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Abstract

This paper concerns the incremental learning of hierarchies of repre-
sentations of space in artificial or natural cognitive systems. We propose
a mathematical formalism for defining space representations (Bayesian
Maps) and modelling their interaction in hierarchies of representations
(Sensorimotor Interaction operator).

We illustrate our formalism with a robotic experiment. Starting from
a model based on the proximity to obstacles, we learn a new one related to
the direction of the light source. It provides new behaviours, like photo-
taxis and photophobia. We then combine these two maps so as to identify
parts of the environment where the way the two modalities interact is
recognizable. This classification is a basis for learning a higher-level of
abstraction map, that describes the large scale structure of the environ-
ment.

In the final model, the perception-action cycle is modelled by a hier-
archy of sensorimotor models of increasing time and space scales, which
provide navigation strategies of increasing complexities.

Keywords: space representation; navigation; Bayesian modelling; learn-
ing; behaviour
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1 Introduction

1.1 Context

This paper concerns the domain of space representation and navigation, both
from a mobile robotics perspective and from a cognitive science perspective.

In the engineering community, most approaches to robot mapping and au-
tonomous navigation have focused on Bayesian, or probabilistic models. These
provide a formal framework for treating uncertainties arising from the incom-
pleteness of the models. The most successful methods are now able to map large
structured indoor environments using probabilistic models. Unfortunately, they
rely on large-scale, fine-grained, monolithic maps which are difficult to acquire
and maintain. Such approaches, because of the difficulty of this task, are gener-
ally tailored toward one specific use of maps, such as localization, planning, or
simultaneous localization and mapping. For instance, on the one hand, Markov
localization [2] and Kalman Filters [16] have focused on the localization process,
either using metric maps such as occupancy grids [26], or using topological maps
[21], or even hybrid representations [25, 27]. On the other hand, many planning
techniques have been developed in the context of probabilistic models of the
environment [22, 10]. Behavior generation and task solving are seldom central
to these approaches.

From a bio-mimetic robotics perspective, it appears obvious that a global,
complex, large-scale model is not the starting point of the acquisition of rep-
resentations of space [13]. Therefore, a few robotic approaches, integrating
insights from biology, rather start from low-level behaviours and representa-
tions, and then try to combine them so as to obtain large-scale representations
[3, 5, 13, 12, 30]. Indeed, the study of human and animal navigation capabilities
assumes, right from the start of its analysis, that navigation is hierarchical in
nature, as can be assessed experimentally [31]. Some of the bio-mimetic robotic
space representation models [13, 12] implement hierarchical models of space
representation from the behavioral biology literature [28, 6].

These hierarchies of models proposed have several aspects: they are hier-
archies of increasing navigation skills, but also of increasing scale of the rep-
resented environments, of increasing time scale of the associated movements,
and of increasing complexity of representations. This last aspect means that
global topologic representations, which are simple, come at a lower level than
global metric representations, which are arguably more complex to build and
manipulate.

For instance, in recent works, Jacobs and Schenk propose the Parallel Map
Theory (PMT) [8, 9], in which a study of neuroanatomical areas, which are
phylogenetically equivalent across different species, helps formulate hypotheses
about common hierarchies of representations of space. Redish and Touretzky
[19] discuss possible neuroanatomical structures where different layers of space
representations might be located, focusing on rat hippocampal and parahip-
pocampal areas. In other words, these works propose models of how the differ-
ent layers in the above theories might be implemented in the central nervous
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system. Finally, Wang and Spelke [32, 33], taking insight from these theories
of animal navigation, propose a three-component hierarchical model of human
navigation.

1.2 Problem specification

However, to the best of our knowledge, most models of animal navigation from
the behavioral biology and psychology literature are conceptual models, in the
sense that they are not associated with complete operative mathematical defi-
nitions.

That is true for instance of the PMT mentioned above, or of the Wang and
Spelke model of human navigation. Exceptions are found in the bio-inspired
cognitive robotics literature [13], but, even there, the question of how different
subsystems of a hierarchy of models can exchange information in a principled
manner is still left as an open issue. In other words, most existing models of nav-
igation inspired by biology describe hierarchies by identifying individual layers,
but do not address the problem of how these layers are related. They usually
assume that a supervisor subsystem is responsible for selecting the interaction
between individual components, but rarely describe the way this supervisor
could work, or even discuss its plausibility (e.g. the reference frame selection
subsystem of Redish & Touretzky [19]).

Therefore, two challenges are to be tackled. The first one is to define models
of how layers of space representations are articulated. This is the general con-
text of our contribution. The second challenge is the study of how hierarchies
of models can be learned experimentally by sensorimotor interaction with the
environment. This is the focus of this paper. We firstly present a mathemat-
ical framework for building hierarchies of probabilistic models of space, based
on Bayesian modelling and inference. Secondly, we illustrate this model in an
experimental scenario, where a mobile robot incrementally learns sensorimotor
models of its interaction with the environment.

1.3 Proposed approach

We use the Bayesian Map formalism (BM), which is a theoretical Bayesian
framework for hierarchical space representation. We have previously argued [4]
that the Bayesian Map formalism is a possible marriage between, on the one
hand, “hierarchical bio-inspired models” and, on the other hand, “classical prob-
abilistic mapping solutions”. BMs are probability distributions over joint spaces
of sensory and motor variables, which serve to compute particular probability
distributions over motor variables, so as to provide behaviours.

BMs are also building blocks of hierarchies of representations: they can be
put together using Bayesian operators, which take BMs as inputs and output
new BMs. For instance, we previously defined the Superposition operator, which
allows to merge BMs which describe the same physical space, but use different
sensory modalities [5]. The Abstraction operator allows the building of hier-
archies of maps: each location in the large-scale BM represents a lower-level,
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underlying input BM [3].

In this work, we are concerned with the incremental learning of a hierar-
chy of BMs, built using a new operator for combining BMs, which we call the
Sensorimotor Interaction operator. In this operator, applying a behaviour from
one BM yields an identifiable effect on the internal variable of another BM. In
other words, one BM based on one sensory modality acts as an observer, while
another BM, based on another sensory modality, performs a navigation task.

Section 2 presents the mathematical definition of the BM concept and of the
Sensorimotor Interaction operator. Section 3 briefly details the experimental
platform we used: the Koala robot and the chosen environment.

We then turn to the description of the robotic experiments we carried out.
Section 4 presents the two low-level BMs we defined, which are the first two
blocks of our hierarchy. The first BM, BMprox, allows the Koala robot to
navigate (avoid walls, follow walls), based on proximity sensors. It is the result
of a previous experiment [23], which we briefly summarize. Given this map,
we then show how to learn a new map, BMlight, based on another sensory
modality, using the light sensors of the Koala. Section 5 describes how we
applied the Sensorimotor Interaction operator on BMprox and BMlight so as to
obtain BMarena, the high-level BM.

2 Bayesian Maps and their sensorimotor inter-
action: mathematical definitions

In the BM formalism, maps are probabilistic models that provide navigation
resources in the form of behaviours. These behaviours are formally defined by
probabilistic distributions computed from the map. In this section, we present
the formal definition of the BM concept and of the Sensorimotor Interaction of
Bayesian Maps operator.

2.1 Bayesian Maps

A Bayesian Map c is a probabilistic model that defines a joint probability dis-
tribution P (P Lt Lt+∆t A | c), where:

• P is a perception variable (the robot reads its values from physical sensors
or lower-level variables),

• Lt is a location variable at time t,

• Lt+∆t is a variable having the same domain than Lt, but at time t+ ∆t,

• and A is an action variable (the robot writes commands on this variable).



Connection Science

2.1.1 Decomposition

In order to be defined, the joint probability distribution P (P Lt Lt+∆t A | c)
is decomposed into a product of simpler terms. This choice of decomposition is
not constrained: various probabilistic dependency structures are possible.

For example, the BM presented in section 4.1 follows the dependency struc-
ture defined in the Markov localization framework:

P (P Lt Lt+∆t A | c) = P (Lt | c)P (A | c)P (P | Lt c)P (Lt+∆t | A Lt c) .

In the following, P (P | Lt c) is referred to as the sensor model, because it
describes what should be read on the sensors given the current location. The
term P (Lt+∆t | A Lt c) is the prediction model, because it describes what
location the robot should arrive at, given the past location and action.

Another possible decomposition is illustrated in section 4.2, where the prob-
abilistic dependency structure is defined as:

P (P Lt Lt+∆t A | c) = P (P | c)P (A | c)P (Lt | P c)P (Lt+∆t | A Lt c) .

While very close to the Markov Localization probabilistic dependency structure,
note that the sensor model P (P | Lt c) is here replaced by P (Lt | P c), the inverse
relation, which corresponds to the probability distribution over the possible
locations given the sensor readings. We call this term a localization model.

Finally, in our third BM example (see section 5.3), another decomposition
is illustrated, where the action variable in used to refine the sensor model into
P (P | A Lt c), which we refer to as the action-oriented sensor model:

P (P Lt Lt+∆t A | c) = P (Lt | c)P (A | c)P (P | A Lt c)P (Lt+∆t | A Lt c) .

2.1.2 Parametric forms

We now need to define parametric forms for the terms in the chosen probabilistic
dependency structure. The definition of parametric forms is not constrained.
In the examples in this paper, we use Gaussian probability distributions, Dirac
functions, Conditional Probability Tables (CPT) or uniform probability distri-
butions.

The free parameters of these forms are experimentally identified by learning
mechanisms. For instance, the prediction model P (Lt+∆t | A Lt c) parameters
can be obtained using the sensorimotor data recorded while the robot is applying
a behaviour (initial exploratory behaviour or behaviours that arise from another
BM). Indeed, at each time step, the location and the action of the robot are
recorded. Thus, for each 〈A,Lt〉 pair, and assuming a Gaussian prediction
model, the mean and variance of the robot location at the next time step t+ ∆t
can be computed using the data history.

2.1.3 Behavior generation

Once the joint probability distribution P (P Lt Lt+∆t A | c) is specified and all
the parameters are either learned of specified by hand, then the BM c is fully
defined. It can then be used to solve navigation tasks, using Bayesian inference.
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We define a navigation task by a probabilistic term to be computed, which
we call a question: in the remainder of this paper, these tasks consist in trying
to reach some goal in the internal space Lt+∆t. This goal is chosen by the
programmer. To solve such a navigation task, the following question is asked to
the BM c:

P (A | [P = p] [Lt+∆t = l2] c) .

In other words: given its current sensor readings p and goal location l2, what
is the action the robot needs to apply? At each time step, the probability
distribution is computed and an action is drawn at random according to it. In
our examples, thanks to simple internal spaces Lt+∆t, the robot is able reach
the goal l2 using this simple action selection strategy.

We apply Bayesian inference to answer the question:

P (A | [P = p] [Lt+∆t = l2] c) =

∑
Lt
P ([P = p] A Lt [Lt+∆t = l2] c)

P ([P = p] [Lt+∆t = l2] c))

∝
∑
Lt

P ([P = p] A Lt [Lt+∆t = l2] c) .

In our examples, thanks to the chosen decompositions, the summation over
Lt can actually be approximated by a two-step inference algorithm. We first
draw a value l1 for Lt according either to the localization model P (Lt | [P =
p] c), or by “inverting” the sensor model P ([P = p] | Lt c) or the action-oriented
sensor model P ([P = p] | A Lt c)

1. Having drawn l1, we use it for computing
P (A | [Lt = l1] [Lt+∆t = l2] c), by, here again, “inverting” the known prediction
model P ([Lt = l1] | A [Lt+∆t = l2] c).

Having computed the probability distribution over A, we can now draw at
random according to this distribution an action to perform to move closer to
the goal. This action is executed by the robot to move in the environment: the
robot is therefore applying a behaviour.

We therefore call behaviours questions of the form:

P (A | [P = p] [Lt+∆t = l2] c) or P (A | [Lt = l1] [Lt+∆t = l2] c) .

2.2 Sensorimotor interaction of Bayesian Maps

Having defined the Bayesian Map concept, we now turn to defining the Senso-
rimotor Interaction of Bayesian Maps operator.

Let c1 and c2 be two BMs, that deal respectively with variables P 1, L1
t ,

L1
t+∆t, A and P 2, L2

t , L
2
t+∆t, A. They therefore are defined respectively by the

joint probability distributions P (P 1 L1
t L

1
t+∆t A | c1) and P (P 2 L2

t L
2
t+∆t A | c2).

Note that the action variable A is shared by the two models c1 and c2.
Let us also assume that c1 and c2 describe the same part of the environment

of the robot, but do so in different terms (have different internal spaces L1
t and

L2
t ).

1In this last case, we use the last computed value of A, as it is precisely the goal of the
current inference.
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2.2.1 Identification of large-scale zones: high-level action-oriented sensor model

Each of these maps provide several behaviours so as to navigate relatively to
the aspect of the part of the environment they describe. The behaviours are
exclusive, in the sense that only one can be applied at a given time by the
robot. Indeed, they both share the control variable A. While applying one
behaviour, the corresponding BM is used to update its internal representation,
given the corresponding sensory input, so as to decide what action should be
made for reaching the goal. This leaves the other BM “free” to act as an
observer. In other words, applying a behaviour from one of the BMs may have
an identifiable effect on the internal variable of the other BM. For instance, the
probability distribution over L2

t , computed by c2, could be stable over time,
when some behaviour from c1 is applied in some part of the environment. This
is the knowledge we will exploit and experimentally learn.

Without loss of generality, let us assume that one behaviour from Beh1, the
set of behaviours from c1, is applied, while its effect is observed by c2. Let Env
be the set of the parts of the environment where we will identify stable relations
between the two maps. We will experimentally learn the following probability
distribution:

P (L2
t | Beh1 Env) . (1)

Given this probability distribution, environment recognition can then be
carried out by computing the term P (Env | L2

t Beh
1) when a behaviour from

c1 is applied. Assuming uniform probability distribution priors for P (L2
t ), and

P (Beh1) yields that each of these term is computed by “inverting” the learned
models of equation (1):

P (Env | L2
t Beh

1) ∝ P (L2
t | Beh1 Env) .

2.2.2 Transitions between large-scale zones: high-level prediction term

We now show how the Env variable is a basis for learning the large-scale struc-
ture of the arena.

Indeed, we can now learn the effect that the application of behaviours has on
the temporal evolution of the Env variable. We thus define two instances of this
variable at different time steps, Envt and Envt+∆t, and are interested in the
prediction term P (Envt+∆t | Beh1 Envt): given the current recognized envi-
ronment type, and given the behaviour which is applied, what is the probability
distribution over environment types to be recognized in the future?

Learning this prediction term can easily be done by applying behaviours
and building the experimental history of environment types recognized along
the observed trajectory.

2.2.3 Putting it all together: high-level Bayesian Map

The trick to building the high-level BM, is to recognize that P (L2
t | Envt Beh1)

is a high-level action-oriented sensor model: Envt is a coarse-grained location
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variable, L2
t , while it was a lower-level internal variable, is now a perception

variable, and Beh1, while it was defining behaviours, is now an action variable.
P (Envt+∆t | Envt Beh1) is thus a high-level prediction model. We therefore
can define a high-level BM that encapsulates these probability distributions.

More formally, we mathematically define the Sensorimotor Interaction op-
erator as the operator which takes two BMs c1 and c2 as inputs, and outputs a
new BM c3, provided c1 and c2 share their action variable A 2. c3 is defined as
follows:

• its perception variable is L2
t ;

• its internal variable at time t and t + ∆t are Envt and Envt+∆t, respec-
tively;

• its action variable is Beh1, the set of behaviours from c1.

The joint probability distribution defining the Bayesian Map c3 is:

P (L2
t Envt Envt+∆t Beh

1 | c3)

= P (L2
t | c3)P (Beh1 | c3)P (Envt | L2

t Beh
1 c3)

P (Envt+∆t | Beh1 Envt c
3) .

The terms P (L2
t | c3) and P (Beh1 | c3) are defined by assuming uniform proba-

bility distributions. The action-oriented sensor model P (Envt | L2
t Beh

1 c3) and
the prediction model P (Envt+∆t | Beh1 Envt c

3) are experimentally learned,
as defined in the two previous sections.

Therefore, c3 is fully defined, and can be used to define large-scale behaviours
or policies, by computing, thanks to Bayesian inference:

P (Beh1 | Envt Envt+∆t c
3) . (2)

Given the current recognized environment type, and the environment type to
be reached, what low-level behaviour should be chosen?

3 Experimental platform

Figure 1 about here

The experiment we describe here has been carried out on a Koala robot
(Figure 1), which is a mid-size mobile robot (the base is roughly 30 × 30 cm).

2Actually, this operator outputs two symmetrical variants: one where L2
t is observed during

the application of a behaviour from Beh1, and one where L1
t is observed during the application

of a behaviour from Beh2. In this paper, we choose to focus on the former.
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This robot is equipped with six wheels. There are two motors, each of which
controls three wheels: the left motor controls the wheels on the left side, the
right motor controls the wheels on the right side. As motors are controlled
independently, the robot can turn on the spot, much like a tank. We command
the robot by its rotation and translation speed (respectively Rot and Trans).
The Koala is equipped with 16 infrared sensors. Each sensor can measure the
ambient luminosity (Lm0, . . . , Lm15) or the proximity to the nearest obstacle
(Px0, . . . , Px15). In fact, the latter is an information on the distance to the
obstacle within 25 cm which depends a lot of the nature (orientation, colour,
material, etc.) of the obstacle and the ambient luminosity.

The experiment took place in a large hall (roughly 10 × 5 m) without win-
dows, on a carpeted floor. The environment of the robot consisted mainly of
white boards or blue boxes, slightly taller than the robot, and which could be
set in any configuration easily (see Figures 7 to 10 for examples). We also used
a volleyball as a dynamic obstacle. The hall was in the dark, so that we could
control that the main light source would be our spotlight.

4 Low-level Bayesian Maps: BMprox and BMlight

In this section, we present robotic experiments where the Koala learns two BMs:
BMprox and BMlight. In each case, the scenario of the experiments is as follows.

The Koala is first given an initial behaviour and is asked to apply it in the
environment. While it performs this behaviour, the sensory inputs and motor
commands are recorded. These are the observations needed to learn the effect
of an action on the perceptions of the robot. These observations are then used
to build internal representations of the environment, in the form of BMs.

Actions can therefore be chosen so as to get closer to goals in the internal
representation. In order to solve several navigation tasks, we will define several
behaviours using the learned model.

4.1 Proximetry-based Bayesian Map: BMprox

4.1.1 Specification of the model

In Section 2, we have given the general outline of our probabilistic model. Here
it is instantiated to match the features of the Koala robot.

The perception variable P of BMprox is the conjunction of 16 variables
Px0, . . . , Px15 corresponding to the 16 proximity sensors of the robot. Each
variable has a value between 0 and 1023. The closer the obstacle is to the
sensor, the higher the value.

The action variable A represents the different rotation speeds the robot can
apply. Indeed, in this experiment we have chosen to set the translation variable
to a fixed value, so that the only degree of freedom we control is the rotation
speed. The action variable is therefore Rot, which can take three different values:
-1 for turning to the left, +1 for turning to the right, and 0 for not turning.



Authors hidden for blind review

Figure 2 about here

The location variables at time t Lt and t+ ∆t Lt+∆t have the same domain.
In BMprox, we assume that the robot sees only one obstacle at a time. A
location is defined by the proximity and the angle of the robot to this obstacle.
Thus, the location variable at time t is a pair of variables: Dirt, for the direction
of the obstacle and Proxt, for its proximity. The Dirt variable has 12 different
integer values, from -5 to 6 (Figure 2). Proxt has 3 different values: Proxt = 0
(respectively 1, 2) when the robot center is roughly 44 cm (respectively 35, 24)
from the wall.

The variables being now instantiated, the joint probability distribution of
BMprox takes the form:

P (Dirt Proxt Rot Px0 . . . Px15 Dirt+∆t Proxt+∆t | BMprox)

= P (Dirt Proxt | BMprox)P (Rot | BMprox)∏
i

P (Pxi | Dirt Proxt BMprox)

P (Dirt+∆t Proxt+∆t | Dirt Proxt Rot BMprox) .

The 16 P (Pxi | Dirt Proxt BMprox) terms, which define the sensor model, are
gaussian distributions defined by 16 µi1, σ

i
1 mean and variance functions. In our

experiment, these were learned in a supervised manner, by putting the robot at
a given position with respect to an obstacle and recording 50 sensor data.

4.1.2 Initial behaviour and learning of the prediction term

Figure 3 about here

The behaviour known initially by the robot is a “random” behaviour. This
behaviour consists in drawing a value according to a uniform distribution for
Rot and maintaining the corresponding motor command for one second, before
drawing a new value. During the second when the motor command is main-
tained, the robot observes how this motor command makes Dir and Prox vary.
To learn the prediction term, this initial behaviour is applied.

During 5 minutes, every 100 ms, the values of Dirt, Proxt and Rot were
recorded. In this data history, it is possible to know, for a given start location
〈dirt, proxt〉 and applied action rot, the location of the robot at the next time
step. Indeed, 〈dirt, proxt, rot〉 are a 3-tuple in the data, and the next location
〈dirt+∆t, proxt+∆t〉 is given in the first following 3-tuple (with ∆t = 100 ms) in
the data history. Thus, a set of values for Lt, A and Lt+∆t can be obtained.
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The different values of Lt+∆t found for a given set of Lt and A are used to
compute the µ2 and σ2 functions defining the P (Lt+∆t | Lt A) probability distri-
bution. As Lt+∆t is actually a pair 〈Dirt+∆t, P roxt+∆t〉, the prediction term is
a set of 2D gaussian distributions, one for each possible value of 〈dirt, proxt, rot〉
(Figure 3).

4.1.3 Behavior generation and experimental results

Once the sensor and prediction models are learned, the joint distribution is fully
defined. The internal representation of the sensorimotor space of the robot is
acquired, and the BM can be used to generate new behaviours. For instance, a
“ball pushing” behaviour is defined by computing, at each time step, the term:

P (Rot | [Dirt = d] [Proxt = p] [Dirt+∆t = 0] [Proxt+∆t = 2] BMprox) . (3)

What is the probability distribution over rotation speeds, given the current
position relative to the obstacle, and given that the goal is to have it in front
(Dirt+∆t = 0) and near the robot (Proxt+∆t = 2)? Once the equation (3) is
computed, it can be used to draw values for Rot to be applied by the robot.
The result is an easily-recognizable ball-pushing behaviour.

In a similar fashion, a “left wall following” behaviour is obtained by defining
the terms

P

(
Rot

∣∣∣∣ [Dirt = d] [Proxt = 0]
[Dirt+∆t = −2] [Proxt+∆t = 1] BMprox

)
, if Proxt = 0,

P

(
Rot

∣∣∣∣ [Dirt = d] [Proxt = 1]
[Dirt+∆t = −3] [Proxt+∆t = 1] BMprox

)
, if Proxt = 1,

P

(
Rot

∣∣∣∣ [Dirt = d] [Proxt = 2]
[Dirt+∆t = −4] [Proxt+∆t = 1] BMprox

)
, if Proxt = 2 .

To obtain this behaviour, we set three different goals, depending on the value
of Proxt.

A wide variety of behaviours is obtained in this manner: right wall-following,
ball avoidance, ball orbiting and obstacle avoidance. We refer the interested
reader to the original paper for more details on this experiment [23]. In the
remainder of this paper, we will only use FWLeft and FWRight the obtained
left and right wall following behaviours, respectively.

4.2 Light sensing-based Bayesian Map: BMlight

We now show how BMprox can be used as a basis for learning other sensorimotor
models of the environment. The first step consists in learning a BM dealing with
the light sensing modality of the robot, named BMlight, using a behaviour given
by BMprox.
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4.2.1 Specification of the model

Figure 4 about here

We first define the Bayesian model of BMlight, using the Bayesian Robot
Programming (BRP) notation [15] (Figure 4). We summarize now the most
salient aspects of BMlight.

Figure 5 about here

The variables of BMlight are the sensory variables related to the light sensors
Lm0 . . . Lm15, the motor variable Rot, controlling the rotation speed of the
robot, and internal variables Lumt and Lumt+∆t which respectively describe the
current and future orientation of the strongest light source of the environment,
relative to the robot. Lumt and Lumt+∆t both have the same domain: they
can take integer values from 0 to 7 (Figure 5).

The term P (Lumt | Lm0 . . . Lm15 BMlight) is the probability distribution
over the position of the light source, given the light sensor readings. This term
is a Dirac function centered on a value given by a function f of the sensor values
Lm0 . . . Lm15. The f function is a simple max function over the sensor values:
for instance, if the most excited sensor is numbered 0 or 8 (front sensors), then
the probability that Lumt = 4 is 1, and 0 for values other than 4 (Figure 5).

Finally, the term P (Lumt+∆t | Lumt Rot BMlight) is the prediction term:
given the current light source orientation, and given the current motor com-
mand, how will the light source orientation evolve in the near future? This
term is defined as a set of Gaussian probability distribution, whose means and
standard-deviations can be learned experimentally.

4.2.2 Initial behaviour and learning of the prediction term

Figure 6 about here

In practice, we have the robot navigate in the environment, using the obstacle
avoidance behaviour given by BMprox. At each time step, we record the values
of Lumt and Rot. This allows to build an array of triplets 〈lumt, rot, lumt+∆t〉
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for different values of ∆t. In our experiment, we observed that ∆t = 1s gave
the best results. Given the array of data, it is easy to compute the means
and standard deviations of the probability distributions for the prediction term
(Figure 6).

4.2.3 Behavior generation and experimental results

Once the prediction termed is acquired, BMlight is fully defined. It can thus be
used to obtain behaviours, by computing probabilistic terms of the form:

P (Rot | Lumt [Lumt+∆t = l2] BMlight) . (4)

In these terms, the value l2 can be interpreted as the goal value to reach in the
domain of the internal variable Lumt.

Computing equation (4) amounts to “inverting” the prediction term. Indeed,
Bayesian inference yields (derivation omitted):

P (Rot | Lumt [Lumt+∆t = l2] BMlight)

∝ P ([Lumt+∆t = l2] | Rot Lumt BMlight) .

Once the distribution is computed, drawing at random according to it gives a
rotation speed value which is sent to the motors, thus displacing the robot in
the environment 3. We have obtained two behaviours from BMlight: phototaxis
and photophobia.

Figure 7 about here

Phototaxis is the behaviour of turning toward and going to the light source.
It can be defined by the following probabilistic term:

P (Rot | Lumt [Lumt+∆t = 4] BMlight) .

What should be the motor command given the current orientation to the light
source and given that the goal is to have it in front of the robot (Lumt+∆t = 4)?

Photophobia can be defined in a similar manner, by setting the goal to be
Lumt+∆t = 7, which describes a light source position to the rear of the robot.
We have recorded typical trajectories followed by the robot when applying the
obtained behaviours (Figure 7).

3In practice, for security reasons, we only apply behaviours from BMlight when no obstacle
is sensed near the robot (Prox = 0), otherwise, the obstacle avoidance behaviour is applied.
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5 High-level Bayesian Map: BMarena

BMprox and BMlight model different aspects of the environment. BMprox uses
an internal space composed of 〈Dirt, P roxt〉 in order to describe the relation
with the nearest obstacle. BMlight relies on a single internal variable, Lumt,
so as to describe the relative orientation of the strongest light source of the
environment. Each of these map provides several behaviours so as to navigate
relatively to the aspect of the environment they describe.

Applying a behaviour from one of the BMs may have an identifiable effect on
the internal variable of the other BM. For instance, the probability distribution
over Lumt could be stable over time, when some behaviour from BMprox is
applied in some part of the environment. This is the knowledge we exploit and
experimentally learn.

In the following, we will focus on FWLeft, FWRight, the two behaviours
provided by BMprox:Behprox = {FWLeft,FWRight}.

5.1 Action oriented sensor model for environment recog-
nition

The sensorimotor interaction between the two BMs can be explored and learned,
in order to create categories in the environment. These categories denote sub-
sets of the environment where the relationship between sensorimotor models is
identifiable by learning, and recognizable by inference.

5.1.1 Experiment: wall orientation

Figure 8 about here

The first experimental example concerns a simple case where three types of
environment are considered. E0, E1 and E2 are types of environment with a
long wall and a single light source. They differ by the orientation of the wall
relative to the light source (Figure 8, top row).

In a learning phase, the robot applies the FWLeft behaviour, given by
BMprox, while Lumt values, computed by BMlight, were recorded. This gives
three probability distributions, one for each type of environment (Figure 8, bot-
tom row):

P (Lumt | [Behprox = FWLeft] [Envt = Ei]), i ∈ {0, 1, 2} .

Once these three probability distributions are learned, we can place the robot
alongside a wall, ask it to follow it, and recognize the angle of the wall relative
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to the light source, by computing:

P (Envt | Lumt [Behprox = FWLeft])

∝ P (Lumt | [Behprox = FWLeft] Envt) . (5)

Here again, the computation yields an inversion of the learned model. Once
equation (5) is computed, values for Envt can be drawn at random according
to P (Envt | Lumt [Behprox = FWLeft]): this provides a classification over the
recognized types of environment.

The average success rate in recognition is roughly 70%. Misclassifications
arise due to fluctuations in orientation of the robot relative to the wall: the
FWLeft behaviour is not very stable in this respect. Moreover, environment
types E1 and E2 are rather difficult to discriminate, as they both amount to
having the light coming from the right of the robot, which only has two different
sensors on the side.

Figure 9 about here

We have added a fourth type of environment in this first experiment: F
(Figure 9). In F , the wall is placed between the robot and the light source,
so that the robot lies partially in the shadow cast by the wall. We apply the
learning method and report here the environment recognition results, with four
learned types of environment: E0, E1, E2 and F .

When the robot is placed in F , it correctly recognizes it 86% of the time.
Interestingly, when placed in E2, it correctly recognizes it only 45% of the time,
and it thinks it is in F 25% of the time, which is its biggest misclassification
rate when in E2. In other words, it is difficult to discriminate between E2

and F for our robot, when applying a FWLeft behaviour in these two types
of environment. Further investigation showed that, in F , because of the cast
shadow and the fact that the robot is very close to the wall when applying
FWLeft, the light source is actually perceived only on the right sensors of the
robot. This is also the case in E2: these two geometrically distinct types of
environment are really quite similar from a sensorimotor point of view.

5.1.2 Experiment: wall height

This experimental observation led us to a variant of our experiment, where we
chose two types of environment to learn and discriminate: H0 and H1 (Figure 9).
In these two types of environment, the wall position, the light source position,
and the initial robot position are the same: the wall is placed between the robot
and the light source. The only difference is the height of the wall: in H0 the
wall is small, in H1 the wall is tall.
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Since this changes the length of the cast shadow, this makes these two types
of environment very different for the robot from a light sensing point of view.

And indeed, after a learning phase similar to the above experiment, the
robot is quite able to recognize the wall height, when following the wall, with a
100% recognition rate. This result is the opposite of the previous finding: here,
two geometrically similar types of environment (in 2D) are very different from
a sensorimotor point of view. We stress the similarity of the 2D projection of
these types of environment, as 2D maps are currently the goal of most classi-
cal mapping techniques: these would here fail to differentiate between the two
obstacles H0 and H1.

5.1.3 Experiment: wall colour

The final experiment of environment recognition we report here concerns envi-
ronment types I0, I1 and I2 which, as before, are similar geometrically. In these
types of environment, the robot is placed between the light source and the wall,
which varies in colour, texture and material. The wall is made of wood planks
that are painted white in I0, it is made of blue cardboard boxes in I1, and it is
made of planks on which we affixed grey carpet strips in I2.

After a learning phase, we asked the robot to recognize the type of environ-
ment it was in: when placed in I0 or I2, the robot recognizes them with a very
high success rate (90% and 100%, respectively). Indeed, the surface reflectance
are so different that it makes these types of environment very different from a
light sensing point of view. In I0, the white walls reflect so much light that
the strongest light source perceived by the robot comes from its left. In I2, the
carpet texture reflects the light in a diffuse manner, so that the light source is
detected as coming from the right. This, again, shows how different these two
types of environment look from the point of view of the robot, even though they
would be equivalent for a 2D mapper.

However, when placed in I1, the robot recognizes as being either in I0 or
I2, indifferently (50% each). In I1, the light source is sometimes detected on
the right of the robot, and sometimes on the left. The learning of a Gaussian
distribution over this bimodal set of events yields a very flat probability distri-
bution, with a mean centered on intermediate values (on the front of the robot).
This is a consequence of the fact that, in I1, the assumption of a single, main
light source is wrong. In I1, there are two light sources that are perceived with
roughly the same intensity: the real spotlight, and its reflectance on the wall.

As a consequence, the model for I1, relying on an inadequate assumption, is
always less probable than those of I0 or I2 in the recognition inference. Therefore
I1 is never correctly recognized. This opens up interesting perspectives on the
detection of inaccurate assumptions about the environment, which will require
further experiments to explore.
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5.2 Learning the high-level prediction term

Figure 10 about here

Having learned to recognize some types of environment, we now turn to the
learning of the prediction term that links these types of environment. We have
defined a small arena in which the robot could navigate, and placed a strong
light source near it (Figure 10). The walls were placed, relative to the light
source, at angles which corresponded to some of the previously learned types of
environment: E0, E1, E2 (which, as noted previously, is very similar to F ), and
J . In J , the robot has the light source on its back side.

In the learning phase, we had the robot navigate in the arena using either the
left or right wall following behaviour. During this navigation, the environment
recognition mechanism provided values for the Envt variable. This allowed to
learn conditional probability tables for the prediction term, using histograms.

Table 1 about here

The obtained probability tables for

P (Envt+∆t | [Envt = E0] [Beh = FWLeft]) ,

with ∆t = 900 ms, show that some of the structure of the arena is very well
identified (Table 1). For instance, starting from J , the robot has a very high
probability of staying in J (p = 149/165). Moreover, when it changes of type
of environment, it is three times more likely to enter E2 (p = 12/165) than to
miss E2 and arrive directly in E1 (p = 4/165). In all cases, the robot has never
experienced a direct transition from J to E0. This corresponds to the physical
reality of the used arena.

However, not all transition probabilities are this adequate, as some suffer
from poor discrimination between types of environment: for instance, when
in E0, a direct transition to E2, which was intuitively expected, was never
experienced by the robot. And indeed, a more precise investigation of the
phenomenon showed that, when passing from E0 to E2, in the physical arena,
the robot had to enter the shadow cast by the wall of E2. Therefore, temporarily,
only the rear sensors of the robot were lit, which indeed corresponds to the J
type of environment. The robot thus “correctly” learned a non-zero probability
transition from E0 to J (p = 7/80), which is even high compared to the other
learned possible transition (from E0 to E1, with p = 2/80). This last transition
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corresponds to entering the cast shadow while having already started to turn to
the right, so that the front left sensors are lit, as in E1.

Table 2 about here

When the behaviour applied is FWRight, different conditional probability
tables are learned using the same mechanism (Table 2).

5.3 Large-scale navigation using environment recognition:
BMarena

We now encapsulate all learned models about the large-scale structure of the
arena into BMarena (Figure 11).

Figure 11 about here

We describe the behaviour selection for large-scale navigation in BMarena

using an example. Suppose we want the robot to reach E0 in the arena. We can,
at each time step, compute the probability distribution over behaviours given
the goal Envt+∆t = E0, and given the current recognized type of environment
Envt. Assume that the robot currently is in E1. We thus compute:

P (Beh | [Envt = E1] [Envt+∆t = E0] BMarena)

∝ P ([Envt+∆t = E0] | [Envt = E1] Beh BMarena) .

A lookup on the probability tables of the transition term (Table 1 and Table 2)
yields:

P ([Beh = FWLeft] | [Envt = E1] [Envt+∆t = E0] BMarena) ∝ 10/336

P ([Beh = FWRight] | [Envt = E1] [Envt+∆t = E0] BMarena) ∝ 0 .

Therefore, the behaviour to be chosen for going from E1 to E0 is, with a prob-
ability of 1, FWLeft. This correctly corresponds to the physical reality of the
arena (Figure 10).

Not all of the behaviour selection computations would lead to such a clear
choice. For instance, if the robot is in E1 and tries to reach J , the probability
of applying FWLeft is (5/336)/(5/336 + 6/274) ' 0.40, and the probability of
applying FWRight is (6/274)/(5/336+6/274) ' 0.60. Furthermore, a behaviour
selection, by drawing randomly according to this probability distribution at
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each time step, yields unstable navigations where the robot quickly alternates
between low-level behaviours. A possible solution to this problem is to lower
the frequency of the behaviour selection, so that it better matches the dynamic
of the changing of types of environment in the chosen arena. In other words,
this corresponds to choosing a ∆t which is more relevant (in this experiment,
we just fixed it a priori).

6 Summary and Discussion

In this work, we have presented the Sensorimotor Interaction of Bayesian Maps
operator, provided its mathematical definition, and applied it in a proof-of-
concept robotic experiment on the Koala mobile robot. In this experiment, the
robot first learned low-level BMs related to proximetry and light sensing. It
then identified how these two sensorimotor modalities interacted, by learning a
high-level BM. The internal variable of this last BM distinguishes parts of the
environment where low-level models interact in a recognizable way. This allows
to both localize in a coarse-grained space representation, and identify the large-
scale structure of the arena the robot navigated in. We have shown surprising
experimental results, where the robot was able to recognize properties of the
environment (like colour or height of walls) not using dedicated sensors, but
instead exploiting knowledge about its sensory and motor interaction with the
environment.

We now discuss some of the implications of our work in the context of cog-
nitive modelling of navigation and space representation.

6.1 Perception-action cycle models

In robotics or biology, navigation is usually modeled using a three-step algo-
rithm, in order to go from sensors to actuators [17]: perceive (from sensors to
some abstract internal space), plan (inference in the internal space to compute
a path to be followed), and finally, act (application of motor commands to try
to perform the planned path). This is the classical “perceive-plan-act” model.

Our perception-action cycle is more complex. In particular, variables in the
resulting hierarchy have different natures in different sub-models. For instance,
in BMlight, Lumt acts as an internal variable, whereas it is a perception variable
in BMarena. This makes the computation flows in our model more complicated:
instead of a series of unidirectional computations from sensors to actuators,
Bayesian Maps operate in a parallel, hierarchical and, when the ∆t are not
equal in all the architecture, asynchronous manner.

In that sense, parts of the model “observe” other parts as they perform
computations. In the Abstraction operator, this concept was even applied in a
more general manner, as abstract BMs observed whole sub-models (and not just
some variables), and computed their respective relevance to describing current
sensorimotor data. This is a specific feature of Bayesian inference: indeed,



Authors hidden for blind review

setting values for variables is actually a side-product of computations; their
main goal is to obtain probabilities of models.

6.2 Breaking down complexity

There is a second noteworthy property of hierarchical models that can be illus-
trated by our experiments. Hierarchical models, once they are defined, break
down complexity. Hard problems in large multidimensional spaces are replaced
by several problems of lower computational costs. In our experiment, the inter-
nal variables define a 8-dimensional space:

Lumt, Lumt+∆t, Dirt, Dirt+∆t, P roxt, P roxt+∆t, Envt, Envt+∆t .

This internal space is decomposed, in the final model, into two 2-dimensional
spaces and one 4-dimensional space. This makes handling each piece easier.

For instance, consider planning. Each BM, in our formalism, defines a predic-
tion model of the form P (Lt+∆t | A Lt), over a simple internal space. Such a pre-
diction model can be directly reversed so as to compute policies P (A | Lt Lt+∆t),
because the internal space is smooth and allows such a greedy hill-climbing ac-
tion selection policy. In more complicated internal spaces, because of possible
local minima, the prediction term would have to be iterated over time, so as to
predict results of series of actions, which is a computationally very expensive
process. In our robotic experiments, such explicit planning was not required.

The same argument also applies to learning. It has been argued, in a non
hierarchical context, that learning behaviours makes perceptual learning easier
[29]. We complement this argument here in a hierarchical context. We have re-
placed a learning problem in a large parameter space by a sequence of learning
problems in low-dimensional parameter spaces. We have also shown how learn-
ing BMprox initially was a basis for subsequent navigation and exploration, for
acquiring experimental data. These were used to identify parameters of BMlight

terms.
Finally, once the two low-level BMs were defined, experimentally learning

their sensorimotor interaction produced BMarena. The incremental nature of
our learning process was used to our advantage. Being already set and defined,
low-level models and behaviours produced recognizable effect in the environ-
ment, some which translated complex properties of the environment, but that
we could nevertheless identify in the small internal space of BMarena.

6.3 Sensorimotor interaction vs. multi-modal fusion

Let us now compare our Sensorimotor Interaction operator with a purely per-
ceptual model, the sensor fusion model (in the terminology of [15]; also known
as weak fusion [14], sensory weighting model [34], näıve Bayes fusion or clas-
sifier [18]). In this model of multi-modal perception, each modality i first
computes some estimate φi about a property of interest in the environment.
All k estimates are then combined by some fusion operator f , to produce
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S = f(S0, . . . , Sk). We claim that such a model would not have been able
to recover properties like the height or colour of walls as we did in our exper-
iment. Indeed, recall that our Koala is only equipped with proximity sensors
and light sensors. None of these, taken individually, would be able to measure
either the height or the colour of obstacles. In other words, each φi would not
be sufficiently informative, given a single sensory snapshot. It is only by ex-
ploiting the interaction over time between sensory modalities and behaviours
that recovering such properties is possible. We believe these interactions are
very rich of meaning, even very early in sensory processes, in agreement with
biology findings relative to early crossmodal interactions [11, 24].

6.4 Sensorimotor models and representation

Finally, we wish to offer some remarks with respect to the symbol grounding
problem and sensorimotor models [7]. It can be noted that our robot is never
given any symbolic concept of colour or height of walls, and nevertheless obtains
operative sensorimotor models of them. These are denoted with symbols (I0,
I1, I2) that refer to probability distributions. These are used then to recognize
whether the robot is near an obstacle that is similar to I0, or to I1, or to I2. We
believe that this mechanism of assigning single labels to complex sensorimotor
models, which are relevant to some class of environment, might be the basis for
the categorization of perceptual and motor experience into concepts.

It might also be noted that the representations that “make sense” for the
robot, i.e.the labels that are easily distinguishable in the high-level BM, are
grounded in the sensorimotor experience of the robot, and may be very differ-
ent from concepts the programmer might have expected to be relevant. For
instance, our robot identifies some structure of the large-scale arena, in terms
of locations (Envt values) and behaviours for going from location to location,
but this structure is not always directly related to the geometry of the arena.
Some locations are the same to the robot, even though they have very different
geometries (e.g. E2 and F ); some locations are very easily distinguished by the
robot, even though they have the same geometry (e.g. H0 and H1); finally, some
locations are tied to an obvious geometric reference in the environment (E0, E1

and E2 relate to the bearing of the light source with respect to the wall). This
makes it sometimes difficult to the experimenter to visually assess the zones of
the environment where some location should be recognized, but, on the other
hand, it ensures that locations are relevant to the robot.

6.5 Perspectives for future work

In our experiment, a number of issues about hierarchical models of navigation
and space representations were raised.

One of the most difficult challenge in this respect is studying the effect of time
steps in each model of the hierarchy. Indeed, in this work, we have determined
values for the ∆t of each BM empirically. Setting this parameter automatically
is an open issue. Indeed, when ∆t is too small, actions mostly do not have any



Authors hidden for blind review

effect in the internal space, as they do not have time to produce effects. In other
words, whatever the action, the environment, observed at this frequency, does
not change. At the other extreme, when ∆t is too small, actions do have effects,
but they become less and less predictable. Imagine watching a regular motion
picture at 1000 Hz or 0.1 Hz: it mostly is the same picture, with very infrequent
changes, or the missing pieces are so many that it becomes very difficult to
predict future events.

Fortunately, in the Bayesian framework, these two extreme scenarios have
different results. When ∆t is too small, the prediction term is mostly filled with
Dirac probability distributions centered on the starting location. When ∆t is too
large, the prediction term is mostly filled with uniform probability distributions.
This was the leverage we used, empirically, to set ∆t in our BMs: we varied this
∆t parameter until the learned distributions were different enough from Dirac
and uniform probability distributions. Learning automatically a suitable ∆t
value, according to some measure, probably summarizing the entropy of learned
distributions, is an intriguing track for future work.

Another, even more difficult challenge lies in automatizing the incremental
learning process. In our experiments, all the learning processes were started,
ended, and sequenced by the human operator. Such a clean cut separation be-
tween learning processes is a highly unlikely model of animal or human learning.
However, in the learning of complex sensorimotor skills, it is probably the case
that the whole sensorimotor space is not explored and experienced in one block,
in all its multidimensionality. Synergies (in the sense of [1]) probably set a hier-
archical structure, which, as was outlined previously, already makes the learning
process easier. In some instances, sequences of learning of different dimensions
of complex sensorimotor spaces are also known to exist (e.g.pre-babblers vocal-
izations in speech learning [20]). How our model can adapt to less supervised
epochs of parameter identification is an open question.

Finally, from a broader point of view, we believe our model to be a candidate
formalization of some hierarchical models of navigation found in the behavioral
biology literature. We have outlined previously how most of these lacked de-
tailed mathematical definitions. The BM formalism, along with probabilistic
operators we have defined to express hierarchies of representations of space,
can be viewed as suggestions for models in experimental psychology. They
are tailored for properties that appear relevant to studying human or animal
navigation: hierarchies, behaviour generation, sensorimotor modelling of the in-
teraction with the environment. Thus, we depart from classical robotic control
architecture. Finally, while our formalism constitutes a promising first step,
obtaining experimentally testable predictions from it is an important challenge.
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E0 E1 E2 J
P (Envt+∆t | [Envt = E0][Beh = FWLeft]) 71/80 2/80 0 7/80
P (Envt+∆t | [Envt = E1][Beh = FWLeft]) 10/336 309/336 12/336 5/336
P (Envt+∆t | [Envt = E2][Beh = FWLeft]) 0 21/218 193/218 4/218
P (Envt+∆t | [Envt = J ][Beh = FWLeft]) 0 4/165 12/165 149/165

Table 1: Learned transition matrices for the term P (Envt+∆t | Envt [Beh =
FWLeft]), for all values of Envt. Probability distributions over the Envt+∆t

variable are read in rows.

E0 E1 E2 J
P (Envt+∆t | [Envt = E0][Beh = FWRight]) 93/105 8/105 0 4/105
P (Envt+∆t | [Envt = E1][Beh = FWRight]) 0 263/274 5/274 6/274
P (Envt+∆t | [Envt = E2][Beh = FWRight]) 0 1/212 196/212 15/212
P (Envt+∆t | [Envt = J ][Beh = FWRight]) 12/208 3/208 10/208 183/208

Table 2: Learned transition matrices for the term P (Envt+∆t | Envt [Beh =
FWRight]), for all values of Envt. Probability distributions over the Envt+∆t

variable are read in rows.
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Figure 1: The Koala R© mobile robot (K-Team company), next to a volleyball,
for size reference. The red and green dots on top of the robot were not used in
the experiments described here.

Figure 2: The Dir and Prox variables, on an overhead schema of the Koala
robot.

Figure 3: Example of probability distribution learned for the prediction term
P (Dirt+∆t Proxt+∆t | Dirt Proxt Rot BMprox), with ∆t = 900 ms. The pre-
diction term for the starting location Dirt = 0, Proxt = 1 and motor command
Rot = −1. The plot shows that if the robot had the wall in front of it, at a
medium distance, and it turned to the left (Rot = −1), then the wall would
probably be on the right front side of the robot 900 ms later.
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Relevant variables
P = Lm0 ∧ . . . ∧ Lm15 ; DP = {0, . . . , 1023}16

Lt = Lumt ; DLt
= {0, . . . , 7}

Lt+∆t = Lumt+∆t ; DLt+∆t
= {0, . . . , 7}

A = Rot ; DA = {−1, 0, 1}
Decomposition

P (Lumt Rot Lm0 . . . Lm15 Lumt+∆t)
= P (Lm0 . . . Lm15)P (Rot)P (Lumt | Lm0 . . . Lm15)

P (Lumt+∆t | Lumt Rot)
Parametric forms

P (Lmi) = U(Lmi)
P (Rot) = U(Rot)
P (Lumt | Lm0 . . . Lm15) = δf(Lm0...Lm15)(Lumt)
P (Lumt+∆t | Lumt Rot) = G µ(Lumt, Rot),

σ(Lumt, Rot)

(Lumt+∆t)

Identification : Learning of P (Lumt+∆t | Lumt Rot)
Question : definition of behaviours

P (Rot | [Lumt = l1] [Lumt+∆t = l2])
= 1

Z P ([Lumt+∆t = l2] | Rot [Lumt = l1])

Figure 4: Bayesian Robotic Program summarizing BMlight. For clarity, the
symbol BMlight, which should appear in every right-hand side of the above
probabilistic terms, has been omitted. U(X) denotes uniform probability dis-
tributions over the variable X, δf (X) denotes Dirac probability distributions,
and Gµ,σ(X) denotes Gaussian probability distributions of mean µ and variance
σ.

Figure 5: Overhead schema of the Koala robot, with the position of the sensors,
and values for the Lumt variable.
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Figure 6: Some of the Gaussian probability distributions for the prediction term.
These are P (Lumt+∆t | [Lumt = 4] [Rot = x] BMlight), with x = 1 (left curve),
x = 0 (middle curve), and x = −1 (right curve). For example, the right curve
encodes the knowledge that, if the light was in front (Lumt = 4), and the robot
turned to the left (Rot = −1), then the light will most likely be on the right of
the robot in the near future (Gaussian distribution centered on Lumt+∆t = 6,
roughly).

Figure 7: Pictures of the robot applying phototaxis (top row) and photophobia
behaviour (bottom row).
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Figure 8: Top row: pictures of types of environment E0, E1, E2; bottom
row: learned probability distributions P (Lumt | [Behprox = FWLeft] [Envt =
Ei]), i ∈ {0, 1, 2}. For example, the left most graph shows that, when following
the wall, the robot mostly had the light source in front of it, which results in a
Gaussian distribution centered on the value 4. The standard deviation of this
distribution reflects the fluctuations in the orientation of the robot that result
from rotations used to correct the alignment of the robot with the wall.

E0 E1 E2 F J

H0 H1 I0 I1 I2

Figure 9: Environments E0, E1, E2, F and J (top row). Environments H0, H1,
I0, I1 and I2 (bottom row).
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Figure 10: Arena made of the types of environment E2, E1, E0 and J .
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Relevant variables
P = Lumt ; DLt

= {0, . . . , 7}
Lt = Envt ; DLt = {E0, E1, E2, J}
Lt+∆t = Envt+∆t ; DLt+∆t = {E0, E1, E2, J}
A = Beh ; DA = {FWLeft,FWRight}

Decomposition
P (Lumt Dirt Proxt Envt Envt+∆t Beh)

= P (Lumt | Beh Envt)P (Envt)P (Beh)P (Envt+∆t | Beh Envt)
Parametric forms

P (Envt) = U(Envt)
P (Beh) = U(Beh)
P (Lumt | Beh Envt) = G µ(Beh,Envt),

σ(Beh,Envt)

(Lumt)

P (Envt+∆t | Beh Envt) = CPT
Identification : Learning of P (Lumt | Beh Envt), P (Envt+∆t | Beh Envt)

Question : Large-scale navigation by selection of low-level behaviours
P (Beh | Envt Envt+∆t) ∝ P (Envt+∆t | Envt Beh)

Figure 11: Summary of BMarena. For clarity, the symbol BMarena, which
should appear in every right-hand side of the above probabilistic terms, has
been omitted. CPT stands for “Conditional Probability Tables”.


