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In quasi-static nonlinear time-dependent analysis, the choice of the time discretization is a
complex issue. The most basic strategy consists in determining a value of the load increment that
ensures the convergence of the solution with respect to time on the base of preliminary simulations.
In more advanced applications, the load increments can be controlled for instance by prescribing
the number of iterations of the nonlinear resolution procedure, or by using an arc-length algorithm.
These techniques usually introduce a parameter whose correct value is not easy to obtain. In this
paper, an alternative procedure is proposed. It is based on the continuous control of the residual
of the reference problem over time, whose measure is easy to interpret. This idea is applied in the
framework of a multiscale domain decomposition strategy in order to perform 3D delamination
analysis.

1 INTRODUCTION

The virtual testing of delamination is an objective widely spread among industrialists especially in
the aeronautical field. To achieve it, two research thematics which have undergone large evolution
during the last twenty years need to be put in conjunction: the pertinent modeling of composites
and the efficient computation of structures.

Indeed, there have been many advances toward a better understanding of the mechanics of
laminated composites and of damage mechanisms. Two kinds of modeling have proved their
validity: microscale and mesoscale models. Microscale models are strongly connected to the physics
of the material and thus provide a reliable framework for simulation [12, 22]. Unfortunately, the
computation of models defined at the micro scale require such a fine discretization that only
small test specimens can be simulated, structural computations being out of reach even on recent
hardware. Meso-models [26, 4, 15, 7] are defined at a scale which enables both the introduction
of physics-based ingredients and the simulation of small industrial structures. They indeed most
often rely on the definition of two meso-constituents, the ply (3D entity) and the interface (2D
entity), which are modeled using continuum (damage) mechanics, their behavior being obtainable
from the homogenization of micro-models [21]. Anyhow, for reliable simulation, discretizations
still need to be fine (in order, for instance, to represent correctly the gradients of stresses due to
edge effects which are responsible for the initiation of many degradations) and associated systems
thus remain very large (in terms of number of degrees of freedom) and strongly nonlinear (with
potential instabilities).

As a first approach of the reliable simulation of quasi-static simulations of the delamination in
composite structures, we chose in [10] to neglect the effect of deterioration within the plies and to
lump the degradations in the interfaces. We thus retained the mesomodel presented in [3] where
the delamination ability is localized in the interfaces and handled through a cohesive behavior. The
space discretization is considered sufficiently fine to represent accurately any evolution of multiple
delamination cracks (sufficient number of Gauss points in the length of the process zone [27, 1, 7]).
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At each time step of an incremental time discretization scheme, the associated large nonlinear
system is solved using a three-scale domain decomposition strategy. Based on the mixed LaTIn-
based domain decomposition method [14], this strategy has been given high numerical efficiency
by adapting various ideas from the work of [23, 24, 25] to the computation of delamination. Three-
dimensional simulations of the delamination in realistic structural components have been performed
on parallel computers without the need to perform local space refinement.

Though, a complex issue arises when choosing the load increments: the solution to softening
quasi-static problems depends on the time discretization scheme parameters (non-uniqueness of
the solution and possible bifurcation paths). This remark brings us to the field of the validation.
In the literature, numerous error indicators have been developed to control a posteriori the global
error introduced in finite element schemes for linear problems [5, 28, 20]. These indicators have
been extended to the validation of nonlinear time-dependent problems [13, 6, 9]. One of the most
advanced criterion is the so-called error in the constitutive law [13]. A solution to the nonlinear
evolution problem being computed using a FE scheme and a classical time integration procedure,
one constructs a solution which satisfies the kinematic and static admissibilities, and lump the
residual of the nonlinear evolution problem equations in the constitutive laws. A measure of this
residual permits to control at the same time the discretization error in space, in time and the
error introduced by the iterative solution procedures [16]. This idea has been formalized in [11] for
materials described using internal variables. The state equations are satisfied by the reconstructed
solutions, the measure of the non-verification of the evolution laws permits to derive a strict upper
bound to the solution error. Though, this new admissible solution is not easily constructed in the
case of softening behaviors. Specific developments in [17] meant to tackle this difficulty, and the
resulting procedure is used in [16] to derive an adaptive refinement procedure in space and time.
Note that, at the present time, a link between the error in the constitutive law and the error in
the solution is still to be established in the case of softening materials.

The aim of the work presented in this paper is double. The first is to define a comprehensive
time discretization error indicator inspired from the work of [13, 16] for delamination analysis and
to ensure that its computation and use is numerically efficient within the LaTIn-based domain
decomposition strategy. Our second goal is to use the developed indicator to control on the fly the
load increment in quasi-static analysis in order to ensure the convergence of the computed solution.

The paper is organized as follows. The reference delamination problem is presented in Section 2.
The dependency of the solution to this problem on the time discretization scheme is demonstrated.
In the following section, we present a time-dependent error indicator based on the error in the
constitutive law and computed with respect to a continuous solution in time, constructed by
interpolation over each time step. Although very general, this indicator is not directly suitable
for the LaTIn-based multiscale strategy used to perform the nonlinear resolutions. The main
features of this strategy are recalled in Section 4. We focus in particular on the indicator based
on the error in the constitutive law used to estimate the convergence of the iterative procedure.
In Section 5, this convergence indicator is associated to the previous developments to derive an
alternative and cheap time discretization error indicator, which is the basis for the development of
an automatic time-step-control procedure. At last, this technique is validated on multiscale and
parallel delamination simulations in Section 6. Two different problems are assessed: a simple and
stable problem in which the time increments correspond to the increases in the prescribed load,
and a more complex and unstable problem, solved using an arc-length procedure, in which the
time increments correspond to the value of the arc-lengths.

2 THE REFERENCE PROBLEM AND ITS DISCRETIZA-
TION IN TIME

2.1 Reference problem at a given time of the analysis

The delamination simulation is performed under the assumptions of quasi-static, isothermal evo-
lution over time and small perturbations.

The laminate structure E occupying Domain Ω is made out of NP adjacent plies occupying
Domains (ΩP )P∈J1, NP K (of boundaries (∂ΩP )P∈J1, NP K), separated by (NP −1) cohesive interfaces
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(IP )P∈J1, NP−1K and (see Figure (6), Page 9). An external traction field F d (respectively a dis-
placement field Ud) is applied to the structure on Part ∂Ωf (respectively ∂Ωu) of the boundary ∂Ω
of Domain Ω. The volume force is denoted f

d
. Let uP be the displacement field, σ

P
the Cauchy

stress tensor and ε
P

the symmetric part of the displacement gradient in Ply P .
At every time t ∈ [0 T ] of the analysis, the reference non-linear equilibrium problem reads:

Find sref = (sP )P∈J1, NP K), where sP = (uP , σP ), which satisfies the following equations:

• Kinematic admissibility on ∂Ωu:
uP |∂Ωu

= Ud (1)

• Global equilibrium of Structure E: ∀(uP ?)P∈J1, NP K

∑

P

∫

ΩP

Tr
(
σ
P
ε(uP

?)
)
dΩ −

∑

P

∫

ΩP

f
d
.uP

? dΩ−
∑

P

∫

∂ΩP∩∂Ωf

F d.uP
? dΓ

+
∑

P

∫

IP

σ
P
nP .[u]

P

?
dΓ = 0

(2)

where [u]
P

is the jump of displacement of Interface IP : [u]
P

= uP+1 − uP and nP is the
outer normal to the boundary ∂ΩP .

• Linear orthotropic behavior of the plies:

σ
P

= K ε(uP ) (3)

• Constitutive law of the cohesive interfaces, local on any interface IP . The elastic damageable
law proposed in [4] is described using continuum damage mechanics. Three internal variables
(di)i∈J1, 3K (one for each delamination mode: traction along nP and shear along t1 and t2 on
Figure (1)), ranging from 0 to 1 are introduced in the surface strain energy ed in order to
take into account the irreversible damage mechanisms.

6
1. Modélisation de l’interface

2. Modèle d’interface endommageable

2.1 Expression de l’énergie de déformation
On écrit l’énergie libre de ce milieu sous la forme :

ψ(σ.N3,di) =
1
2

�
σ33+

2

k3(1−d3)
+

σ33−2

k3
+

σ13+
2

k1(1−d1)
+

σ23+
2

k3(1−d2)

�
(1.15)

avec 0 ≤ di ≤ 1

FIG. 1.2: Repère lié à l’interface

L’énergie libre, exprimée en contraintes, est reliée à une expression en déplacement de l’énergie
de déformation par la relation de comportement suivante :

σ.z = K.[u] (1.16)

Avec [u] = u+ − u− = [u1].N1 + [u2].N2 + [u3].N3 exprimé dans le repère (N1,N2,N3) défnit sur la
figure (1.2) et la définition de l’opérateur de comportement

K =




k1(1−d1) 0 0
0 k2(1−d2) 0
0 0 k3(1−d3.h(σ33))


 (1.17)

où h est la fonction heavyside :
∀x < 0 h(x) = 0 (1.18)

∀x ≥ 0 h(x) = 1 (1.19)

On obtient l’expression de l’énergie de déformation volumique en déplacements suivante :

ed =
1
2
((1−d1)k1[u1]

2 +(1−d2)k2[u2]
2 + k3(1−d3)[u3]

2
+ + k3[u3]

2
−) (1.20)

Biblio P. Kerfriden

P

P ′

nP

t1

t2

IPP ′

Thursday, 4 February 2010

Figure 1: The mesomodel entities

– Two state equations are derived from the expression of the free energy. The first one es-
tablishes a relation between the dual interface unknown σ

P
nP , and the primal interface

unknown [u]
P

:

σ
P
.nP =

∂ed
∂[u]

P

which gives σ
P
.nP = K

P

((
[u]

P

)
|τ∈[0 t]

)
[u]

P
(4)

where, in the basis (nP , t1, t2), h+ being the positive indicator function:

K
P

((
[u]

P

)
|τ∈[0 t]

)
=




(
1− h+([u]

P
.nP )d3

)
k0
n 0 0

0 (1− d1)k0
t 0

0 0 (1− d2)k0
t



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The second state equation links the thermodynamic forces (Yi)i∈J1, 3K to the primal
interface unknown:

Yi = −∂ed
∂di

where





Y1 =
1

2
k0
t

(
[u]

P
.t1

)2

Y2 =
1

2
k0
t

(
[u]

P
.t2]
)2

Y3 =
1

2
k0
n

(
h+([u]

P
.nP )

)2

(5)

– The evolution laws are:

d1 = d2 = d3 = min{1, w(Y )}

where





w(Y ) = n
n+1

(
Y
Yc

)n

Y = max(τ≤t)
(
Y3
α
|τ + γ1Y1

α
|τ + γ2Y2

α
|τ
) 1
α

(6)

Further details on this cohesive zone model and identification issues can be found in [4].

The dissipated energy Edissi will be used in this paper as a global measure of the delaminated
area of the cohesive interfaces:

Edissi =
∑

P

∫

IP

∫ t

0

(
3∑

i=1

Yi ḋ

)
dt dΓ =

∑

P

∫

IP

Ad dΓ (7)

where A is a scalar which only depends on the parameters of the interface model.

In the following developments, the investigations are restricted to simulations under prescribed
forces and displacements following a unique load function of time. In this context, the volume
force will be assumed negligible. These assumptions are not mandatory to make use of the work
presented in this paper, but simplify the construction of a continuous solution over time (Section
3).

2.2 Time discretization scheme

An incremental procedure is used to solve the problem over time. It consists in discretizing the
time of the analysis [0 T ] in N intervals [tn tn+1]n∈J0, N−1K. Successive nonlinear problems are
solved at each computation time (tn)n∈J0, NK.

Hence, a solution to the discretized problem in time is a set of N + 1 solutions satisfying the
reference problem equations, the time dependency in the constitutive laws being discretized. More
precisely, at Computation time tn+1, the discretization of Equations (4) and (6) reads:

σ
P
.nP = K

P

((
[u]

P

)
|t∈[t0, tn+1]

)
[u]

P
(8)

In general, the time discretization is chosen so that within each interval [tn tn+1]n∈J0, N−1K,
the evolution of the prescribed load is monotonic, which will also be assumed in the following.

2.3 Influence of the time increments on the solution to the discretized
delamination problem

The solution to the discretized reference problem reached at time T strongly depends on the time
increments for two reasons:

• the discretized cohesive law (Equation (8)) depends on the discrete history of the interface
variables. Hence, the residual stiffness of the cohesive interfaces depends on the time incre-
ments. This phenomenon is illustrated in the next section.

• structural problems involving softening materials may be unstable and may have multiple
solutions. In those cases, the solution paths depend on both the algorithm used at each
computation time step and the initialization of this algorithm (i.e.: the previous converged
solution). The resulting dependency on the time increments will be demonstrated in the last
section of this paper.
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Ud

−Ud

pre-cracked interface

crack front

diffuse damage

Figure 2: Definition of the four-ply DCB problem

DCB (double cantilever beam) test case The laminate structure that we consider is made
out of four isotropic plies (Figure 3). One part of the median cohesive interface is replaced by a
contact interface in order to simulate an initial crack in the structure. Displacements are prescribed
for the crack to propagate in a stable manner. The final prescribed displacement is set to a
predefined value, which fixes the propagation length. The initial stiffness of the cohesive interfaces
is obtained by integrating the Young and shear moduli of the matrix in the “thickness” of the
interface (1/10 the thickness of the plies) [4].

The solution is not unique and depends on the load increments. Figure 3 presents the damage
state in the upper cohesive interface, four different time discretizations being applied (these results
will be fully detailed later on, for the values of the successive load increments are obtained by the
adaptive time step procedure described in Section 5). νtime,ddd is the criterion driving the time

discretization (the largest νtime,ddd , the coarser the discretization). In cases 1 and 2, the number
of time increment used in the propagation phase of the analysis are, respectively, 69 and 21. The
differences in the damage state of the interfaces are not significant, the evolution of the crack
front being sufficiently slow to capture the effects of the stress concentrations. Hence, both these
solutions are converged with respect to the time. In case 3, obtained with 9 coarse time increments,
the solution is slightly different from the previous reference cases. Finally, in case 4, using only 5
time increments to describe the propagation of the crack clearly leads to the appearance of damage
strips in the upper and lower interfaces. This is due to the effect of the stress concentration at the
tip of the crack which propagates in a discrete manner with respect to time.

damage strips

homogeneous damage state

in
cr

ea
si

n
g

 v
al

u
e 

o
f

Case 4

Case 3

Case 2

Case 1

ν
ti

m
e
,d

d
d

Figure 3: Influence of the prescribed value νtime,ddd on the damage state in the upper cohesive
interface of the DCB problem
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3 A TIME DISCRETIZATION ERROR INDICATOR

We suppose that two consecutive solutions to the reference problem, sn at Time tn and sn+1 at
Time tn+1, have been computed using a nonlinear resolution strategy. The aim is to evaluate the
relevancy of the solution computed at Time tn+1, the continuous evolution of the structure over
the current time step [tn tn+1] being a priori unknown. We propose to construct an interpolated
solution over the time step in order to monitor the residual of the nonlinear reference problem
continuously.

3.1 Interpolation of the kinematic and static fields over a time step

Let us prescribe the continuous evolution of the prescribed boundary values over the time step:

∀ t̄ ∈ [tn tn+1],

{ ∀M ∈ ∂Ωf , F d|t̄ = α(t̄)F d|tn + (1− α(t̄))F d|tn+1

∀M ∈ ∂Ωu, Ud|t̄ = α(t̄)Ud|tn + (1− α(t̄))Ud|tn+1

(9)

where the function α(t̄) is the restriction of the load function over [tn tn+1]. In the case of a linear
evolution (which will be the case in our applications), it simply reads:

∀ t̄ ∈ [tn tn+1], α(t̄) =
t̄− tn

tn+1 − tn
(10)

The evolution of the kinematic and static fields over the current time is assumed to follow the
evolution of the prescribed loading (see Figure (4)), which writes:

∀ t̄ ∈ [tn tn+1], ∀P ∈ J1, NP K,

{
uP |t̄ = α(t̄)uP |tn + (1− α(t̄))uP |tn+1

σ
P |t̄ = α(t̄)σ

P |tn
+ (1− α(t̄))σ

P |tn+1

(11)

sn+1

sn
computed solutions

t̄tn tn+1

 interpolated solution

(σ|t̄, u|t̄)

Figure 4: Schematic representation of the interpolation performed over each time step

sn and sn+1 are two solutions of the reference problem. In particular, they satisfy the following
set of linear equations:

• kinematic admissibility, Equation (1)

• static admissibility, Equation (2), the volume force being assumed negligible.

• constitutive law of the plies, Equation (3)

As a consequence, the interpolated kinematic and static fields over the current time step also satisfy
this set of linear equations. Hence, the residual of the reference problem at any time t̄ ∈ [tn tn+1] is
the residual of the constitutive law of the cohesive interfaces, which remains the only non-satisfied
equation.
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3.2 Evolution of the damage variables over the current time step

At any intermediate time t̄ ∈ [tn tn+1], the internal variables are calculated with respect to the
continuous history of the interpolated displacement field on Time interval [0 t̄]. Let us define a
new stress field σ̂ which satisfies the nonlinear constitutive law of the interfaces:

∀ t̄ ∈ [tn tn+1], ∀P ∈ J1, NP − 1K, on IP ,

σ̂
P |t̄.nP = K

P

((
[u]

P

)
|τ∈[0 t̄]

)
[u]|t̄

(12)

Alternatively, one can update the damage variables with respect to the interpolated stress field,

and define a jump of displacement field [̂u] satisfying the constitutive law of the cohesive interfaces.
The damage variables initially computed at time tn+1 by the nonlinear resolution strategy

are discarded. Indeed, they may differ from the ones obtained at time tn+1 by the continuous
construction over [tn tn+1], for solution sn+1 only satisfies the discretized cohesive law (8). The
residual of the reference problem equations at Time tn+1 obtained when updating the damage
variables can be reduced by lowering the time increment ∆t = tn+1 − tn and performing new
nonlinear resolutions at Time tn+1, which will be detailed in Section 5.

3.3 Definition of the time discretization error indicator

A measure νinterp (“interp” stands for “interpolation”) of the residual of the reference problem
equations at any time t̄ ∈ [tn tn+1] can be obtained by summing the local contributions to the
error in the nonlinear constitutive laws:

νinterp|t̄ =
∑

P

‖
(
σ
P |t̄ − σ̂P |t̄

)
nP ‖IP

‖
(
σ
P |t̄ + σ̂

P |t̄

)
nP ‖IP

where ‖ x ‖IP =

∫

IP

xT x dΓ (13)

Or alternatively if the history is updated with respect to the interpolated stress field,

ν̃interp|t̄ =
∑

P

‖
(

[u]
P |t̄
− [̂u]

P |t̄

)
‖IP

‖
(

[u]
P |t̄

+ [̂u]
P |t̄

)
‖IP

(14)

sn

(σ|t̄, u|t̄)

t̄tn tn+1

sn+1

νinterp
|t̄

νinterp
|tn+1

νtime
|tn+1

(σ̂|t̄, u|t̄)

Figure 5: Schematic representation of the time discretization error indicator

The time discretization error indicator at Time tn+1 is defined as the maximum value of the
previous measure over [tn tn+1] (see Figure (5)), which reads:

νtime|tn+1
= max
t̄∈[tn tn+1]

νinterp|t̄ or alternatively ν̃time|tn+1
= max
t̄∈[tn tn+1]

ν̃interp|t̄ (15)

The concept introduced here finds its roots in the work of [13, 8], in which the sum over time
of the product of Criteria (13) and (14) is used to measure the error in the constitutive law due
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to both space and time discretization for materials satisfying Drucker’s stability equality. Three
main differences should be outlined here:

• In the case of softening materials, Drucker’s stability equality is not satisfied. The mathe-
matical properties which result from the definition of the Drucker’s law-based criterion do
not apply. Hence, making use of this criterion is not relevant. In addition, computing ν̃time

requires the monotony of the interface behavior (uniqueness of the admissible displacement
jump for any arbitrary local stress state). In the following developments, we will use Crite-
rion νtime to measure the residual of the reference problem equations over the current time
step.

• Our final goal being to provide an algorithm to control ”on-the-fly” the time increments,
νtime is not a norm over the whole time of the analysis, but it instead is evaluated locally
over each time increment.

• To be consistent with [13, 8] the field σ̂
P |t̄ should also be reconstructed with respect to the

space variables so that it satisfies exactly the static admissibility condition (2). In this work
we focus on the time discretization and so we content ourselves with a weak (discrete) static
admissibility. At Times tn and tn+1 solution fields satisfy the constitutive law of the plies (3),
the kinematic admissibility and the static admissibility “in the finite element sense”. Thus
Criterion νtime (which is introduced without reference to space discretization) only accounts
for the error due to time discretization.

3.4 Practical considerations

3.4.1 Sub-intervals

In practice, νinterp is computed at a given set of intermediate times within the current time
step. [tn tn+1] is subdivided into Ns subintervals [t̄i t̄i+1]i∈J0, Ns−1K, the time discretization error
indicator νtime|tn+1

being computed as:

νtime|tn+1
= max
i∈J0, NsK

νinterp|t̄i (16)

3.4.2 Error in the cohesive law

Computing νtime requires to extract the transverse constraints (σ
P
.nP )P∈J1, NP K which is not

directly available in finite element codes. Usually, cohesive interface elements are used to overcome
this problem. Classical incremental Newton solvers can then be used to solve the delamination
problem at each computation time (tn)n∈J0, NK. The technique to control the time increment that
we propose in Section 5.1.2 can directly be applied to such approaches.

We focus on the insertion of the control technique within the framework described in [10]. The
principle is to use an incremental LaTIn-based domain decomposition strategy [18] to efficiently
solve (in parallel) the delamination problem at each computation time. In this case, the cohesive
behavior is directly described as a nonlinear joint between substructures. The mixed description of
the interface behavior makes the transverse constraints available naturally. As it shall be detailed
in Section 5, the time discretization error indicator can be defined as a time-dependent version of
the convergence indicator used to stop the iterations of the LaTIn algorithm.

4 THE NONLINEAR RESOLUTION STRATEGY

We propose an overview of the domain decomposition strategy used to perform the successive
nonlinear resolutions of the delamination analysis, first in the stable case, then in the unstable
case, where it is combined with an arc-length procedure. We focus in a second time on the
development of a convergence indicator based on the error in the constitutive law [13] to stop both
of these iterative solvers. Further details concerning the multiscale and parallel computing aspects
can be found in [10].
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4.1 Substructured formulation of the reference problem

Perfect interfaces

Cohesive 
interfaces

Laminates Modelling

Substructuring

F d

Ud

f
d

E
∂ΩF

∂ΩU

P ′P

E E′

IPP ′

Thursday, 4 February 2010

Figure 6: Substructuring of the laminated composite structure

The laminate structure E is decomposed into substructures and interfaces as represented in
Figure (6). Each of these mechanical entities possesses its own kinematic and static unknown fields
linked by its behavior. The substructuring is driven by the will to match domain decomposition
interfaces with material cohesive interfaces, so that each substructure belongs to a unique ply and
has a constant linear behavior. Each substructure is defined in a domain ΩE such that E ∈ J1, nEK
(nE being the total number of substructures) and is connected to a adjacent substructures through
interfaces ΓEE′ = ∂ΩE ∩ ∂ΩE′ where E′ ∈ J1, nEK (Figure (7)). The surface entity ΓEE′ applies
force distributions FE , FE′ as well as displacement distributions WE , WE′ to Substructure E and
Substructure E′ respectively. On Substructure E such that ∂ΩE ∩∂Ω 6= ∅, the boundary condition
(Ud, F d) is applied through a boundary interface ΓEd . Let us define ΓE =

⋃
E′∈J1, nEK ΓEE′ ∪

ΓEd . We finally introduce σ
E

, the Cauchy stress tensor, and ε(uE), the symmetric part of the
displacement gradient, in substructure E.

The substructured quasi-static problem at any computation time tn+1 of the time discretization
scheme consists in finding s = (sE)E∈J1, nEK, where sE = (WE , FE), which satisfies the following
equations:

(uE , σ
E

) (uE′ , σ
E′)(FE′ ,WE′)

(FE ,WE)

E
E′ΓEE′

ΓEd

Figure 7: Substructuring of the laminated composite structure
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• Kinematic admissibility of Substructure E:

uE |ΓE = WE (17)

• Static admissibility of Substructure E: ∀(uE?,WE
?) ∈ UE ×WE / uE

?
|∂ΩE

= WE
?,

∫

ΩE

Tr
(
σ
E
ε(uE

?)
)
dΩ =

∫

ΓE

FE .WE
? dΓ (18)

• Linear orthotropic behavior of Substructure E:

σ
E

= K ε(uE) (19)

• Behavior of the interfaces ΓEE′ ∈ ΓE :

REE′(WE ,WE′ , FE , FE′) = 0 (20)

• Behavior of the interfaces ΓEd ∈ (ΓE ∩ ∂Ω):

REd(WE , FE) = 0 (WE = ud on ∂Ωu and FE = F d on ∂Ωf ) (21)

In delamination analysis, the formal relation REE′ = 0 reads:

• For perfect interface:

{
FE + FE′ = 0
WE −WE′ = 0

• For cohesive interface:

{
FE + FE′ = 0

FE = K
P

(
(WE′ −WE)|t∈Jt0, tn+1K

)
(WE′ −WE)

where Substructure E (respectively E′) belongs to Ply P (respectively P + 1).

4.2 Iterative resolution of the stable nonlinear substructured problem

sref

ŝ i+ 1
2

s i

s i+1

Ad

Γ

E+

E−

Figure 8: Schematic representation of the LaTIn algorithm

The equations of the problem can be split into the set of linear equations in substructures (static
and kinematic admissibility of the substructures, linear constitutive law of the substructures)
and the set of local equations in interface variables (behavior of the interfaces). The solutions
s = (sE)E∈J1, nEK = (WE , FE)E∈J1, nEK to the first set of equations belong to Space Ad, while

the solutions ŝ = (ŝE)E∈J1, nEK = (ŴE , F̂E)E∈J1, nEK to the second set of equations belong to Γ.
Hence, the converged solution sref is such that sref ∈ Ad

⋂
Γ.

The LaTIn resolution scheme consists in searching for the solution sref alternatively in these
two spaces along search directions E+ and E− (see Fig. 8):

• Find ŝi+
1
2 ∈ Γ such that

(
ŝi+

1
2 − si

)
∈ E+ (local stage)

• Find si+1 ∈ Ad such that
(
si+1 − ŝi+ 1

2

)
∈ E− (linear stage)

In the following, the subscript i will be dropped.
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Local stage One searches for a solution ŝ = (F̂E , ŴE)E∈J1, nEK satisfying the local equations
on the interfaces (REE′ = 0 or REd = 0), and search direction equation E+, introduced locally on
the interfaces :

(F̂E − FE)− k+
E(ŴE −WE) = 0 (22)

At this stage, variables FE et WE are known from the previous semi-iteration.
In the case where REE′ = 0 is a nonlinear equation, the local problem is solved by a quasi-

Newton algorithm.

Linear stage One searches for a solution s = (FE ,WE)E∈J1, nEK verifying the linear equations
on each substructure and, at best, a search direction equation E−, local on the interfaces, under
the constraint of average equilibrium of the interface forces :





FE |ΓE = arg min

{∫

ΓE

(
1

2 k−E
(FE − F̂E)2 + (FE − F̂E).(WE − ŴE)

)
dΓ

}

under the constraint: ∀(E′, E), ΠM
|ΓEE′FE|Γ

EE′
+ ΠM

|ΓEE′FE′|Γ
EE′

= 0
(23)

The macroscopic projectors ΠM
|ΓEE′ extract an average of the interface forces, which is transfered

into the whole structure. Technically, this stage consists in solving, in parallel, independent linear
problems on the sub-structures (using finite elements) and a small macroscopic linear problem
which is global over the structure (and discrete by construction).

4.3 Iterative resolution of the unstable nonlinear problem

When a snap-back appears in the global behavior of the simulated structure, the incremental
LaTin algorithm is switched to a well-known local arc-length algorithm [27, 2, 10]. The algebraic
nonlinear problem to solve at Time tn+1, in an unstable phase, reads:

qint

(
U|tn+1

, (U|τ )τ<tn+1

)
− λ|tn+1

qext = 0 (24)

The amplitude of the loading λ|tn+1
is unknown. A control equation inspired from [2] is introduced

so that the maximum local increment in the jump of displacement over all the cohesive interfaces
takes a predefined value ∆l:

c(∆U|tn+1
) ∆U|tn+1

= ∆l (25)

where the ∆ . unknowns are the increments in the quantities over Time step [tn tn+1]. c is then
the operator which extract the maximum of the (positive) jump increment.

Classically, the non-linear system (24, 25) is solved by a modified Newton-Raphson scheme:

• The linearization of (24) and (25) around point (U i, λi) leads to the system to solve at the
prediction step of the (i+ 1)th iteration of this scheme:





λi+1
|tn+1

=
∆l + c(∆U i|tn+1

)U|tn

c(∆U i|tn+1
) K

(
U i|tn+1

, (U|τ )τ<tn+1

)−1

qext

U i+1
|tn+1

= λi+1
|tn+1

K
(
U i|tn+1

, (U|τ )τ<tn+1

)−1

qext

(26)

The inversion of the linearized stiffness operator (i.e.: the resolution of the linear system
Ū = K(U i|tn+1

, (U|τ )τ<tn+1
)−1qext) is performed by using the domain decomposition method

described previously (the internal variables of the interfaces are fixed during the resolution)

• The correction step of the Newton scheme consists in updating Operators K and c with
respect to the kinematic field U i+1

|tn+1
found at the prediction stage.
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sref

v
v

v

ŝ i+ 1
2

s i

s i+1

Ad

Γ

E+

E−νsd

νiter

Figure 9: Classical convergence indicator νsd of the LaTIn solver and indicator νiter based on the
error in the constitutive law

4.4 Stopping criterion

4.4.1 Stable phase (LaTIn algorithm)

In order to evaluate the convergence of the LaTIn algorithm, one classically measures the distance
between spaces Ad and Γ along search direction E− [11] (criterion labeled νsd on Figure (9), “sd”
standing for “search direction”). In the work of [10, 19], a new criterion based on the error in the
constitutive law has been successfully assessed (in order, originally, to get rid of the dependency
of Convergence indicator νsd on the parameters of the LaTIn solver). The solutions resulting
from a linear stage of the LaTIn algorithm satisfy all the equations of the substructured reference
problem except the interfaces laws (20) and (21), whose residuals can be easily computed (Figure
(9)). More precisely, a solution si+1 ∈ Ad being reached, an indicator of the convergence of
the algorithm is given by integrating the corresponding local residuals of the interface behaviors
over the structure (residuals of Equations (20) and (21) evaluated for si+1 = (si+1

E )E∈J1, nEK =

(W i+1
E , F i+1

E )E∈J1, nEK).
Let us call q the number of interface relations being used (i.e.: the number of distinct interface

behaviors (REE′ = 0)(E,E′)∈J1, nEK2 and (REd = 0)E∈J1, nEK used in the structure). In our case,
q = 4 (perfect interfaces, cohesive interfaces with homogeneous constants, Dirichlet and Neumann
boundary conditions). Γ̄i is the set interfaces of Behavior i, for all i ∈ J1, qK. The vectorial
relations REE′ = 0 for i ∈ J1, qK and ΓEE′ ∈ Γ̄i or ΓEd ∈ Γ̄i are made of pi vectorial equations
Qij = 0 (2 equations for cohesive or perfect interfaces in 3D, 1 equation for boundary interfaces).
Here, subscript j ranges from 1 to p. Convergence indicator νiter (“iter” stands for “iterative”)
reads:

(
νiter

)2
=

q∑

i=1

pi∑

j=1

(
νiterij

)2
where

(
νiterij

)2
=

∑

Γ∈Γ̄i

∫

Γ

Qij .Qij dΓ

∑

Γ∈Γ̄i

∫

Γ

Q̃ij .Q̃ij dΓ

(27)

where, in the case of delamination (i.e : involving perfect and cohesive LaTIn interfaces):

• on a perfect interface ΓEE′ ∈ Γ̄1 :

Q11 = FE + FE′

Q̃11 = FE − FE′

Q12 = WE −WE′

Q̃12 = WE +WE′
(28)

• on a cohesive interface ΓEE′ ∈ Γ̄2 :

Q21 = FE −KP

(
(WE′ −WE)|t∈{tn+1,[0 tn]}

)
(WE′ −WE)

Q̃21 = FE +K
P

(
(WE′ −WE)|t∈{tn+1,[0 tn]}

)
(WE′ −WE)

Q22 = FE′ −K
P

(
(WE′ −WE)|t∈{tn+1,[0 tn]}

)
(WE −WE′)

Q̃22 = FE′ +K
P

(
(WE′ −WE)|t∈{tn+1,[0 tn]}

)
(WE −WE′)

(29)
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where P ∈ J1, NP − 1K. Note that, in Equation (29), the history of the interface variables
during the current load increment is not taken into account, for it is unknown at this stage
of the resolution procedure.

• on an interface transmitting Neumann’s boundary condition ΓEd ∈ Γ̄3 :

Q31 = FE − F d Q̃31 = FE + F d (30)

• on an interface transmitting Dirichlet’s boundary condition ΓEd ∈ Γ̄4 :

Q41 = WE −W d Q̃41 = WE +W d (31)

The computation of this criterion is very cheap as it simply requires local integration over each
interface of the domain decomposition method, and a global sum of these local contributions over
the structure

4.4.2 Unstable phase (arc-length procedure)

The convergence of the algorithm is evaluated by computing Criterion νiter after each prediction
stage of the Newton scheme (the residual of the control equation, which has no physical meaning,
is not accounted for).

4.4.3 Typical values

Our experiments of delamination analysis within the LaTIn framework have shown that a stop-
ping criterion νiter set to νiterd = 1 × 10−2 (“d” stands here for “desired”) is usually sufficient
to ensure a global convergence of the iterative process (at least, crack fronts are correctly local-
ized, which means that the large wavelength piece of information is correctly captured). In our
simulations, and in order to force an accurate convergence of the local quantities (equilibrium of
the interface forces and verification of the cohesive law in the process zones), νiterd is set to 1×10−3.

5 AN AUTOMATIC PROCEDURE TO CONTROL THE
LOAD INCREMENTS

In this section, we combine the ideas detailed in Section 3 to estimate the time discretization error,
and the developments of the last section, dedicated to the evaluation of the convergence of the
iterative parallel resolutions to derive a new time discretization error indicator, suited (but not
restricted) to the mixed domain decomposition strategy. Based on this new indicator, an automatic
procedure to control the load increments is derived.

5.1 Time discretization error criterion in a domain decomposition frame-
work

5.1.1 Definition

A sufficiently converged solution of the reference problem being reached at Current time tn+1,
by making use of the LaTIn-based resolution strategy, a continuous solution is constructed over
[tn tn+1], as described in Section 3. A new time discretization error criterion νtime,dd (“dd” stands
for “domain decomposition”) is computed with respect to the interpolated solution:

νtime,dd|tn+1
= max
i∈J0, NsK

νinterp,dd|t̄i (32)

where we recall that Ns+1 is the number of intermediate times (t̄i)i∈J0, NsK such that tn ≤ t̄i ≤ tn+1

at which intermediate solutions are constructed, and Criterion νinterp,dd is evaluated.
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νinterp,dd|t̄i is computed by the same formulas defining νiter|t̄i , except that the history of the

interface variables is known “continuously” over Time interval [0 t̄i] (from the interpolation):

(
νinterp,dd|t̄i

)2

=

q∑

i=1

p∑

j=1

(
νinterp,ddij|t̄i

)2

where
(
νinterp,ddij

)2

=

∑

Γ∈Γ̄i

∫

Γ

Qij|t̄i .Qij dΓ

∑

Γ∈Γ̄i

∫

Γ

Q̃ij .Q̃ij dΓ

(33)

and, in Equation (29), the stiffness operator of the cohesive interfaces ΓEE′ (E,E′)∈J1, nEK2 is replaced

by the reconstructed operator K
P

(
(WE′ −WE)|t∈[0 t̄i]

)
.

Note that Time discretization error criteria νtime,dd and νtime are slightly different. In Section 3,
we assumed that the solutions obtained at Times tn and tn+1 satisfied the global static admissibility
(Equation (2)). This assumption cannot be made anymore if the solver used is the mixed domain
decomposition strategy (unless the convergence criterion threshold is set to a very low value,
which would be ineffective, from a numerical point of view). Indeed, the equilibrium is only
satisfied in terms of substructures and macroscopic interfaces variables. In addition, the kinematic
admissibility is not fully satisfied, for each ply has been decomposed into substructures which
are imperfectly bonded during the resolution process. Hence, the new time discretization error
criterion νtime,dd measures not only the cohesive law residual, but also an interface microscopic
equilibrium residual (which is small) and a jump of displacement through perfect interfaces, both
due to a partial convergence of the iterative solver.

! " # $ % &! &" &# &$ &%
!'()

!'

!"()

!"

!&()

!&

t̄
∆t

log(νiter
d )

lo
g
(ν

in
te

r
p
,d

d
)

lo
g
(ν

ti
m

e
,d

d
)

log(νinterp,dd(t̄)|∆t=11,5)

log(νtime,dd(∆t))

Figure 10: Grey curves : evolution of νinterp,dd as a function of t̄ ∈ [tn tn+1] for different values of
∆t. Black curve: Evolution of νtime,dd with respect to ∆t (maximum values of the gray curves)

5.1.2 Properties

Figure (10) shows the evolution of νinterp,dd within a time interval [tn tn+1] for a given computation
time tn of the unstable delamination simulation represented Figure (12) (which will be detailed
later on). The different gray curves correspond to different values of the time increment ∆t (value
of the prescribed arc-length in this case). Note that the the value of νinterp,dd at Computation
time tn is the value νiterd of νiter which has been prescribed to ensure a sufficient convergence of the
LaTIn iterative process. From this set of parametric studies, the values of νtime,dd can be plotted
with respect to ∆t (maximum values of νinterp,dd over [tn tn+1], black points on the figure). The
resulting function (black interpolated curve) is monotonic.

One can also remark that even when a large time step is prescribed, the curve νinterp,dd as a
function of t̄ ∈ [tn tn+1] is smooth. Thus, a relatively small number of evaluation of this residual
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over the time step is sufficient to obtain an accurate value of the time discretization error criterion
νtime,dd. In addition, as the computation of Criterion νinterp,dd is cheap, even a large number of
intermediate time steps would not alter the numerical efficiency of the strategy. In practice, we
choose Ns = 10.

5.2 Adaptive load increment procedure

Our aim is to solve the delamination problem at Computation time tn+1 under the constraint of
given value νtime,ddd of the time discretization error indicator, the current time increment ∆t =
tn+1 − tn (i.e.: the prescribed arc-length or the load increment) being set as a new unknown. A
quasi-Newton technique is used to solve the nonlinear constraint equation:

νtime,dd(∆t)− νtime,ddd = 0 (34)

Basically, each iteration of this scheme is decomposed in three steps:

• a linear step, where a value of the time increment is predicted (see formulas (35,36) in next
paragraph).

• a correction stage where the full delamination problem is solved, at the current time step
tn+1, until convergence of the underlying nonlinear solver. The time increment ∆t is here
fixed to its predicted value.

• the computation of a convergence indicator (norm of the residual of Equation (34))

The linear prediction stage at Iteration k+ 1 of Computation time tn+1 consists in solving the
linearized relation linking νtime,dd to the time increment ∆t (see Figure (11)). This prediction is
done by the following formula:

∆tk+1 = ∆tk−1 +
νtime,ddd − νtime,ddk−1

νtime,dd
k − νtime,ddk−1

(
∆tk −∆tk−1

)
(35)

Previous formula does not warranty the prediction of a positive arc-length (the function to linearize
is concave). If a negative time increment is predicted, equation (35) is replaced by the following
relation, which has empirically shown good convergence properties:

∆tk+1 =

√
νtime,ddd

νtime,dd
k

∆tk (36)

∆tk−1 ∆tk+1 ∆tk

νiter
d

νtime,ddk−1

νtime,ddk

νtime,dd
d

Figure 11: Prediction step of the Newton algorithm designed to solve the delamination problem
under the constraint of given time discretization error criterion
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6 VALIDATION OF THE STRATEGY

6.1 First numerical studies of the time step control procedure on the
stable DCB case

Let us fully detail the results obtained on the stable DCB case presented in Section 2, Figure
2. This problem is globally stable and solved using, at each computation time, the LaTIn-based
domain decomposition strategy. In the four simulations presented Figure 3, the time increments
have been obtained by prescribing increasing values of νtime,ddd , respectively 1.0×10−2, 5.0×10−2,
2.0 × 10−1 and 3.5 × 10−1. The resulting average time increment increases, the total number of
computation times N being respectively equal to 69, 21, 9 and 5.

As explained in Section 3, the damage state in the cohesive interfaces tends to the one obtained
for very small load increments (case 1) when the value of νtime,ddd decreases. More precisely, the
delaminated area of the cohesive interfaces (i.e.: the dissipated energy) converges in a monotonic
manner with decreasing values of threshold of the time discretization indicator. When this thresh-
old is set to a value smaller than 2.0 × 10−1, the error made in terms of dissipated energy is not
significant.

Though, this test case is too specific (stable, only one crack front) to give a reliable threshold

value νtime,ddd which should be applied in the general case in order to insure a sufficient convergence
of the solution with respect to time.

6.2 Unstable holed-plate delamination problem

Ud

−Ud

plane of symmetry

Monday, 25 January 2010

Figure 12: Definition of the holed plate problem (317 000 d.o.f.)

We consider a eight-plies holed-plate structure, under traction (prescribed displacements). The
plies are orthotropic (stiffness ratio: 1/20) and the stacking sequence is [0 ± 45 90]s, which leads
to the initiation of delamination due to edge effects. The initial stiffness properties of the cohesive
interfaces are obtained by the same homogenization in the “thickness” of the interfaces (one tenth
of the thickness of the plies) which has been described for the DCB problem in Section 2. Due to the
material and structural symmetries, only the top half of the structure is simulated. The unstable
quasi-static time analysis is performed by making use of the arc-length procedure described in
Section 4. The global response curve (plotted in Figure (13), Case 3) of this case shows two main
zones of instability. The first one corresponds to a an unstable propagation of the delamination
in the [−45 + 45] interface while the second one is a crack propagation in the [0 − 45] interface,
both mainly in shear mode.

6.2.1 Prescribed time step (Cases numbered 1, 2 and 3 in the whole analysis of the
results)

The first set of simulations is performed by successively prescribing three different fixed arc-lengths.
The arc-length which has been arbitrarily chosen in Case 1 is divided by three in Case 2, and by
nine in Case 3. Instabilities appear in the global response of the structure (Figure (13)). Figure
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(14) shows the damage maps in the [0 − 45] [−45 + 45] and [−45 90] cohesive interfaces in a
monotonic phase of the global behavior (limit point after which the delamination front evolves in
an unstable manner in the [0 − 45] interface, which corresponds to the circled point in all graphs
of Figure (13)). This particular point of interest has been reached respectively in 8, 63 and 237
time increments. Note that we do not aim at discussing the validity of the solutions reached but
at ensuring that the incremental strategy follows the equilibrium path of the converged solution
with respect to the time.
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Case 3Case 2Case 1

Monday, 25 January 2010

Figure 13: Global reaction force versus prescribed displacement in the holed plate problem under
traction, three different predefined arc-lengths being applied (Cases 1,2 and 3)

[-45 +45]

[+45 90]

[0 -45]

Case 2Case 1

Figure 14: Damage state in the interfaces of the holed plate at the beginning of a global instability
in the case of a coarse time grid (Case 1), and in a converged case (Case 2). A Fixed arc-length is
prescribed in both cases. In the first case, the damage in the [−45 +45] interface is underestimated.

No significant difference can be observed in the damage maps and global response curves corre-
sponding to the two finest analysis in time, which means that the solutions are sufficiently converged
with respect to time in Cases 2 and 3. In Case 1, the time increments are too coarse, which results
in the incremental resolution procedure to follow a different equilibrium path (see the damage maps
in Figure (14)). This phenomenon can impair the global response of the structure, as it can be
seen on Figure (13). The instability phases framed on the converged solutions (Cases 2 and 3) are
wrongly predicted in Case 1. These differences appear even more clearly on the dissipated energy
versus prescribed displacement curves plotted on Figure (15) (the curves labeled “reference” and
“coarse grid” refer respectively to Cases 3 and 1), corresponding to the first global instability and
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to the following stable phases of the time analysis.
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Figure 15: Dissipation versus loading curves for different resolution strategies: explicit fine and
coarse time steps (Cases 1 and 3, fixed arc-length) or automatically controlled time increments
(Cases 4 and 5, fixed time discretization error)
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Figure 16: Time discretization error criterion as a function of the Computation times in Case 1
(circles, coarse time steps) and Case 2 (crosses, small time steps). A Fixed arc-length is prescribed
in both cases.

Figure (16) presents the values of (νtime,dd|tn )n∈J1, N̄K as a function of the successive computation

times in Cases 1 and 2, from the beginning of the analysis to the starting point of the second
global instability. One can see that in Case 2, in which the time increments are sufficiently small
to let the iterative algorithm follow the correct equilibrium path, the values of the discretization
error indicator νtime,dd range from 1 × 10−3 to 1 × 10−2. Conversely, we show in the next set of
studies that setting the threshold value νtime,ddd of the time control procedure to the maximum of
the values νtime,dd obtained in Case 2 permits to obtain a correctly predicted solution.
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6.2.2 Control of the time step (Cases numbered 4 and 5)

The second set of simulations is performed by making use of the procedure described in Section
5 to control the successive prescribed arc-length. νtime,ddd is successively set to 1 × 10−2 (Case
4) and 5 × 10−3 (Case 5). The damage state in the cohesive interfaces at the beginning of the

second global instability phase predicted by prescribing νtime,ddd = 1 × 10−2 is very closed to the
one obtained in Case 2 of our first set of simulations (see Figure (17)). The total number of time
increments drops from 63 to 40.

[-45 +45]

[+45 90]

[0 -45]

Case 4Case 2

Figure 17: Damage state in the interfaces of the holed plate at the beginning of an instability ob-
tained in a converged case (prescribed arc-length, Case 2), and by using the time control procedure
(fixed discretization error, Case 4)

As explained previously, the dissipated energy versus prescribed displacement curves (Figure
(15)) obtained in the reference case 3 (very small prescribed arc-length) and in Test case 1 (coarse
prescribed arc-length) are very different (incorrect equilibrium path in the second case). When

using the time control strategy, νtime,ddd being successively set to 1 × 10−2 and 5 × 10−3, the
correct equilibrium path is followed. In addition, the dissipated energy versus prescribed displace-
ment curves gets closer to the one obtained in the reference simulation when the value of νtime,ddd

decreases.

6.3 Discussion

The threshold value found numerically here can be compared to the one prescribed to ensure the
convergence of the iterative resolution strategy at each computation time, νiterd . As explained
in Section 4, the value νiterd which ensures a sufficient convergence of the LaTIn solver can be
obtained empirically by performing time independent benchmark tests (for instance the first time
step of a delamination analysis). The time control strategy developed in this paper consists in
monitoring the residual of the reference problem equations continuously during the time analysis,
the measure used at any time being a time independent version of νiter. Hence, it is not surprising
to find out in the numerical examples that the higher value νtime,ddd permitting to follow the
correct equilibrium path is the value of νiter which permits to obtain the convergence of the global
informations (position of the crack fronts) at each computation time. Hence, applying the time
control procedure only requires the prior knowledge of indicator νiterd .

7 CONCLUSION

In this paper, we presented a strategy to adapt automatically the time increment in quasi-static
delamination problems to the very sharp non-linearities which are involved. This strategy is based
a continuous monitoring of the residual of the reference problem equations with respect to time.
This has been achieved by calculating the error in the constitutive law on admissible solutions
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interpolated over each time steps, which enables to define a time discretization error criterion
evaluating the relevancy of the nonlinear computations performed at each time increment. Based
on this indicator, a simple procedure to control the time step has been derived. The main parameter
of this technique is easy to obtain as it only requires to perform time-independent benchmark tests
prior to the delamination simulations. The validity of this procedure has been demonstrated on
delamination problems undergoing global instabilities.

Our current interest being to perform buckling-driven delamination analysis, the validity of this
strategy shall be verified, in the future, on computations involving geometrical nonlinearities.
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[14] P. Ladevèze and D. Dureisseix. A micro/macro approch for parallel computing of heteroge-
neous structures. International Journal for computational Civil and Structural Engineering,
1:18–28, 2000.
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