Bpk.

(31)

Substituting (29) into (31) yields:

∂2Φ̃z(w
(s))

∂up∂uq

=

K∑

k=1

Apk

(
∂2ϕ̃k(g)

∂g1∂g1
Aqk −

∂2ϕ̃k(g)

∂g1∂g2
Bqk

)

−

K∑

k=1

Bpk

(
∂2ϕ̃k(g)

∂g2∂g1
Aqk −

∂2ϕ̃k(g)

∂g2∂g2
Bqk

)
.

(32)

Finally, using the fact thatG12
sk = G21

sk, we obtain (9).
The same reasoning can be applied to obtain the successive
derivatives of (30) and (29) with respect tovp andvq, hence
(10) and (11).

APPENDIX B
JACOBIAN FORMULATION FOR LEMACAFC-2 AND

LEMACAFC-3

We provide the details of the structure of the Jacobian matrix
used in LEMACAFC-2 and LEMACAFC-3, (higher orders
can be obtained in a similar manner). Although the Jacobian
can be computed automatically for a given differentiation
order, this solution is usually very time consuming. Therefore,
one would rather use the following pre-calculated entries.The
gradient can be directly deduced from the Jacobian and the
error term.
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A. Jacobian for LEMACAFC-2
e is the multiway error function which is defined as follows:

epqst(A,B,G
11
,G

12
,G

22)
def
= T̂ Φ̃2

pqst(A,B,G
11
,G

12
,G

22)− T Φ̃2
pqst

The Jacobian matrixJ of e is built as a3× 5 blocks matrix:

J =




JA1 JB1 JG11
1 JG12

1 JG22
1

JA2 JB2 JG11
2 JG12

2 JG22
2

JA3 JB3 JG11
3 JG12

3 JG22
3




JAt , JBt , JG11
t , JG12

t , JG22
t contain partial derivatives of

e...t with respects to the elements ofA, B, G11, G12 andG22

respectively. For instance, defining:

i = (p− 1)SN + (q − 1)N + s,

j1 = (n− 1)N + k,

j2 = (l − 1)S + k

with p = 1 · · ·N, q = 1 · · ·N, n = 1 · · ·N, s =
1 · · ·S andk = 1 · · ·K we have:

JA2

ij1

def
=

∂epqs2(A,B,G11,G12,G22)

∂Ank

=
∂T̂ Φ̃2

pqs2(A,B,G11,G12,G22)

∂Ank

Each block has its own analytical formulation. Hence,J

is computed one block after another. Block entries can be
computed term by term by differentiation of (9), (10) and
(11). One obtains the following relationships (wereδ is the
Kronecker delta function):
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= δnp
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B. Jacobian for LEMACAFC-3

At order 3, we have now a4× 6 blocks matrix:

J =




JA1 JB1 JG111
1 JG211

1 JG221
1 JG222

1

JA2 JB2 JG111
2 JG211

2 JG221
2 JG222

2

JA3 JB3 JG111
3 JG211

3 JG221
3 JG222

3

JA4 JB4 JG111
4 JG211

4 JG221
4 JG222

4




and we define

i = (p− 1)SN2 + (q − 1)N2 + (r − 1)N + s,

j1 = (n− 1)N + k,

j2 = (l − 1)S + k,

with p = 1 · · ·N, q = 1 · · ·N, r = 1 · · ·N, n = 1 · · ·N, s =
1 · · ·S, and k = 1 · · ·K Block entries are computed by
differentiation of (12-15).
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2003, respectively, and the double Ph.D. degree in
sciences and teleinformatics engineering from the
University of Nice, Sophia Antipolis, France, and
the Federal University of Ceará, Fortaleza, Brazil,
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