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Abstract

This paper presents a strategy for a posteriori error estimation for substruc-
tured problems solved by non-overlapping domain decomposition methods.
We focus on global estimates of the discretization error obtained through the
error in constitutive relation for linear mechanical problems. Our method al-
lows to compute error estimate in a fully parallel way for both primal (BDD)
and dual (FETI) approaches of non-overlapping domain decomposition what-
ever the state (converged or not) of the associated iterative solver. Results
obtained on an academic problem show that the strategy we propose is effi-
cient in the sense that correct estimation is obtained with fully parallel com-
putations; they also indicate that the estimation of the discretization error
reaches sufficient precision in very few iterations of the domain decomposi-
tion solver, which enables to consider highly effective adaptive computational
strategies.

Key words: verification; error in constitutive relation; non overlapping
domain decomposition; FETI; BDD.

1. Introduction

The setting-up of robust numerical methods to solve complex systems of
partial differential equations has become a key issue in applied mathematics
and engineering, driven by the increasing use of numerical simulation in both
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research and industry. Among the latter, virtual testing has become a short
term aim, with the objective to replace expensive experimental studies and
validations by numerical simulations, even in order to certify large structures
as planes and bridges.

Thus, one key point of the numerical methods to develop is the verification
of computations which enables to warranty that the computed solution is
sufficiently close to the original continuum mechanics model. This topic of
numerical analysis has been the subject of many studies for the last decades.
Three main classes of error estimator have been developed, based either on
equilibrium residuals [1], flux projection [2] or error in constitutive law [3].
An overview of those various methods can be found in [4].

Another key point of numerical methods is their ability to quickly provide
solutions to large (nonlinear) systems. The most classical answer to this issue
is to use domain decomposition methods in order to take advantage of the
parallel hardware architecture of recent clusters and grids. In engineering,
non-overlapping domain decomposition methods are mostly employed, such
as the well known FETI [5] or BDD [6]. An overview of the main approaches
related to non-overlapping domain decomposition can be found in [7].

We aim to provide fully integrated adaptive strategies to compute large
structural mechanics problems with certified quality. To do that, our cur-
rent approach is to explore some ways of making bidirectional interactions
between domain decomposition and a posteriori error estimation. Our de-
velopments are based both on the error in constitutive relation to measure
the quality of our results and to forecast mesh refinement, and on a generic
vision of non-overlapping domain decomposition methods which enables to
do high-performance computing.

This paper focuses on the estimation of the global error in constitutive
relation in order (among others) to study how it is influenced by the error
in the convergence of the domain decomposition solver which is linked to
the non-satisfaction of interface equations (continuity of displacements and
balance of forces). To do so we propose a strategy to build, in parallel and
during the iterations, displacement and stress fields which are kinematically
admissible (KA) and statically admissible (SA) on the whole structure. We
face two main difficulties. First, since before convergence interface fields do
not possess the classical properties of discretized fields (continuity of displace-
ments and weak equilibrium), the recovery of admissible displacements and
stresses requires some preprocessing. Second, the computation of statically
admissible fields being an operation which can not be conducted indepen-
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dently on each element (in some methods it can even be a large bandwidth
operation), classical recovery methods [8, 9, 10, 11, 12, 13] would require
inter-subdomain communications.

Our generic method to build continuous displacement and balanced trac-
tion fields for both primal and dual approaches of non-overlapping domain
decomposition is presented through this paper. It will be shown that the
properties of the preconditioners involved in domain decomposition solvers
make this reconstruction costless, and that an error estimator can then be
computed in a fully parallel way.

This paper is organized as follows. Section 2 recalls the general framework
related to our upcoming developments, mainly the estimation of the error in
constitutive equation and the use of domain decomposition method. Section
3 shows how the problem of error estimation in a substructured context can
be brought back to the computation of nodal displacement and traction fields
which are admissible in a discrete sense. Sections 4 and 5 describes how to
obtain these fields without inter-subdomains exchanges when using classical
primal (BDD) and dual (FETI) domain decomposition methods with good
preconditioners. Section 6 presents numerical assessments, first to validate
the parallel recovery procedure, then to prove that a good estimation can
be obtained far earlier than the solver converged (in the sense of domain
decomposition iterative solver). Finally, Section 7 concludes this paper.

2. Framework of the study

2.1. Reference mechanical problem

Let us consider the static equilibrium of a structure which occupies the
open domain Ω ⊂ R

d and which is submitted to given body forces f , to given
traction forces g on ∂fΩ and to given displacements u0 on the complementary
part ∂uΩ 6= ∅. We assume the structure undergoes small perturbations and
that the material is linear elastic, characterized by the Hooke’s tensor H.
Let u be the unknown displacement field, ε(u) the symmetric part of the
gradient, σ the Cauchy stress tensor.

Let ω ⊂ Ω be an open subset of Ω, ∂fω = ∂ω∩∂fΩ, ∂uω = ∂ω ∩∂uΩ and
Γ = ∂ω \ (∂uω ∪ ∂fω) (see Figure 1). We introduce two affine subspaces and
one positive form:

• Subspace of kinematically admissible fields

KA(ω) =
{
u ∈

(
H1(ω)

)d
, tr(u) = u0 on ∂uω

}
(1)
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Figure 1: Domain Ω, subdomain ω and boundaries

where tr is the trace operator.

• Subspace of statically admissible fields

SA(ω) =

{
τ ∈

(
L2(ω)

)d×d
, τ symmetric, ∀u∗ ∈ KA00(ω) ,

∫

ω

τ : ε(u∗)dω =

∫

ω

f.u∗dω +

∫

∂fω

g.u∗dS

}
(2)

where KA00(ω) =
{
u ∈

(
H1(ω)

)d
, tr(u) = 0 on ∂uω ∪ Γ

}

• Measure of the non-verification of the constitutive equation [3]

eCR(ω)(u, σ) = ‖σ −H : ε (u) ‖H−1,ω (3)

where ‖x‖H−1,ω =

√∫

ω

(x : H−1 : x) dω

The mechanical problem set on Ω can be formulated as:

Find (uex, σex) ∈ KA(Ω)× SA(Ω) such that eCR(Ω)(uex, σex) = 0
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2.2. Finite element approximation for the global problem

Let Ωh be a tessellation of Ω̄ to which we associate a finite dimensional
subspace KAh(Ω) of KA(Ω). The classical finite element displacement ap-
proximation consists in searching

uh ∈ KAh(Ω)

σh = H : ε(uh)∫

Ω

σh : ε(u∗
h)dΩ =

∫

Ω

f.u∗
hdΩ+

∫

∂fΩ

g.u∗
hdS, ∀u∗

h ∈ KA00
h (Ω)

(4)

After introducing the d×Ndof matrix ϕh of shape functions which form
a basis of KAh(Ω) and the vector of nodal unknowns u (of size Ndof , number
of degrees of freedom) so that uh = ϕhu, the classical finite element method
leads to the well-known linear system:

Ku = f (5)

where K is the (symmetric positive definite) stiffness matrix of domain Ωh

and f is the vector of generalized forces.

2.3. A posteriori error estimator

The finite element approximation (uh, σh) satisfies uh ∈ KA(Ω) and
eCR(Ω)(uh, σh) = 0 but σh /∈ SA(Ω). The error in constitutive relation
consists in deducing from (uh, σh) an admissible displacement-stress pair
(ûh, σ̂h) ∈ KA(Ω) × SA(Ω) in order to measure the residual on the consti-
tutive equation (3) eCR(Ω)(ûh, σ̂h) > 0. Using the well-known Prager-Synge
theorem it can be proved that

‖ε(uex)− ε(ûh)‖
2
H,Ω + ‖σex − σ̂h‖

2
H−1,Ω =

(
eCR(Ω)(ûh, σ̂h)

)2

Hence, the evaluation of the error in constitutive relation eCR(Ω)(ûh, σ̂h) for
any admissible pair (ûh, σ̂h) provides a guaranteed upper bound of the global
error

‖ε(uex)− ε(ûh)‖H,Ω 6 eCR(Ω)(ûh, σ̂h) (6)

KAh(Ω) being a subspace of KA(Ω), the construction of an admissible dis-
placement field ûh is straightforward since it can be taken equal to uh. On the
other hand, as σh is not statically admissible, the construction of an admis-
sible stress field σ̂h ∈ SA(Ω) is a crucial point which has already been widely
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studied in the literature. A first solution is to use a dual formulation of the
reference problem [14] to compute σ̂ from scratch. Unfortunately building a
subspace of SA(Ω) is a complex task and most people prefer to post-process
a statically admissible field from Field σh obtained by a displacement for-
mulation. Classical methods are the element equilibration techniques [8, 9],
which have been improved by the use of the concept of partition of unity
which lead to [11, 12, 13] and the flux-free method [10]. In most cases they
involve the computation of efforts on “star-patches” which are the set of el-
ements sharing one node, for each node of the mesh. Though rather simple
these computations are in great number and thus expensive.

In the following, we note by Fh the algorithm which has been chosen to
build an admissible stress field σ̂h. Whatever the choice, the algorithm takes
as input not only the finite element stress field σh but also the continuous
representation of the imposed forces (f, g).

σ̂h = Fh(σh, f, g) ∈ SA(Ω)

The algorithm we have used for our applications is the one proposed in [9]
using a three degrees higher polynomial basis when solving the local problems
on elements [15].

2.4. Substructured formulation

Let us consider a decomposition of domain Ω in open subsets (Ω(s))16s6Nsd

(Nsd is the number of subdomains) so that Ω(s) ∩ Ω(s′) = ∅ for s 6= s′ and
Ω̄ = ∪sΩ̄

(s). Let u� = (u(s))s, we define the global assembling operator A:

u = A(u�) ⇔ u|Ω(s) = u(s) (7)

In order to reformulate the mechanical problem on the substructured con-
figuration, we need to specify the conditions that should be satisfied at the
boundary between subdomains Γ(ss′) = ∂Ω(s) ∩ ∂Ω(s′). We have the funda-
mental properties:

A(u�) ∈ KA(Ω) ⇔

{
u(s) ∈ KA

(
Ω(s)

)
, ∀s

tr(u(s)) = tr(u(s′)) on Γ(ss′), ∀(s, s′)
(8)

A(σ�) ∈ SA(Ω) ⇔

{
σ(s) ∈ SA

(
Ω(s)

)
, ∀s

σ(s).n(s) + σ(s′).n(s′) = 0 on Γ(ss′), ∀(s, s′)
(9)

In other words, in order to be admissible on the whole domain Ω, not only
fields need to be admissible in a local sense (independently on each Ω(s)), but
they also need to satisfy interface conditions, namely displacements continu-
ity and tractions balance (action-reaction principle).
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2.5. Finite element approximation for the substructured problem

We assume that the tessellation of Ω̄ and the substructuring are conform-
ing so that (i) each element only belongs to one subdomain and (ii) nodes are
matching on the interfaces. Each degree of freedom is either located inside
a subdomain (subscript i) or on its boundary Γ(s) = ∪s′Γ

(ss′) (subscript b)

where it is shared with at least one neighboring subdomain. Let λ
(s)
b be the

vector of unknown efforts imposed on the interface of subdomain Ω
(s)
h by its

neighbors. The finite element problem (5) can be written highlighting the
contributions of subdomains:

∀s, K(s)u(s) = f (s) + t(s)
T
λ

(s)
b with





∑
s

A(s)λ
(s)
b = 0

∑
s

A(s)u
(s)
b = 0

(10)

where t(s) is the discrete trace operator (u
(s)
b = t(s)u(s)) and where A(s)

and A(s) are assembling operators so that A(s) enables to formulate the
mechanical equilibrium of interfaces (9) and A(s) enables to formulate the
continuity of displacements (8) (in the case of two subdomains, we have∑

sA
(s)λb = λ

(1)
b +λ

(2)
b = 0 and

∑
sA

(s)u
(s)
b = u

(1)
b −u

(2)
b = 0, see Fig. 7 for

less trivial example and [7] for more an extensive description of all operators).
One fundamental property of assembling operators is their orthogonality:

∑

s

A(s)A(s)T = 0 (11)

Note that the equilibrium of subdomain Ω(s) also writes:
(
K

(s)
ii K

(s)
ib

K
(s)
bi K

(s)
bb

)(
u
(s)
i

u
(s)
b

)
=

(
f
(s)
i

f
(s)
b

)
+

(
0
(s)
i

λ
(s)
b

)
(12)

or in an equivalent condensed form:

S(s)u
(s)
b = b(s)

p + λ
(s)
b (13)

with

S(s) = K
(s)
bb −K

(s)
bi K

(s)
ii

−1
K

(s)
ib

b(s) = f
(s)
b −K

(s)
bi K

(s)
ii

−1
f
(s)
i

(14)

where S(s) is the Schur complement and b(s) is the condensed right-hand side.
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3. A posteriori error estimator in substructured context

The key point for the efficient evaluation of the error in constitutive rela-
tion in a substructured context (without overlapping) is to define admissible

pairs (û
(s)
h ,σ̂

(s)
h ) ∈ KA

(
Ω(s)

)
×SA

(
Ω(s)

)
on each subdomain so that the associ-

ated assembled pair is admissible for the reference problem (A(û�
h ),A(σ̂�

h )) ∈
KA(Ω)×SA(Ω). Due to the absence of overlap, the additive structure of the
associated error in constitutive relation leads to a fully parallel evaluation of
the a posteriori error estimator:

(
eCR(Ω)

(
A(û�

h ),A(σ̂�
h )
))2

=
∑

s

(
eCR(Ω(s))

(
û
(s)
h , σ̂

(s)
h

))2

The application of a classical recovery strategy to compute admissible
fields raises two difficulties in a substructured context. First, the star-patches
can not be employed on the boundary nodes without assuming communica-
tion between subdomains. Though these exchanges would remain limited,
we propose an alternate strategy to achieve full parallelism without impair-
ing the properties of the error in constitutive relation. Second, in order to
solve the substructured problem (10) parallel strategies consist in using iter-
ative solvers which are based on the loosening of at least one of the interface
conditions which is only verified (up to a certain precision) once the solver
converged. Thus recovering strategies need to be adapted so that the local
fields (û

(s)
h , σ̂

(s)
h ) satisfy the interface conditions.

The aim of this section is to prove that the determination of the admissi-
ble pair (A(û�

h ),A(σ̂�
h )) can be brought back to the determination of nodal

interface fields (û
(s)
b , λ̂

(s)

b )s which satisfy specific interface conditions. The
construction of these nodal fields depends on the chosen domain decomposi-
tion strategy and is discussed in the following sections.

3.1. Kinematically admissible fields

In order to ensure interface Condition (8) when building û
(s)
h ∈ KA

(
Ω(s)

)

so that A(û�
h ) ∈ KA(Ω), we introduce continuous interface displacement

fields û
(s)
bh from which we shall deduce internal displacement fields:

û
(s)
bh = û

(s′)
bh , ∀(s, s′)

û
(s)

h|Γ(ss′) = û
(s)
bh , ∀s

8



Since discretizations are matching on the interface, the first condition can
directly be imposed on finite element nodal quantities:

û
(s)
b = û

(s′)
b , ∀(s, s′)

In order to deduce the internal fields, one finite element problem is solved
independently on each subdomain with imposed Dirichlet conditions on the
interface:

û
(s)
i = K

(s)
ii

−1
(
f
(s)
i −K

(s)
ib A

(s)T û
(s)
b

)

û
(s)
h = ϕ

(s)
h û(s) =

(
ϕh

(s)
i

ϕh
(s)
b

)
(
û
(s)
i

û
(s)
b

)

û = A(û�
h ) ∈ KA(Ω)

3.2. Statically admissible fields

In order to ensure interface Condition (9) when building σ̂
(s)
h ∈ SA

(
Ω(s)

)

so that A(σ̂�
h ) ∈ SA(Ω), we introduce for each subdomain the continuous

balanced interface traction fields F̂
(s)
bh defined on Γ(s) which satisfy:

σ̂
(s)
h .n(s) = F̂

(s)
bh on Γ(s)

F̂
(s)
bh + F̂

(s′)
bh = 0 on Γ(ss′)

∫

Ω(s)

f.ρdΩ +

∫

∂fΩ(s)

g(s).ρdS +

∫

Γ(s)

F̂
(s)
bh .ρdS = 0 ∀ρ ∈ RKA0(Ω(s))

(15)

where RKA0(Ω(s)) is the set of rigid body motions which are compatible with
Dirichlet conditions imposed on ∂uΩ

(s):

RKA0(Ω(s)) =
{
ρ ∈ H1(Ω(s)), ρ = 0 on ∂uΩ

(s), ε(ρ) = 0,
}

The last condition of (15) is the translation of Fredholm’s alternative in
order to ensure the well-posedness of the static problem on domain Ω(s). To
build these traction fields in a simple way, we associate them with the finite

element nodal reaction field λ̂
(s)

b :
∫

Γ(ss′)

F̂
(s)
bh · ϕ

(s)
j |Γ(ss′)dS = λ̂

(s)

b,j (16)

where j denote a node of the interface, ϕ
(s)
j its associated shape function and

λ̂
(s)

b,j the corresponding nodal component of λ̂
(s)

b . This equation then imposes
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that the discrete field λ̂
(s)

b and the continuous field F̂
(s)
bh develop the same

virtual work in any finite element displacement field. The conditions on F̂
(s)
bh

have these discrete counterparts on λ̂
(s)

b :

∑

s

A(s)λ̂
(s)

b = 0

R(s)T
(
t(s)

T
λ̂
(s)

b + f (s)
)
= 0

(17)

where R(s) is a basis of ker(K(s)). As said earlier, the first equation corre-
sponds to the equilibrium between subdomains. The second equation corre-
sponds to the balance of the subdomain with respect to virtual rigid body
motions (since this kind of displacement field is exactly represented in the
finite element approximation, the discrete condition is equivalent to the con-
tinuous one).

As a first approach, we define F̂
(s)
bh as:

F̂
(s)
bh = ϕh

(s)

|Γ(s)F̂
(s)
b (18)

where F̂
(s)
b is the vector of nodal values of F̂

(s)
bh and ϕh

(s)

|Γ(s) refers to the vector

of the trace on Γ(s) of finite element shape functions. Vector F̂
(s)
b is then

obtained by the inversion of the (small) “mass” matrix of the interface of
each subdomain. In the following, we denote by Gh the previous procedure
which associates a continuous balanced interface force F̂

(s)
bh to a balanced

nodal interfaces forces λ̂
(s)

b :

F̂
(s)
bh = Gh(λ̂

(s)

b ) (19)

The traction field F̂
(s)
bh allows to satisfy the interface conditions associated

to the static admissibility. The next step is to build internal finite element

stress fields which match the associated nodal boundary field λ̂
(s)

b . This is
done by solving one finite element problem on each subdomain with imposed
Neumann conditions on the interface.

ũ(s) = K(s)+
(
f (s) + t(s)

T
λ̂
(s)

b

)

σ̂
(s)
h = Fh

(
H : ε(ϕ

(s)
h ũ(s)), f (s),

{
g(s),Gh(λ̂

(s)

b )
})

σ̂h = A(σ̂�
h ) ∈ SA(Ω)

(20)
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The use of the pseudo-inverse K(s)+ is due to the potential lack of Dirichlet
boundary conditions on the substructure. Displacement field ũ(s) is defined
up to a rigid body motion which needs not to be determined since only the
symmetric gradient of the associated displacement field is required.

It has to be noted that the fully parallel procedure Gh proposed above
leads to a different admissible traction field as would have been obtained
using standard patch-technique [9] (referred in the sequel as the sequential
approach). Thus the use of Gh implies that the parallel error estimation
is different from the standard sequential one even when discrete interface
conditions are satisfied. For now there are no theoretical results on the
quality of the resulting fields, examples (as given in Section 6) show that
sequential estimator and parallel estimator (when interface conditions have
sufficiently converged, which happens very quickly) can not be distinguished.

4. Recovery of admissible fields in BDD

In the Balancing domain decomposition [16, 17], a unique interface dis-
placement unknown ub is introduced so that continuity is always insured:

u
(s)
b = A(s)Tub =⇒

∑

s

A(s)u
(s)
b = 0 (21)

Other quantities can be deduced from ub and equations (12,13):

u
(s)
i = K

(s)
ii

−1
(
f
(s)
i −K

(s)
ib A

(s)Tub

)

λ
(s)
b = S(s)ub − b(s)

(22)

The BDD solver consists in iteratively finding the interface displacement ub

which insure global equilibrium (
∑

sA
(s)λ

(s)
b = 0),

0 =
∑

s

A(s)λ
(s)
b =

(
∑

s

A(s)S(s)A(s)T

)
ub −

(
∑

s

A(s)b(s)

)
(23)

4.1. Recovery of KA fields

In the BDD solver, kinematic interface conditions are satisfied anytime
and using û

(s)
b = ub enables to build û

(s)
h so that ûh = A

(
û�
h

)
∈ KA(Ω). Note

that all associated computations are realized during the standard resolution
process so that no extra operation is required.
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4.2. Recovery of SA fields

For a given interface displacement ub, we note:

VλbW =
∑

s

A(s)λ
(s)
b =

∑

s

A(s)
(
S(s)ub − b(s)

)

Obviously VλbW is zero if and only if ub is the solution to (23). We then
define:

λ̂
(s)

b = λ
(s)
b − Ã(s) T VλbW (24)

where (Ã(s))s are scaled assembling operators so that
∑

sA
(s) Ã(s) T = I.

The multiplicity scaling is a typical example of such operator Ã(s):

Ã(s) T = A(s) T

(
∑

j

A(j) A(j) T

)−1

which, in the case of two subdomains, gives Ã(s) T VλbW =
1

2
VλbW. In the

case of heterogeneous structures, other scaled assembly operators which take
the heterogeneity into account are used [18, 19, 20].

It is clear that by definition, λ̂
(s)

b is a balanced nodal reaction field:

∑

s

A(s)λ̂
(s)

b = 0

In order to prove that λ̂
(s)

b also satisfies Fredholm’s alternative, we note that

since R(s) is a basis of ker(K(s)) and K
(s)
ii is invertible, we have S(s)R

(s)
b = 0

and R
(s)
i = − K

(s)
ii

−1
K

(s)
ib R

(s)
b . The condition then writes in an equivalent

condensed form:

R
(s)
b

T
(
λ̂

(s)

b + b(s)
)
= 0

R
(s)
b

T
(
S(s)ub − b(s) + Ã(s) T VλbW + b(s)

)
= 0

Using the symmetry of S(s) (inherited from the symmetry of K(s)) to nullify

R
(s)
b

T
S(s), the condition writes:

(
Ã(s)R

(s)
b

)T
VλbW = 0 (25)

12



which is exactly the balancing condition [6] of the iterative BDD solver: the

residual of the BDD iterative solver VλbW =
(∑

sA
(s)λ

(s)
b

)
(23) has to be

orthogonal to all local weighted rigid body motions so that preconditioning
step is well posed.

Then we have constructed a pair of interface nodal Vectors (ûb, λ̂b) which
satisfy all required conditions to build admissible fields.

Note that all the involved operations are already realized during clas-
sical steps of the primal domain decomposition approach with a Neumann-
Neumann preconditioner and the associated coarse problem, so that all finite
element quantities (even the internal ones) are available at no cost; the only

extra operations are due to the use of Algorithms Gh (to compute F̂bh) and
Fh (to compute σ̂h).

5. Recovery of admissible fields in FETI

In the Finite Element Tearing and Interconnecting domain decomposi-
tion [5], a unique interface effort unknown λb is introduced so that interface
equilibrium is always insured:

λ
(s)
b = A(s)Tλb =⇒

∑

s

A(s)λ
(s)
b = 0 (26)

Displacements can be deduced from λb if it satisfies Fredholm’s alternative
on each substructure:

u(s) = K(s)+
(
f (s) + t(s)

T
A(s)Tλb

)
+R(s)α(s)

0 = R(s)T
(
f (s) + t(s)

T
A(s)Tλb

) (27)

where α(s) is the unknown magnitude of rigid body motions. The FETI
solver consists in iteratively finding an interface effort λb, under the previous
constraint, which insures the continuity of interface displacement:

0 =
∑

s

A(s)u
(s)
b =

(
∑

s

A(s)t(s)K(s)+t(s)
T
A(s)T

)
λb

+

(
∑

s

A(s)t(s)K(s)+f (s)

)
+

(
∑

s

A(s)t(s)R(s)α(s)

)
(28)

13



5.1. Recovery of SA fields

In the FETI solver, the nodal interface fields λ
(s)
b = A(s)Tλb are by

construction always balanced at the interface (26) and associated to well-
posed discrete Neumann problems on each substructure (27). Hence, we

can directly set λ̂
(s)

b = λ
(s)
b and apply algorithms Gh and Fh to compute

σ̂
(s)
h ∈ SA

(
Ω(s)

)
with σ̂h = A(σ̂�

h ) ∈ SA(Ω).

5.2. Recovery of KA fields

For a given balanced nodal interface traction λb, we introduce, in agree-
ment with (27), the gap of the interface displacement :

TubU =
∑

s

A(s)u
(s)
b

and we define

û
(s)
b = u

(s)
b − Ã

(s) T

TubU

where (Ã
(s)
)s are scaled assembling operators so that

∑
sA

(s) Ã
(s) T

= I.

Similarly to the BDD case, a typical example of such operator Ã
(s)

is the
multiplicity scaling:

Ã
(s) T

= A(s) T

(
∑

j

A(j) A(j) T

)−1

(29)

Note that in the case of two subdomains, we have: Ã
(s) T

TubU =
1

2
TubU.

The connection between FETI and BDD scaling operators (even in the het-
erogeneous case) is given in [21].

It is clear that by construction

∑

s

A(s)û
(s)
b = 0

Hence nodal interface displacement û
(s)
b can be used to deduce an admissible

displacement field û
(s)
h so that ûh = A

(
û�
h

)
∈ KA(Ω).

Then we have constructed a pair of interface nodal Vectors (ûb, λ̂b) which
satisfies all required conditions to build admissible fields. Note that all the
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involved operations are already realized during classical steps of the dual do-
main decomposition approach (with built-in coarse problem) with Dirichlet’s
preconditioner, so that all finite element quantities (even the internal ones)
are available at no cost: the quantity TubU is directly available during the
classical solution procedure (without computing any α(j)) which is based on
an initialization/projection algorithm [5], and the displacement field u(s) can
be defined up to an element of the kernel (a rigid body motion) since only
its symmetric gradient is used during the computation of the error. The only
extra operations are due to the use of algorithms Gh (to compute F̂bh) and
Fh (to compute σ̂h).

6. Numerical assessment

In order to assess the performance of our parallel error estimator, we
consider the 2D toy problem of the Γ-shape structure of Figure 2(a) which has
been used in other papers like [22]. Plane stresses are assumed. The material
behavior is isotropic, linear and elastic, with Young modulus E = 2000 MPa
and Poisson’s ratio ν = 0.3. The structure is clamped on its basis (whose
length is denoted L) and it is submitted to traction and shear on its upper-
right side, while all the remaining boundaries are traction-free.

(a) Finite element problem
(h = L

4
)

(b) Substructuring
(h = L

8
, Nsd = 8)

Figure 2: Γ-shape structure
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Several regular meshes have been generated, constituted by triangular
elements of characteristic size h = L

m
with m = 2, 4, 8, 16, 32. For each

mesh, a sequential (mono-domain) computation is driven, followed by domain
decomposition computations obtained by an automatic splitting of the mesh
in an increasing number Nsd of subdomains ( Nsd = 2, 4, 8 when m 6 4 and
Nsd = 2, 4, 8, 16, 32 when m > 8). Figure 2(b) shows such a decomposition
for Nsd = 8 and m = 8.

All the computations are driven in the ZeBuLoN finite element code [23],
using elements of polynomial degree p = 1. Both BDD and FETI algorithms
are used to solve the substructured problems, respectively used together with
Neumann-Neumann and Dirichlet preconditioners. Beside, the convergence
criterion of the solver, which stands here for the interface traction gap (resp.
displacement gap) in the primal (resp. dual) approach, is set to 10−6.

On each case, in addition to the new parallel error estimator eddmCR , we
compute the standard sequential eseqCR and the true error eh obtained using a
reference field uex computed on a very fine mesh:

eseqCR = eCR(Ω)(ûh, σ̂h)

eddmCR =

√∑

s

(
eCR(Ω(s))

(
û
(s)
h , σ̂

(s)
h

))2

eh = ‖ε (uex − ûh) ‖H,Ω =
√

‖ε (uex) ‖2H,Ω − ‖ε (ûh) ‖2H,Ω

6.1. Quality of the parallel error estimator

We first study the quality of the parallel error estimator eddmCR for com-
putations when convergence of the domain decomposition solver is reached.
As said earlier, the proposed technique does not lead to the same statically
admissible field because of the special treatment of the interface traction
(19). Our estimator might then be sensitive to the substructuring, we thus
compare the estimations obtained with meshes of characteristic size h and
decomposition into Nsd subdomains. Results are given in Figure 3 and Table
1.

We observe that:

• The results obtained by FETI and BDD can not be distinguished
(which is why only FETI results are given in Table 1).

• eddmCR barely depends on the substructuring; the results are quite similar
whether they are conducted on a single domain (“sequential” curve) or
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Figure 3: Convergence of Error eh and Estimators eseqCR and eddmCR (for various Nsd) vs.
element size h

onNsd subdomains. Only a slight rise of the estimation can be observed
when the number of interface degrees of freedom is not small compared
to the number of internal degrees of freedom, which is logical since
the description of interface traction fields is coarser in parallel than in
sequential.

As a conclusion, the parallel error estimator eddmCR enables to recover the
same efficiency factor as the standard sequential one, while the CPU-time is
divided by Nsd.

6.2. Convergence of the parallel estimator along DD-solver iterations

Previous results enabled to analyse the quality of the parallel estimator
when interface quantities had converged. A new feature associated to the use
of an iterative solver for the domain decomposition (DD) problem is that the
discretization error estimation can be conducted before DD convergence is
reached, that is in presence of displacement or traction discontinuity at the
interface as explained in Sections 4 and 5

We then compute the parallel error estimator eddmCR at each iteration of the
DD solver. Convergence curves of eddmCR during the FETI and BDD iterations
are shown on Figure 4. Parallel error estimator is plotted as a function of
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h L/2 L/4 L/8 L/16 L/32
# dofs 146 514 1922 7426 29186

eh 0.2347 0.1493 0.0937 0.0597 0.0386
eseqCR 0.5712 0.4035 0.2662 0.1769 0.1151

Nsd eddmCR

2 0.5657 0.4021 0.2648 0.1747 0.1151
4 0.5768 0.4007 0.2648 0.1747 0.1151
8 0.5546 0.4007 0.2676 0.1747 0.1165
16 0.2690 0.1761 0.1165
32 0.2787 0.1789 0.1178

Table 1: Error eh and Estimators eseqCR and eddmCR (for various Nsd) vs. element size h

the FETI (resp. BDD) residual, defined (for Iteration n) as the normalized
displacement (resp. traction) gap at the interface:

rn =
Tun

b UΓ

Tu0
bUΓ

or rn =
Vλn

b WΓ

Vλ0
bWΓ

(30)

Classical stopping criterion for the of convergence of DD solver is this residual
being below 10−6. Because of the similarity between the curves, the only
shown cases correspond to h = L/8 and h = L/16.

The curves show a rapid convergence of the parallel error estimator along
iterations of the solver, so that eddmCR can be considered as converged when
FETI residual reaches an order of magnitude of 5.10−3 or BDD residual
reaches 5.10−1, which corresponds to at most 5 iterations whereas the solver
convergence is achieved in 10 to 20 iterations.

Actually, eddmCR is driven by both the discretization error and the conver-
gence of the solver (interface error). The “L”-shaped curves show that the
impact of residual of the DD solver is preponderant only at the first iterations
(when interface fields are very poorly estimated), after eddmCR stagnates at a
value very close to eseqCR which is only associated to the discretization error.

Then, it seems possible to stop the iterations of the solver far before
convergence while still obtaining an accurate global estimate for the dis-
cretization error.

Figures 5 and 6 show maps of the elementary contributions eddm,E
CR to the

parallel error estimator eddmCR at different steps of the convergence, for Nsd = 8
with he = L/2 or he = L/8. At the first iterations it can be seen that the
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Figure 4: Convergence of estimator vs. DD residual

estimator highlights both discretization errors (around the re-entrant angle)
and lack of convergence of the solver (along the interfaces), whereas very
quickly the solver (that is the interfaces) does not contribute any more to
the estimator.

The various examples show that the convergence of the global estimator is
due to the convergence of elementary Contributions eddm,E

CR , which means that
when willing to carry out remeshing procedures, the maps obtained after few
iterations of the solver are sufficient to define correct refinement instructions.

7. Conclusions

In this paper, we presented a new approach to handle robust model veri-
fication based on constitutive relation error in a domain decomposition con-
text.
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The method relies on the construction of fields that are kinematically
and statically admissible on the whole structure. We showed that a fully
parallel construction is possible even when starting from fields which do not
satisfy interface conditions. The construction is a three-step procedure: first
displacement and traction nodal fields are built-up so that discrete admis-
sibility conditions are satisfied, second continuous admissible traction fields
are deduced, third these fields are used as input by any classical recovery
procedure. The first step is implicitly done when good preconditioners are
employed within the domain decomposition methods and the second step
corresponds to the inversion of small and sparse “mass” matrices.

Our first results show that not only the estimation error does not suffer
from the approximation that are made at the interface in order to achieve full
parallelism, but that even roughly estimated interface fields enable to obtain
a good estimation of the discretization error and correct maps of elementary
contributions which are required by mesh adaptation procedures. Thus not
only the computational cost are divided by the number of processors but
the prior obtainment of the finite element solution can be accelerated since a
coarse solution is sufficient (which corresponded to 3 to 5 times less iterations
in our case).

Future studies will deal with parallel mesh adaptation.

References

[1] I. Babuska, W. Rheinboldt, Error estimates for adaptative finite element
computation, SIAM J. Num. Anal. 15 (4) (1978) 736–754.

[2] O. Zienkiewicz, J. Zhu, A simple error estimate and adaptative proce-
dure for practical engineering analysis, Int. J. for Num. Meth. in Engrg.
24 (1987) 337–357.
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Revue européenne des élements finis 11 (2002) 363–377.

[21] P. Gosselet, C. Rey, D. Rixen, On the initial estimate of interface forces
in FETI methods, Comp. meth. appl. mech. engrg. 192 (2003) 2749–
2764.

[22] L. Chamoin, P. Ladeveze, A non-intrusive method for the calculation of
strict and efficient bounds of calculated outputs of interest in linear vis-
coelasticity problems, Comp. Meth. Appl. Mech. Eng. 197 (9-12) (2008)
994–1014.

[23] Northwest Numerics, Z-set user manual (2001).

22



z z

0

0.0175

0.0350

0.0525

0.0701

0.0876

0.1051

0.1226

0.1402

0.1577

Decomposition Reference map Range

z z z

Iteration 1 Iteration 4 Iteration 5
BDD solver

z z z

Iteration 1 Iteration 4 Iteration 5
FETI solver

Figure 5: Maps of eddm,E
CR for h = L/2 and Nsd = 8 at various iterations

23



z z

0

0.00949

0.0189

0.0285

0.0380

0.0474

0.0569

0.0664

0.0759

0.0854

Decomposition Reference map Range

z z z

Iteration 1 Iteration 4 Iteration 5
BDD solver

z z z

Iteration 1 Iteration 4 Iteration 5
FETI solver

Figure 6: Maps of eddm,E
CR for h = L/8 and Nsd = 8 at various iterations

24



1(1) 2(1) 3(1)

4(1)
5(1)

1(2) 2(2) 3(2)

4(2)5(2)

1(3)

2(3)

3(3)

4(3)

(a) Subdomains

1
(1)
b

2
(1)
b

3
(1)
b

1
(2)
b

2
(2)
b3

(2)
b

1
(3)
b

2
(3)
b

3
(3)
b

(b) Local interface

2
(3)
b

1Γ

2Γ

3Γ

4Γ

(c) Primal interface

1Γ

2Γ

3Γ

4Γ

5Γ

6Γ

(d) Dual interface

t
(1) =





0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



 , t
(2) =





0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



 , t
(3) =





1 0 0 0
0 1 0 0
0 0 1 0





A
(1) =









0 0 0
0 1 0
1 0 0
0 0 1









, A
(2) =









1 0 0
0 0 1
0 0 0
0 1 0









, A
(3) =









0 0 1
0 0 0
1 0 0
0 1 0









A
(1) =















0 0 0
0 1 0
1 0 0
0 0 0
0 0 1
0 0 1















, A
(2) =















1 0 0
0 0 −1
0 0 0
0 1 0
0 −1 0
0 0 0















, A
(3) =















0 0 −1
0 0 0
−1 0 0
0 −1 0
0 0 0
0 −1 0















Figure 7: Local numberings, interface numberings, trace and assembly operators

25


