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Thermal non-equilibrium transport in colloids

Alois Würger
Laboratoire Ondes et Matière d’Aquitaine, Université Bordeaux 1 & CNRS,

351 cours de la Libération, 33405 Talence, France

A temperature gradient acts like an external field on colloidal suspensions and drives the solute
particles to the cold or to the warm, depending on interfacial and solvent properties. We dis-
cuss different transport mechanisms for charged colloids, and how a thermal gradient gives rise to
companion fields. Particular emphasis is put on the thermal response of the electrolyte solution:
Positive and negative ions diffuse along the temperature gradient and thus induce a thermoelec-
tric field which in turn acts on the colloidal charges. Regarding polymers in organic solvents, the
physical mechanism changes with decreasing molecular weight: High polymers are described in the
framework of macroscopic hydrodynamics, for short chains and molecular mixtures of similar size,
the Brownian motion of solute and solvent becomes important.
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I. INTRODUCTION

When applying a temperature gradient to a complex
fluid, one observes relative motion of its components and
relaxation towards a steady state with non-uniform con-
centrations [1]. The thermal gradient acts as a general-
ized force on suspended particles, molecules, droplets, or
micelles, and drives them to the cold or to the warm; the
drift velocity

u = −DT∇T (1)

depends on the surface properties of the solute and its
interactions with the solvent [2, 3]. In the framework of
non-equilibrium thermodynamics, the mobility DT cor-
responds to an Onsager cross coefficient that describes
the coupling between heat and particle flows.

In the last decade, a host of experimental studies on
thermophoresis in macromolecular solutions and colloidal
suspensions have revealed a rich behavior and often sur-
prising dependencies on salinity and solute concentration
[4—6], surface coating [7], and molecular weight [8—10].
Since in many cases the thermophoretic mobility DT re-
sults from the competition of opposite mechanisms, nei-
ther its magnitude nor its sign can be predicted from
simple rules; a minor change of one of the above parame-
ters may reverse the transport velocity. Modern experi-
mental techniques rely on single-particle tracking, Soret
cells and thermogravitational columns, all-optical meth-
ods, and thermal field-flow fractionation; recent reviews
are given by Wiegand [11] and Piazza & Parola [12].

Thermophoresis has been shown to provide an efficient
separation technique for macromolecules in organic sol-
vents [13], and has been used as a molecular trap for
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DNA in a microchannel with ambient flow [14]. Mi-
crofluidic applications include colloidal accumulation [15]
and confinement in thin films [16, 17]. Thermally driven
crowding of nucleotides has been discussed as a possible
mechanism in the molecular evolution of life [18, 19]. On
an almost macroscopic scale, thermal forces may reshape
100-micron bicontinuous lyotropic crystals [20], and ther-
mocapillary forces can be used for manipulating droplets
and bubbles in microchannels [21—23].

A. To the cold or to the warm?

The thermophoretic mobility in (1) is defined such that
positive values DT > 0 occur for “thermophobic” solutes
that move to the cold, whereas DT < 0 corresponds to
“thermophilic” behavior. As a most striking feature, var-
ious liquid suspensions show a change of sign as a func-
tion of an external control parameter. Studies on alkali
halide solutions confirm Ludwig’s and Soret’s early mea-
surements (DT > 0) at room temperature [24, 25], yet
find a negative salt mobility at lower T [26—31]; NaCl and
KCl show a sharp drop from positive to negative values
as the salinity approaches 100 mMol/l [30].

For charged latex beads in aqueous solution, Putnam
and Cahill observed a change from thermophilic to ther-
mophobic behavior as a function of the electrolyte com-
position; the particles move to the warm at high pH value
but change direction when salt is added [5]. Low temper-
atures favor a negative mobility, as reported by Piazza
and co-workers for polypeptides, SDS micelles, and DNA
[32, 33]; a variety of colloidal suspensions show a univer-
sal temperature dependence. When adding polyethylene
glycol to a suspension of polystyrene beads, Sano and
collaborators observed a sign inversion and a strong en-
hancement of the Soret effect [15].

The thermophoretic mobility DT of high polymers is
independent of the molecular weight [3, 34—37], contrary
to the Einstein coefficient which decreases with the in-
verse gyration radius. Recent studies show, however, that
for chains of less than 100 repeat units, DT varies with
the length and may even become negative for very short
molecules [8—10]. Stadelmaier and Köhler found more-
over that specific solvent effects become important for
short chains [10]. Rather generally, binary mixtures of
small molecules show subtle dependencies on the molar
mass and volume dependencies. For example, the mobili-
ties of protonated and deuterated benzene in cyclohexane
show a significant isotope effect and even take opposite
signs at a given concentration [38].

B. Physical mechanisms - an overview

Colloidal particles in liquid suspension interact with
the solvent mainly through electric double-layer and dis-
persion forces; the presence of an additional molecular
solute, such as in colloid-polymer mixtures, may give rise
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FIG. 1: (a) Thermoosmotic flow in the electric double layer
close to a negatively charged surface. The pressure in the
boundary layer is slightly higher at the cold side and drives
the charged liquid to the warm; the resulting velocity pro-
file reaches its maximum value beyond the screening length,
which is indicated by the dashed line. (b) Thermoosmosis
along the charged walls drives the fluid to the hot end of
the microchannel; the solid line indicates the velocity profile.
(c) A charged bead with its diffuse layer in a temperature
gradient. The solid line indicates the fluid velocity profile
in the laboratory frame. The particle moves to the left, the
flow changes sign within the boundary layer and reaches its
maximum velocity beyond the screening length, before slowly
decaying at larger distance.

to depletion forces. In a temperature gradient these in-
teractions induce thermoosmotic flows [39, 40], similar to
electrokinetic phenomena that occur in an applied elec-
tric field. Here we give an overview of the physical mech-
anisms.
Thermoosmosis in the electric double layer. Since most

solute and solvent properties depend on temperature,
a thermal gradient modifies the electric double layer in
many ways. The dominant effect arises from the excess
hydrostatic pressure within the diffuse layer. Fig. 1a il-
lustrates how a temperature gradient affects the electric
double layer close to a flat surface. The number densities
of positive and negative ions differ from their bulk value
by n±; these excess ions result in an additional pressure
P = (n++n−)kBT that vanishes well beyond the Debye
length. The total change n+ + n− is positive, and so is
the excess pressure. At each spot of the charged surface
the ion densities are in local equilibrium according to the
Poisson-Boltzmann expression n± = n0(e

∓eψ/kBT − 1)
with the electrostatic potential ψ. Yet in a non-uniform
temperature, P slowly varies along the boundary; be-
cause of the exponential factors, the pressure is slightly
higher at the cold side, and its gradient is opposite to
∇T . As a consequence there is a flow of charged liquid
along the surface towards higher temperature; the veloc-
ity profile is maximum at a distance beyond one Debye
length. This stationary flow arises from the balance of
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osmotic pressure and viscous forces; it doesn’t reach an
equilibrium state as long as the external field ∇T is kept
at a finite value.

Fig. 1b shows how, in an open microchannel between
two reservoirs at different T , the thermoosmotic flow
drives the fluid to the hot end of the tube [39, 40]; note
the flat velocity profile in the core. A schematic view
of the screening layer of a negatively charged bead is
given in Fig. 1c. The boundary velocity beyond the De-
bye length has to be matched to the far field; one finds
that the fluid beyond the boundary layer and the particle
move in opposite directions. The rather intricate velocity
profile with respect to the laboratory frame is indicated
by the solid line in the upper part. The particle moves
to lower temperatures with

u = −εζ
2

3η

∇T

T
, (2)

where ε and η are the solvent permittivity and viscosity
[41, 42]. The variation with the square of the surface
potential ζ was first derived by Ruckenstein [2], by ex-
ploiting analogies with colloidal electrophoresis and the
Marangoni effect. A refined analysis reveals the exis-
tence of additional terms arising from the temperature
dependence of solvent parameters such as permittivity
and salinity [41—43]. Eq. (2) describes the case of large
ζ-potential; an additional factor 1

4 occurs in the opposite
limit. Typical velocities in a thin film or microchannel
attain values of several µm/s.
Thermoelectric effect. From Ruckenstein’s result one

would expect all colloidal solutes to move to the cold,
whereas the above mentioned experiments indicate that
there is no such general rule. This contradiction is re-
solved when accounting for the thermoelectric response of
the electrolyte solution [5]: The thermal gradient drives
positive and negative salt ions at different strength or
even in opposite directions, depending on their size and
solvation energy [44]. In the steady state of a closed
system, where the ion currents vanish, an electrosta-
tic thermopotential (∆T/T )ψ0 develops between the hot
and cold boundaries of the vessel due to their tempera-
ture difference ∆T . The corresponding bulk electric field
−(ψ0/T )∇T acts on the suspended particles; with the
Helmholtz-Smoluchowski electrophoretic mobility εζ/η
one obtains the velocity

u = −εζψ0
η

∇T

T
. (3)

Its sign depends on the surface and thermoelectric poten-
tials [5, 42]. Most colloids are negatively charged, with
numerical values for ζ ranging from −10 to −100 mV.
The thermopotential parameter of common electrolytes
is of the same order of magnitude but may take both
signs, e.g. ψ0 = −15 mV for NaCl and +70 mV for
NaOH at room temperature. Thus the thermoelectric
velocity (3) may overtake the Ruckenstein term (2) and
drive the particle to the hot side.
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FIG. 2: a) Depletion forces in a colloid-polymer mixture. The
gyration radius of a polymer results in an excluded volume
around a spherical bead, as indicated by the dashed line. This
entropic repulsion pushes the particle to lower polymer con-
centration, opposite to ∇c. b) Particle suspended in a molec-
ular liquid with non-uniform number density ∇n = −nβ∇T .
The dispersion forces attract the particle in regions of higher
density, that is, to the cold side of the sample.

Thermally driven depletion forces. Both static and
transport properties of colloid-polymer mixtures are sen-
sitive to depletion forces. As illustrated in Fig. 2a, in
a polymer solution of non-uniform concentration c, the
particles migrate towards regions of low dilution [45]. Be-
cause of the excluded volume of a polymer coil of gyration
radius R, the overall configurational entropy increases as
the particle diffuses to lower c, resulting in a mean veloc-
ity opposite to ∇c [46],

u = −kBTR
2

3η
∇c. (4)

A similar effect occurs when applying a temperature
gradient to a colloid-polymer mixture: The Soret mo-
tion of the polymer imposes a non-uniform concentration
∇ ln c = −α∇ lnT [35]. Most polymers accumulate in
regions of lower temperature (α > 0) and thus drive the
particles towards the warm; the resulting velocity may
exceed the above mechanisms (2) and (3) by two orders
of magnitude [15].
Dispersion forces. The van der Waals interaction dom-

inates for particles suspended in simple liquids. Since
molecular dispersion forces depend little on temperature,
the thermoosmotic flow along a solid-liquid interface is
mainly due to the solvent density gradient. Except for
water below 5◦ C, simple liquids expand upon heating.
Because of the higher density, a given volume element at
the cold side is more strongly attracted by the particle
than at the hot side, resulting in a solvent flow along the
surface towards higher T . This leads to an opposite mo-
tion of suspended particles or macromolecules. As shown
in Fig. 2b, the solute is dragged in regions of higher
density, that is, towards the cold; its velocity

u = − 2βH

9πηd0
∇T (5)
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depends on the solvent thermal expansivity β, the
Hamaker constant H of the solute-solvent interaction,
and a molecular length scale d0. This velocity is indepen-
dent of the particle size or, in the case of high polymers,
of the molecular weight [3, 35]. With typical parame-
ters and a gradient of one Kelvin per micron one finds
velocities of several µm/s.
Thermal diffusion. So far we have treated the particle

as a macroscopic body and the surrounding liquid as a
continuous medium. The above expressions (2-5) arise
from balancing the particle-solvent forces with the vis-
cous stress in the boundary layer. As pointed out by
Brenner [47] and Astumian [48], this macroscopic hydro-
dynamics approach neglects both Brownian motion of the
solute and the molecular structure of the solvent.

We address one aspect that is particularly important
for small solutes and that arises from the very non-
equilibrium nature of thermophoresis. In addition to the
solute-solvent interactions that are treated in (2)—(5),
Onsager’s generalized forces comprise terms that derive
from the solvent-solvent forces, and that become relevant
for small solutes. In a binary mixture of molecular beads
of radius a, mobility 1/6πηa, and molecular enthalpies
hi < 0, the velocity of species 1 takes the form

u1 =
h1 − h2
6πηa

∇T

T
. (6)

The two terms in the numerator have a simple physical
meaning in terms of the flow of enthalpy along a temper-
ature gradient [1]. Because of its negative sign, h1 drives
the solute bead “1” to lower T . Yet this implies the op-
posite motion of a solvent molecule, which itself would
rather diffuse to the cold with strength h2. Thus the
enthalpy difference accounts for the competition of the
molecular components that are both attracted by lower
temperatures. Discarding h2, noting h1 ∼ −H for disper-
sion forces, and replacing a with d0, one readily recovers
the expression (5) for a large solute. Experiments suggest
that the “enthalpies of transfer” depend in a subtle man-
ner on molecular parameters such as weight, size, and
polarity.

C. Thermally driven motion in gases

Though this article is concerned with thermophoresis
in liquids, a brief reminder of what is known for gasses
phases seems useful. Depending on the size of the solute,
temperature-driven motion in gases is described by sur-
face creep flow or thermal diffusion. Both mechanisms
turn out to be relevant for liquids, albeit lead to a more
complex behavior than in gases: Whereas the collisions
of free molecules are well accounted for by kinetic the-
ory, there is no such general description for the molecular
forces in a liquid phase.

In 1870 Tyndall observed that dust particles suspended
in air were repelled from a heated surface; the dust de-
pleted zone appeared as dark space in a light scatter-

ing experiment [49]. A few years later, Crookes found
a related effect in his radiometer experiment, where a
vertically mounted lightmill starts rotating if its vanes
are heated at one side [50]. The subsequent analysis
by Reynolds and Maxwell in terms of kinetic gas the-
ory pointed out the existence of a thermal creep flow
along a solid surface with a non-uniform temperature
[51, 52]. Regarding a microchannel between two reser-
voirs at equal pressure but different temperature, one
observes a gas flow towards the hot end, or “thermal
transpiration”. Similarly, the gas at the surface of a sus-
pended particle creeps to higher temperature, resulting
in an opposite drift velocity of the particle,

u = −3η
4ρ

∇T
T
, (7)

where η is the dynamic viscosity and ρ the mass density
of the gas. As illustrated in Fig. 3a, thermal creep is
confined to a layer of about one mean free path ℓm =
2η/ρc that depends on the kinematic viscosity η/ρ and
the molecular velocity c; for common gases it is of the
order of 70 nm.

Maxwell’s expression (7) neglects heat transport
through the particle. By matching the temperature
field and the heat flux at the surface, Epstein found
that the drift velocity depends on the ratio of particle
and gas thermal conductivities κP and κG according to
u/(1 + κP/2κG) [53]. Eq. (7) has been derived for large
Knudsen number, that is, for a particle radius much big-
ger than the mean free path, a≫ ℓm. It turns out that,
up to numerical prefactors, this result remains valid in
the opposite limit [54]. Minor corrections occur for non-
spherical particles and non-specular reflection at the sur-
face [55]. In any case the suspended particle migrates to
the cold.

A different situation is encountered in binary molecular
mixtures. From the kinetic theory developed by Enskog
and Chapman [56—58], a particularly simple result arises
for hard spheres of equal radius but unlike masses: To
linear order in the mass difference, the velocity of species
1 reads as [59]

u1 = −D
105

118

m1 −m2
m1 +m2

∇T
T
. (8)

This means that, of two otherwise identical molecules,
the heavier one moves to the cold and the lighter one
to the warm. When noting the relation D = 6

5η/ρ be-
tween the diffusion coefficient and the kinematic viscosity
of ideal gases, one finds that, for heavy solute molecules
m1 ≫ m2, Eq. (8) essentially reduces to Maxwell’s ex-
pression. In the case of equal mass but different size,
a similar relation is obtained in terms of the molecu-
lar radii, u1 ∝ −(a1 − a2), such that the larger mole-
cule moves to the cold side [59]. The mass effect can be
used for isotope separation [60], as verified for ammonia
14NH3/15NH3 [61]. Waldmann’s thermal diffusion data
on mixtures of dimer molecules such as H2, D2, N2, O2

compare favorably with the theoretical values [62].
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FIG. 3: a) Particle suspended in a gas with a temperature
gradient ∇T . The dashed circle indicates the distance corre-
sponding to the molecular mean free path ℓm. Within this
layer there is a creep flow to higher temperature; accordingly
the particle moves to the left towards lower T . b) Binary
molecular mixture; according to (8) the smaller and lighter
species migrates towards higher temperatures. c) Rayleigh
piston separating two gases at equal pressure but different
temperatures T2 < T1. The piston of mass M moves freely
in horizontal direction and shows Brownian motion due to
the molecular collisions. The temperature asymmetry recti-
fies the random motion of the piston which, as a consequence,
moves to the right towards higher temperatures.

The sign of the drift velocity (8) is closely related to
Brownian motion in a temperature gradient, or ther-
mal diffusion. Indeed, the velocity fluctuations

〈
v2
〉
∼

kBT/m vary with the inverse mass. Large and heavy
particles may be treated as macroscopic objects, that are
driven to the cold by thermal creep flow. On the other
hand, small and light species are subject to large fluctu-
ations and may diffuse to higher temperatures.

The role of solute Brownian motion is highlighted by
a thought experiment discussed by Lieb [63]. Fig. 3c
illustrates a modified version that was studied in Refs.
[64, 65]: A structureless Rayleigh piston separates two
ideal gases at the same pressure P but different tempera-
tures T1 > T2. If the piston is much heavier than the gas
molecules, it hardly shows velocity fluctuations. Then
the momentum transfer from both sides cancels in the av-
erage; collisions with molecules coming from the left side
transfer less momentum in the average, yet are more fre-
quent because of the higher density n2 = n1(T1/T2). As a
consequence, there is no net force and the piston remains

immobile. A more complex situation arises for a piston
of finite mass M , not much larger than that of the gas
molecules m; since the gas does not pass at the piston’s
edges, this corresponds to a suspended particle without
thermal creep. The asymmetric temperature profile rec-
tifies the velocity fluctuations

〈
û2
〉
∼ kBT/M , resulting

in a finite mean velocity u = 〈û〉. Accounting for energy
and momentum conservation, one finds to leading order
in
√
m/M [64, 65]

u =

√
π

8

m

M

(√
kBT1
M

−
√
kBT2
M

)

. (9)

Its Brownian motion drives the piston towards higher
temperature, that is, to the right in Fig. 3c. The velocity
u vanishes as the mass ratio m/M tends towards zero.

Eqs. (7)—(9) exemplify two basically different physical
mechanisms. The first one corresponds to the usual de-
finition of thermophoresis. It relies on a hydrodynamic
treatment of thermal creep in the boundary layer and
prevails for large particles, in close analogy to Eqs. (2)—
(5) for liquid suspensions. The second mechanism arises
from rectification of Brownian motion in a non-uniform
temperature profile and leads to u > 0. In a gas mixture
this thermal diffusion becomes relevant if the masses of
solute and solvent molecules are not too different, as il-
lustrated by (8).

D. Solute accumulation and confinement

Separating and mixing the components of a complex
fluid are important issues in microfluidics. Electrophore-
sis and optical tweezer body forces [66] are common tech-
niques for manipulating colloids. In recent years ther-
mal gradients have been shown to provide an alternative;
they have been used for creating both lateral and paral-
lel force field in microchannels and in thin films. With
typical temperature gradients of the order of K/µm, the
transport velocity (1) takes values of several microns per
second. Like electrophoresis, thermally driven motion of
large solutes is independent of their size [67], whereas
optical-tweezer forces vary with the particle volume.

The out-of-equlibrium solute current consists of the
thermophoretic part and diffusion with the Einstein co-
efficient D [1],

J = −nDT∇T−D∇n, (10)

where n is the number of particles per unit volume. The
steady state is characterized by J = 0. When taking
the coefficients DT and D as constants, the non-uniform
stationary density is readily integrated,

n(r) = n0e
−ST∆T (r), (11)

where ∆T is the spatial temperature modulation; the
Soret coefficient

ST = DT/D (12)
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is defined as the ratio of thermophoretic and Einstein
coefficients. For micron-sized colloidal particles or poly-
mers of molecular weightMw = 105, typical values of ST
range from 0.03 K−1 to 0.2 K−1. Thus a temperature
difference of ∆T = 25 K results in a concentration ratio
in cold and hot spots by two orders of magnitude. This
accumulation factor can still be enhanced, e.g., by cou-
pling to a convective flow [68, 69], or by depletion forces
due to an additional molecular solute [15]. The mobility
DT is independent of the solute size, whereas the dif-
fusion coefficient is proportional to the inverse particle
radius, or gyration radius in the case of polymer. Thus
solutes of different size but identical surface properties,
have the same transport velocity but differ in their sta-
tionary state.

In analogy to the sedimentation length ℓ = kBT/mg
of suspended particles with excess mass m, the steady
state in a constant temperature gradient is described by
a characteristic length

ℓ = D/u. (13)

A thermal gradient perpendicular to a confining wall re-
sults in a stationary density n ∝ e−z/ℓ, where z is the dis-
tance from the solid boundary. With typical parameters
for micron-sized particles,D ∼ µm2/s and u ∼ µm/s, one
finds that the length ℓ is comparable to the particle size;
thus the non-uniform temperature provides an efficient
means of confinement. Contrary to gravity that requires
a sufficiently large buoyancy force, thermally driven con-
finement is independent of the mass and works equally
well for particles and polymers.

II. CHARGED COLLOIDS

A. Boundary layer approximation

Motion on micron or nanometer scales in a liquid is
governed by low-Reynolds number hydrodynamics. The
velocity field v of an incompressible fluid (∇ · v = 0) is
solution of the stationary Stokes equation,

η∇2
v =∇P − f , (14a)

where η is the viscosity, P the hydrostatic pressure, and
f the force density exerted by a suspended particle on
the surrounding fluid.

Depending on the ratio of the particle radius a and the
range B of the force field, there are two schemes for an
approximate solution of Stokes’ equation. If a≫ B, the
particle surface may be considered as flat in the range
where the force f is significant; the boundary-layer ap-
proximation takes advantage of this separation of length
scales [70]. If on the contrary, the particle-solvent in-
teractions are of long range (B ≫ a), an appropriate
starting point is provided by the counterforce acting on
the particle, that is the volume integral of −f [71]; this
Hückel limit is discussed in Sect. II I below.

 T∇  

a 

a) b) 

θ  

z 
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B 

FIG. 4: Schematic view of a spherical particle in a thermal
gradient (a) and of the boundary layer approximation (b).
Due to the solute-solvent interactions, the fluid velocity rela-
tive to the particle surface increases and attains the value vB
at distances beyond the interaction range B.

Here we consider the case where the particle radius is
much larger than the interaction range B, closely follow-
ing Anderson [70]. In this case hydrodynamic quantities
vary slowly along the particle, and much more rapidly in
vertical direction. It turns out convenient to adopt local
coordinates x and z attached to the surface, as shown in
Fig. 4. Close to the particle, the perpendicular velocity
component vanishes, vz = 0, whereas the parallel velocity
hardly depends on the coordinate x, that is, in leading
order one has vx = vx(z). As a consequence, the normal
component of Stokes’ equation reads

0 =
dP

dz
− fz. (14b)

Its integral gives the excess hydrostatic pressure P , which
is defined such that it vanishes far from the particle. The
parallel component simplifies to

η
d2vx
dz2

=
dP

dx
− fx. (14c)

This relation is integrated with Stokes boundary con-
ditions. The velocity is zero at the solid surface, vx|z=0,
and takes a constant value at B. Thus the first inte-
gral of this differential equation disappears at the upper
bound, dvx/dz|z=B = 0, and the second integral results
in [70]

vB =
1

η

∫ B

0

dzz

(
fx −

dP

dx

)
. (15)

In this article we discuss several examples where the force
fx or the local pressure gradient ∂xP , or both are finite.

In general the perpendicular components fz and ∂zP
are much larger than the parallel ones. For a homoge-
neous surface both the force density fx and the pressure
derivative ∂xP vary with the sine of the polar angle, and
so does the boundary velocity (15),

vB = v̄B sin θ,
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FIG. 5: Fluid velocity field v(r) with respect to the laboratory
frame, in the vicinity of a particle with quasislip velocity vB =
−
3
2
u sin θ. The detail of the boundary layer of Fig. 4b is not

visible on this scale.

with the maximum value v̄B occurring at the midplane
θ = π

2 . The resulting particle velocity u is opposite to
the osmotic flow in the boundary layer; performing the
orientational average over the surface u = −〈vBex〉 one
finds [70]

u = −2
3
v̄B. (16)

As illustrated in Fig. 4b, the boundary velocity vB gives
the relative speed of the particle and the fluid beyond the
interaction length. This implies that in the laboratory
frame, the fluid at the midplane moves in the opposite
direction with velocity 1

3 v̄B.
The velocity field at large distances is obtained by

matching the general solution of the force-free Stokes’
equation with the boundary value vB = −3

2u sin θ,

v(r) = u
a3

r3

(
1

2
sin θt+ cos θn

)
. (17)

The normal and tangential unit vectors are those derived
from polar coordinates with the origin at the center of
the particle; thus n and t are directed along the positive
z-axis and the negative x-axis, respectively. The vec-
tor field v(r) is shown in Fig. 5 for u < 0, that is, for
the particle migrating to the left. As its most remark-
able properties, the orientational average over a sphere
of given radius r vanishes, 〈v(r)〉 = 0, and there is no
“backflow”: Integrating (17) over the plane θ = π

2 , one
obtains the fluid current −πa2u, which exactly cancels
that of the particle [72].

B. Double-layer forces

Formally the transport velocity of a suspended parti-
cle is given by Eqs. (15) and (16) in terms of the solute-
solvent force field. Here we discuss in detail the physical

origin of thermoosmotic flow in a charged double-layer
and calculate the resulting particle velocity. Consider a
spherical particle of radius a and surface charge density
eσ. The electrostatic potential ψ and the corresponding
electric field E = −∇ψ are screened through the ac-
cumulation of mobile counterions in the electrolyte. In
Poisson-Boltzmann mean-field approximation, the excess
densities of (monovalent) positive and negative ions are
given by

n± = n0(e
∓eψ/kBT − 1),

where n0 is the bulk salinity. Due to the accumulation of
counterions and the depletion of co-ions, the fluid in the
boundary layer carries a charge density ρ and an excess
density n of mobile ions,

ρ = e(n+ − n−), n = n+ + n−. (18)

These quantities are finite within the charged double
layer only. At larger distances they decay exponentially,
on a scale given by the Debye length

λ = (8πn0ℓB)
− 1

2 (19)

where ℓB = e2/4πεkBT is the Bjerrum length and ε the
solvent permittivity.

In an isotropic system, the properties of the electric
double layer depend only on the distance from the par-
ticle. An applied electric field, or a chemical or ther-
mal gradient, breaks the spherical symmetry, induces lat-
eral forces on the ions in the electric double layer, and
thus moves the fluid with respect to the particle surface.
Throughout this article we consider weak perturbations;
that is, we use linear response theory and evaluate the
driving force f and the hydrostatic pressure gradient ∇P
to first order in the external fields. This scheme is valid
as long as the parameters vary little over the size a of the
suspended particle.

We briefly address the non-equilibrium character of
thermoosmosis. Like previous studies on electrophoresis
and diffusiophoresis [70], we assume that local equilib-
rium is established in the double layer of thickness λ≪ a.
More precisely, this means that the above expressions for
the ion densities n± are valid at any spot of the charged
surface as a function of the vertical coordinate z in Fig.
4b. Parallel to the surface along the x-axis, however,
the system is out of equilibrium. The gradients of slowly
varying parameters such as T and n0, provide the ther-
modynamic forces acting on the electric double layer; the
system does not reach equilibrium as long as the experi-
mental setup keeps these gradients constant.

Now we derive the force density and the pressure gra-
dient appearing in Stokes’ equation (14a). The force
f(r)dV exerted on a volume element dV of the fluid in
the double layer contains two terms,

f = ρĒ0 +∇ · T , (20)

where the first one accounts for the coupling of the charge
density to the external electric field E0; the bar in-
dicates the deformation due to the permittivity jump
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at the particle-fluid interface as discussed below. The
second term is the divergence of the Maxwell tensor
Tij = εEiEj(1− 1

2δij), which arises from the electric field
E = −∇ψ of the charged particle. Using the relation be-
tween the displacement vector and the charge density,
ρ = ∇ · εE, and noting that the curl of E vanishes, one
obtains [73, 74]

∇ · T = −ρ∇ψ − 1

2
E2∇ε. (21)

Thus ∇ · T comprises the electric force exerted by the
particle on the mobile ions and an electrostrictive term
proportional to the permittivity gradient.

The excess ion density in the double layer increases
the hydrostatic pressure by P = nkBT . This excess
pressure varies rapidly in normal direction, because of
the screened electrostatic potential ψ, and slowly along
the particle surface due to the non-uniform solvent para-
meters. When inserting the above expression for n and
evaluating the gradients, we find

∇P = −ρ∇ψ + (ρψ + nkBT )
∇T

T
+ nkBT

∇n0
n0
.

Gathering the inhomogeneous terms at the right-hand
side of Stokes’ equation we have [42],

f −∇P = − (ρψ + nkBT )
∇T

T

−E
2

2
∇ε− nkBT

∇n0
n0

+ ρĒ0. (22)

The rapidly varying terms ρ∇ψ have disappeared, and
the total force acting on the electric double layer is given
by the field Ē0 and the gradients of the slowly varying
macroscopic solvent parameters T , ε, n0. (The present
notation slightly differs from that of Refs. [42, 75], where
the gradient of the osmotic pressure is already included in
the force density f .) The total force field (22) satisfies the
vertical component of Stokes’ equation (14b) to leading
order in the small parameter λ/a; in the following we
integrate the parallel component (14c).

In this paper the electric field Ē0 is a companion field
of ∇T , resulting from the electrolyte properties. For the
thermoelectric effect to be discussed below, it is of the
order of kB∇T/e; typical experimental conditions give
values ranging from 10−4 to 1 V/m. Thus Ē0 is much
smaller than the field due to the charges at the particle
surface, E ∼ 100 V/m. All terms in (22) are of compa-
rable size, and therefore by several orders of magnitudes
smaller than E. As a result, Eq. (22) is much smaller
than the intrinsic double layer forces; this justifies the use
of linear-response approximation for the external pertur-
bation.

In view of Eq. (15), only the force component parallel
to the surface is relevant. Because of the different mater-
ial properties of particle and fluid, the external fields are
modified close to the interface. For example, electrosta-
tic boundary conditions require that the parallel electric

field and the normal component of the displacement vec-
tor be continuous at the interface; thus one finds the field
along the particle surface

Ē0x =
3εS

2εS + εP
E0 sin θ. (23)

The permittivity of water being much larger then that of
the particle, εS ≫ εP , the field is parallel to the interface
and its amplitude Ē0x = 3

2E0 sin θ is enhanced by a factor
3
2 with respect to the bulk value.

Similarly, the applied temperature gradient ∇T is de-
formed if the heat conductivities κS and κP are different
from each other [53]. Imposing continuity both on tem-
perature and on the normal heat flux κ∂zT , results in the
local parallel component

dT

dx
=

3κS
2κS + κP

∇T sin θ. (24)

Since most materials satisfy κS ≈ κP , this effect is rather
weak, and dT/dx is simply the projection of ∇T on the
particle surface. Accordingly, the prefactor in (24) is put
to unity throughout this article. (Metal particles con-
stitute a noteworthy exception: Because of their high
heat conductivity, they strongly reduce the local temper-
ature gradient [76].) Finally, the projection of a constant
bulk salinity gradient ∇n0 on the particle surface reads
as dn0/dx = ∇n0 sin θ.

C. Transport velocity

The electric force f and the pressure gradient∇P shear
the charged fluid in the boundary layer, and the result-
ing thermoosmotic flow along the solute surface gives rise
to the flow pattern shown in Figs. 1, 4, and 5. Before
evaluating the corresponding transport velocity, we have
to specify the electrostatic potential of the charged par-
ticle. To leading order in the small parameter λ/a, it is
determined by the one-dimensional Poisson-Boltzmann
equation ε∂2zψ = −ρ, with the charge density given in
(18). Its solution is well-known [71], and can be written
in terms of the inverse hyperbolic tangent function,

ψ(z) = ζ artanh(e−z/λ),

where ζ is the surface potential and λ the Debye length.
The parallel component of Stokes’ equation is solved by

Eq. (15). Performing the integral with the force density
fx−∂xP given in (22), one obtains the boundary velocity

vB =
ε(ζ2 − 3ζ2T )

2ηT

dT

dx

−εζ
2
T

2η

(
1

ε

dε

dx
+

1

n0

dn0
dx

)
− εζ
η
Ē0x, (25)

with the shorthand notation

ζ2T =

(
2kBT

e

)2
2 ln cosh

eζ

4kBT
.
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In the framework of Poisson-Boltzmann theory, the sur-
face potential reads

ζ =
2kBT

e
arsinh(2πσℓBλ), (26)

where σ is the number density of elementary charges and
ℓB ≈ 7 Å the Bjerrum length. Since mean-field theory
ceases to be valid close to the particle, the surface po-
tential is often considered as an effective quantity to be
inferred from experiment. Both static and kinetic proper-
ties of the double layer are affected by charge correlations,
hydration, and specific ion effects, which may modify the
value of ζ [71, 77]. For values of the order of unity, the
arsinh function varies logarithmically with its argument;
thus a rough estimate for many colloidal systems is pro-
vided by ζ ∼ 2kBT/e, which takes a value of about 50
mV.

The boundary velocity vB varies along the particle sur-
face with the polar angle as sin θ. Simplifying the permit-
tivity and thermal conductivity ratios in the local electric
field and temperature gradient, εP ≪ εS and κP ≈ κS,
and inserting (16), one readily obtains the drift velocity,

u = −ε(ζ
2 − 3ζ2T )
3η

∇T

T

+
εζ2T
3η

(
∇ε

ε
+
∇n0
n0

)
+
εζ

η
E0. (27)

This is the general expression for a charged particle sub-
ject to gradients of the solvent parameters T, ε, n0. The
last term gives the velocity induced by an electric field
E0, with the Helmholtz-Smoluchowski mobility εζ/η.

We discuss the physical origin of the first term, pro-
portional to ∇T . The lateral force along the particle
surface arises since the electric double layer in a ther-
mal gradient is not isotropic: The excess pressure and
the electrostatic energy density vary along the particle
surface, and result in thermoosmotic flow in the electric
double layer towards higher temperature. As shown in
Fig. 1b, in a microchannel this quasislip velocity gives
rise to an overall flow to the hot side, whereas a mobile
particle is dragged in the direction opposite to the ther-
mal gradient.

Thermoosmosis along a charged surface has first been
discussed by Derjaguin in terms of enthalpy flow [40];
this picture is supported by the fact that the expression
ρψ + nkBT in (22) corresponds to the double-layer en-
thalpy density. A detailed comparison reveals that the
velocity contributions proportional to ζ2 and ζ2T stem
from ρψ and nkBT , respectively. As illustrated in Fig.
1c, the particle moves to the cold side, i.e., the resulting
velocity component is always opposite to ∇T . Indeed,
the definition of ζT implies the inequality

ζ2 − 3ζ2T > 0.

For highly charged particles one finds ζT ≪ ζ, result-
ing in the expression (2) given in the introduction. On

the other hand, from the Debye-Hückel approximation
for weakly charged surfaces one has ζT = 1

2ζ and thus
recovers (2) with an additional factor 1

4 .
The remainder of Eq. (27) accounts for permittivity

and salinity gradients. The former describes how a per-
mittivity gradient results in a spatially varying electric
energy density εE2 and thus gives rise to an electrostric-
tive force [73]; according to (25) the fluid in the boundary
layer moves to regions of low ε. Here we consider the case
where a permittivity gradient arises from a non-uniform
temperature [78, 79],

∇ε

ε
= −τ∇T

T
. (28)

The dimensionless temperature coefficient of water is pos-
itive; at room temperature it takes the value τ = 1.4.
Thus this contribution leads to a quasislip velocity vB
towards the warm; the particle moves to lower tempera-
tures. Finally, the term proportional to∇n0 corresponds
to Anderson’s chemiphoretic contribution [70]. A higher
salinity reduces both the surface potential and the Debye
length, thus lowering the electric-double layer energy. In
this picture, the particle is attracted towards region of
higher salt concentration [80].

According to Fig. 4b and Eq. (25) there is a perma-
nent flow of charged liquid along the particle surface.
The resulting excess charges of opposite sign at the cold
and warm side of the particle are resorbed by diffusion
to the bulk; there is a long-range ion current similar to
the flow pattern of Fig. 5, but of opposite direction. The
above treatment supposes that the convection flow in the
double layer is slow as compared to the back-diffusion in
the outer region. In the case of strong interaction with
the particle surface, the convective charge current in the
boundary layer results in an additional polarization, as
illustrated in Fig. 6. For slow ion diffusion beyond the
double layer, positive and negative excess charges accu-
mulate at opposite sides of the particle and reduce the
transport velocity. Following early work by Dukhin and
Derjaguin [81], the saturation of the osmotic flow has
been worked out for neutral solutes [80], for electrophore-
sis [82], and for motion driven by a salinity gradient
[83, 84]. Thus the linear increase of the electrophoretic
mobility εζ/η bends down at sufficiently large surface po-
tentials and shows a maximum where the Dukhin number
equals unity [85],

λ

a
ee|ζ|/2kBT ∼ 1;

with λ = 10 nm and a = 1 µm this occurs at ζ ∼ 200
mV. For such high values similar modifications are ex-
pected for thermophoresis. More generally, one should
keep in mind that for highly charged systems, Poisson-
Boltzmann mean-field theory ceases to be valid, and cor-
relation effects may become important [86, 87]; at short
distances, the continuum picture misses the discrete na-
ture of the surface charges [88].
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 a) b) 

FIG. 6: a) Charged particle with its screening cloud; the
dashed line indicates the Debye length. b) Polarization of the
electric double layer. An electric field or interface forces drive
the charged liquid along the surface to the right; the particle
moves in the opposite direction. The surface flow leads to an
accumulation of counterions at the right end of the sphere,
and to depletion at the left. If back diffusion of the mobile
ions is sufficiently rapid, the polarization is weak and hardly
affects the transport velocity. For very large surface poten-
tials, i.e., for large Dukhin number, polarization reduces the
particle mobility.

D. Non-uniform electrolyte

The transport velocity (27) is given in terms of an elec-
tric field and gradients of the parameters T, ε, n0 of the
electrolyte solution. These external fields are not inde-
pendent of each other, but are related by the thermody-
namics and kinetics of the mobile ions. If one such field is
applied from outside, the response of the electrolyte will
generate companion fields. Such effects occur both in the
steady state and in the transient following a temporary
change of a system variable.

Consider an electrolyte with monovalent ions of charge
qi = zie and densities ni, with the salinity

n0 =
1

2

∑

i

ni.

The current of each species,

Ji = −Di

(
∇ni + ni

Q∗i
kBT 2

∇T − ni
qiE0
kBT

)
, (29)

comprises normal diffusion with the Einstein coefficient
Di, thermal diffusion with the ionic heat of transport
Q∗i , and an electric-field term that remains to be deter-
mined [44]. Since the permittivity is sensitive to temper-
ature only, its variation has been absorbed in the heat of
transport. Macroscopic charge separation and currents
are prohibited by the huge electrostatic energy, implying
the relations

∑

i

qini = 0,
∑

i

qiJi = 0.

Yet a net charge density may occur at the sample bound-
ary, or during the relaxation of an initial non-equilibrium
salinity.

As an example, consider a binary electrolyte solution
at constant temperature ∇T = 0 but with an externally
imposed salt gradient ∇n0. If the Einstein coefficients
D± of positive and negative ions differ, one species dif-
fuses more rapidly than the other. Thus positive and
negative ions accumulate in different regions, resulting
in polarization and a macroscopic electric field. The lat-
ter is readily obtained from the zero-current condition
[83],

E0 = γ
kBT

e

∇n0
n0
, (30)

where the proportionality constant is given by the nor-
malized difference of the diffusion coefficients

γ =
D+ −D−
D+ +D−

.

Inserting in (27) one finds that a salinity gradient gives
rise to two velocity contributions,

u =

(
γ
εζ

η

kBT

e
+
εζ2T
3η

)
∇n0
n0
. (31)

The chemiphoretic one, proportional to ζ2T , is always pos-
itive, whereas the electrophoretic term ∝ γ may take
both signs. The more the diffusion coefficients of pos-
itive and negative ions differ, the larger is the electric-
field term. The latter modifies qualitatively the trans-
port properties of common electrolytes; the parameter γ
varies from −0.5 for NaOH to +0.7 for HCl [83].

E. Thermoelectricity

Now we consider what happens when a finite tempera-
ture gradient is applied to an initially uniform electrolyte.
According to Eq. (29) the ionic heat of transport Q∗i
creates a current along the thermal gradient and thus
induces a non-uniform salt concentration. The present
discussion is restricted to the steady state Ji = 0, which
is achieved when the diffusion term, proportional to∇n0,
equilibrates the thermal and electric-field driven currents.

We first consider the salinity n0. Summing over all ion
species and defining the reduced Soret coefficient α of the
electrolyte solution by the mean heat of transport

α =
∑

i

αi
ni
n0
, αi =

Q∗i
2kBT

, (32)

we find the stationary state as

∇n0
n0

= −α∇T
T
. (33)

For a positive heat of transport one has α > 0, and the
salinity is higher at lower temperature. If Q∗i takes the
same value for all ion species, the non-uniform electrolyte
is completely described by Eq. (33) in terms of the salt
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warm cold 

thermoelectric field 

FIG. 7: Macroscopic electric field E0 arising from a ther-
mal gradient in a binary electrolyte solution. The positive
and negative ions accumulate at the opposite sample bound-
aries and form charged layers that are about one Debye length
thick. In the bulk the charge density vanishes and the field
E0 is constant. The situation shown occurs for a positive co-
efficient δα = α+− α− > 0, where the cations move to the
cold and the anions to the warm; then the thermoelectric field
and the temperature gradient point in the same direction.

Soret coefficient α/T . Historically, the Soret effect was
discovered by Ludwig for a solution of Na2SO4 [24]; Soret
did his first measurements on sodium chloride and potas-
sium nitrate [25].

In addition to the overall motion of the dissolved salt
there is a relative motion of positive and negative ions.
As illustrated by the numbers in Table I, the heats of
transport of cations and anions are in general quite dif-
ferent. Thus the thermally driven current is stronger
for the species with the larger Q∗i ; this difference in dif-
fusion velocity gives rise to a macroscopic electric field.
Fig. 7 shows the accumulation of ions of opposite charge
at the hot and cold sample boundaries, and the result-
ing thermoelectric field. Its steady-state value is obtained
from the condition of zero electrical current and zero bulk
charge density; following Guthrie et al. [44] we put Ji = 0
and ρ = 0 and thus find

E0 = δα
kB∇T

e
, (34)

where the dimensionless coefficient

δα =
∑

i

ziαi
ni
n0

(35)

is the weighted average of the αi, with zi = ±1 for pos-
itive and negative ions. For a binary electrolyte these
relations reduce to α = α+ + α− and δα = α+ − α−.

The macroscopic field E0 implies an electrostatic po-
tential difference, or thermopotential, between the cold
and hot boundaries of the sample. This thermopotential
ψ0∆T/T is given by the temperature difference ∆T and
a constant accounting for the electrolyte properties,

ψ0 = −δα
kBT

e
. (36)
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FIG. 8: Magnitude of the contributions to the transport co-
efficient (37) as a function of the reduced surface potential
eζ/kBT . (i) The straight line gives the thermoelectric term
proportional to ζψ0 for δα = 1; (ii) gives the term propor-
tional to the square of the surface potential ζ2; (iii) gives
the remainder proportional to ζ2T = 8 ln cosh(eζ/4kBT ) with
α = τ = 1. For typical values of the surface potential, the first
two terms prevail, whereas that ∝ ζ2T is of little significance;
it is discarded in Eq. (38).

For a binary electrolyte, it is related to the heats of trans-
port through ψ0 = (Q−−Q+)/2e. Inserting the relation
E0 = −(ψ0/T )∇T and the salinity and permittivity gra-
dients (28) and (33), and writing the transport velocity
in the form u = −DT∇T , we obtain the thermophoretic
mobility

DT =
ε

ηT

(
ζ2

3
+ ζψ0 − ζ2T

(
1− α+ τ

3

))
. (37)

The surface potential of most experimental systems takes
values of a few kBT/e. In this range, the terms propor-
tional to ζ2T turn out to be of little significance and thus
will neglected in the following. Fig. 8 compares the three
contributions toDT as a function of the reduced quantity
eζ/kBT , for typical values of the parameters α, δα, and
τ .

This means in particular that we discard the salinity

TABLE I: Heat of transport Q∗i and reduced Soret coefficient
αi at room temperature for dilute systems. The αi are calcu-
lated from Eq. (32), with the values Q∗i taken from Ref. [89].
These numbers are subject to experimental uncertainty; Ref.
[90] gives a signficantly larger value for the Soret coefficient
αCl = 0.5 of Cl ions.

Ion H+ Li+ K+ Na+ OH− Cl−

Q∗i (kJ/Mol) 13.3 0.53 2.59 3.46 17.2 0.53

αi 2.7 0.1 0.5 0.7 3.4 0.1
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and permittivity gradients. The resulting coefficient

DT =
εζ

ηT

(
ζ

3
+ ψ0

)
(38)

accounts for two physical mechanisms that were intro-
duced in (2) and (3). The term proportional to the square
of the surface potential is closely related to Derjaguin’s
enthalpy flow [40]; it is always positive and drives the
particle towards lower temperatures, whereas the ther-
moelectric potential ψ0 may take both signs. For a neg-
atively charged particle ζ < 0, an inverse Soret effect
(DT < 0) occurs if ψ0 > −1

3ζ; this condition is achieved
for a sufficiently negative δα. The straight line (i) of
Fig. 8 is calculated with the typical electrolyte coeffi-
cient δα = 1; Table I indicates δα = 0.6 for NaCl at
room temperature. This thermoelectric contribution ex-
ceeds the term due to enthalpy flow in the whole range
of relevant surface potentials. (Note that kBT/e corre-
sponds to 26 mV.)

The origin of the field E0 in (27) is similar to ther-
moelectricity in metals, where the Seebeck coefficient
S = −ψ0/T is defined as the ratio of induced voltage
and temperature difference. With typical values of a few
µV/K, the coefficient of metals is much smaller than that
of electrolyte solutions; Table II shows that ψ0/T may at-
tain hundreds of µV/K. The Dufour effect describes the
inverse phenomenon, where a concentration gradient is
accompanied by a heat flow and thus leads to a non-
uniform temperature [1]. Contrary to gases where both
Seebeck and Dufour coefficients are relevant, the latter is
weak in liquids, mainly because of the large heat capacity.

In dilute electrolyte solutions, the ionic heat of trans-
port Q∗ arises from specific hydration effects [91]; at salt
concentrations beyond a few mMol/l electrostatic inter-
actions become important and result in intricate depen-
dencies on temperature and salinity [28—30]; such effects
are neglected here, where the coefficients are taken as
constants. According to the heats of transport given in
Table I, protons and hydroxide ions are most efficient
sources of the thermoelectric field; thus in weak elec-
trolyte solutions, the pH value determines the magnitude
and the sign of the thermophoretic transport coefficient
DT .

The effect of adding NaCl or LiCl to a low-acidity
buffer solution is illustrated in Fig. 9. The points present
experimental data from Ref. [5] for 26-nm polystyrene
beads in a CAPS (cyclohexylamino-propanesulfonic acid-
NaOH) buffered electrolyte. Since the Soret parameters

TABLE II: Thermopotential parameter ψ0 and Seebeck coef-
ficient S = −ψ0/T for several electrolytes at room tempera-
ture, as calculated from the numbers of Table I.

Electrolyte NaCl NaOH HCl KCl

δα 0.6 −2.7 2.6 0.4

ψ0 (mV) −16 70 −68 −10

S (µV/K) 50 −210 205 30
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FIG. 9: Thermophoretic mobility at large pH.as a function of
added salt concentration (NaCl or LiCl). The data points are
taken from Fig. 5a and 5b of Ref. [5]; they are obtained for
polystyrene beads of radius a = 13 nm in a CAPS buffered
electrolyte solution at fixed pH. The curves are calculated
from Eq. (37) with the ionic Soret coefficients of Table 1 for
Na or Li, Cl, and OH, assuming a constant charge density
σ = −0.12 nm−2. The hydroxide concentration nO H = 12
mMol/l corresponds to a pH value of about 10.5. Reprinted
from Ref. [42].

for the buffer molecules are not known, only Na, Li, Cl,
OH are taken into account, with the values of Table I.
The pH value 10.3 corresponds to a hydroxide concen-
tration of about 12 mM/l. Thus at low salinity, the elec-
trolyte is a NaOH solution; the strong thermodiffusion
of OH ions to low temperatures induces a thermoelectric
field which in turn drives the negatively charged PS beads
to the warm. Adding salt weakens this effect through the
decreasing relative weight of δαNaOH in the coefficient

δα =
nNaOH δαNaOH + n0 δα0

nNaOH + n0
. (39)

For n0 ≫ nNaOH , the pH value becomes irrelevant for
the thermophoretic mobility; since NaCl gives rise to a
rather weak thermoelectric effect, colloid transport arises
from the double-layer energy, i.e., the term ∝ ζ2 in
(38). Replacing the CAPS buffer with citric acid or using
tetraethylammonium hydroxide as salt, changes the be-
havior of DT , indicating that these molecules contribute
significantly to the thermoelectric field.

The importance of the electrolyte composition is high-
lighted by changing the relative weight of a given ion at
constant salinity. In Fig. 10 we plot DT for a negatively
charged particle in a 20 mMol/l NaCl1−xOHx solution
as a function of the relative hydroxide content x. Since
the thermoelectric effect is weak in a pure NaCl solution,
at x = 0 the mobility takes a rather small positive value
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FIG. 10: Thermophoretic mobility as a function of the elec-
trolyte composition. At constant salinity n0 = 20 mMol/l,
the partial concentrations of NaOH and NaCl are given by
xn0 and (1 − x)n0, respectively. The surface potential of 32
mV corresponds to eζ/kBT = −1.3.

DT = 1.7µm2/Ks. The macroscopic field E0 strongly
increases with the OH concentration, and results in a
change of sign at x = 0.3. This means that 6 mMol/l
NaOH are sufficient to drive the particle to the warm;
in a pure NaOH solution, the mobility attains the value
DT = −3.6m2/Ks, which is more than twice as large as
in NaCl and of opposite sign. The linear variation with
x and the change of sign are confirmed by a very recent
experiment on SDS micelles in a composite electrolyte
[92].

So far we have discussed a one-dimensional geome-
try where the temperature gradient and the thermo-
electric field are constant in space. Experimental tech-
niques based on optical gratings and thermal lensing [12],
however, create spatially varying temperature gradients.
Though the above analysis is expected to apply to any
geometry, a caveat is in order concerning the definition
of the “bulk region” where Eq. (34) applies. This is par-
ticularly relevant for single-particle tracking techniques
in the vicinity of a heated spot in microchannels of thin
water films [6].

F. Collective effects

In dilute suspensions, the thermophoretic mobility DT

and the diffusion coefficient D are independent of the col-
loidal volume fraction, and so is the Soret coefficient ST .
A different behavior, however, was observed in a number
of experiments. For 3-nanometer SDS micelles at vol-
ume fractions φ ranging from 0.1% to 2%, Piazza and
Guarino found the measured Soret coefficient to vary as
ST ∝ 1/(1 + ksφ), and the coefficient ks to be propor-

tional to the inverse salinity [4].
This dependence of ST on the SDS concentration has

been related to particle-particle interactions; the corre-
sponding expansion for the diffusion coefficient reads at
linear order

D =
kBT

6πηa
(1 + 2Bφ) . (40)

For a screened electrostatic repulsion, B indeed varies
with the inverse salinity [4, 93]. Both features agree well
with the experimental observation for the Soret coeffi-
cient ST = DT /D, and suggest that collective diffusion is
at the origin of the observed concentration dependence.
This view is confirmed by comparing data from Refs.
[94, 95] on suspensions of 12 nm Ludox particles at vol-
ume fractions 0.1%, 0.5%, and 1.1%: At low salinity the
variation of the Soret coefficient with φ is, at least qual-
itatively, accounted for by Eq. (40).

A more complex picture arises from a recent experi-
ment on silica beads in an aqueous sulpho-rhodamine B
solution [96]. An independent measurement of the func-
tions D(φ) and ST (φ) shows that their concentration de-
pendencies do not cancel, resulting in a significant vari-
ation of the thermophoretic mobility DT = STD. In the
range of volume fractions between 0 and 5%, the diffusion
coefficient D almost triples its value, whereas DT and ST
are reduced by factors of 2 and 5, respectively. At higher
densities φ > 0.1 all quantities seem to saturate.

The linear inital increase of the data of Ref. [96] with
the collective diffusion coefficient D, gives a dimension-
less virial coefficient 2B ≈ 35. A theoretical estimate
2B = (r0/a)3 is obtained from the excluded volume due
to electrostatic repulsion r0 = 2a + χλ, with the radius
of silica beads a = 35 nm, the Debye length λ, and a
numerical factor χ [93]. Treating the 30 µM/l sulpho-
rhodamine B solution as a monovalent electrolyte with a
Debye length of about 50 nm, one finds that the screened
electrostatic repulsion leads a virial coefficient compara-
ble to the measured value. This does not explain the
flattening of D(φ) at φ > 0.1 nor the variation of the
thermophoretic mobility DT .

Besides the “thermodynamic” contribution 2Bφ, the
virial coefficient for the diffusion coefficient (2B +K2)φ
contains a “hydrodynamic” term K2. For hard spheres
both are of comparable magnitude but opposite sign,
2B = 8 and K2 = −6.5 [77], whereas in the case of the
charged silica beads considered here, the thermodynamic
term is by far dominant. Note that the main part (−5.5)
of the numerical value of K2 is due to backflow.

Cooperative effects on the thermophoretic mobilityDT

are less well understood. A thermally driven particle
gives rise to the “dipolar” velocity field v ∼ 1/r3 shown
in Fig. 5 and thus does not drag the surrounding fluid;
as discussed in Sect. IV below, this flow pattern implies
that there is no backflow. Thus one expects the hydrody-
namic coefficient K2 of DT to be smaller than the above
value of D. At volume fractions φ < 5%, these correc-
tions cannot explain the observed effect on DT . Little is
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known on how pair interactions affect the mobility DT .
In a purely thermostatic approach, Dhont evaluated D
and DT as derivatives of a generalized non-equilibrium
partition function [97]. In this way he reproduced the
known virial expansion for the diffusion coefficient. Yet
the thermophoretic mobility takes the form DT = D/T
and thus is proportional to the inverse particle radius.

In conclusion, the experimental findings of Ref. [96]
strongly suggests that thermophoresis in semidilute sus-
pensions is subject to significant collective effects, which
are at present rather poorly understood. It would be
interesting to determine whether the silica beads investi-
gated in [96] are an exception, or whether DT of particle
suspensions in general varies with volume fraction. An
even stronger hint on the existence of collective effects is
given by the molecular-weight dependence of the mobil-
ity DT of polyelectrolytes and DNA, as discussed in Sect.
IV E.

G. Temperature dependence

The thermophoretic mobility of colloidal suspensions
shows an intriguing temperature dependence. For pro-
teins, DNA, SDS micelles, and polystyrene beads, several
authors report a linear increase with temperature; DT is
negative at low T and changes sign between 5◦ and 25◦ C
[6, 32, 33]. In view of Eq. (38) we note that the permit-
tivity ε and the surface potential ζ depend only weakly on
temperature; the variation of the viscosity, though quite
significant, cannot explain the change of sign of DT .

Piazza and co-workers [32, 33, 67] found that the tem-
perature dependence of the Soret coefficient is well de-
scribed by the formula

ST = S
∞
T

(
1− e

T
∗
−T

T0

)
. (41)

This expression is negative at low T and changes sign
at T ∗. With experimentally relevant parameters, one
finds a linear variation below room temperature, ST =
S∞T (T −T ∗)T0, and a much weaker increase at higher T .
This rather universal behavior shown by various macro-
molecular and particle suspensions strongly suggests a
common origin. Its physical origin is not clear at present.

Here we discuss the thermoelectric effect as a possible
mechanism for the temperature dependence. The Soret
coefficient of binary electrolytes shows intricate depen-
dencies on ion size, salinity, and temperature [28, 30],
that arise from a superposition of electrostatic interac-
tions, thermal expansion, and hydration effects. Mea-
surements on 0.5 M/l NaCl solution give a constant slope

dα

dT
= 0.03 K−1

between 0 and 25 ◦C, and smaller values at higher tem-
peratures [28]. Regarding the behavior at lower salinity,
available experiments indicate a monotonic increase of α
with temperature. An irregular feature occurs for NaCl

0

1

2

3

0 10 20 30 40

D
T  (

µm
2 /K

s)
 

Temperature  (°C) 

30 nm PS beads

in 4 mM/l NaCl solution

FIG. 11: Temperature dependence of the thermophoretic mo-
bility of polystryene beads. The full symbols are data mea-
sured by Iacopini et al. [33]. The curves represents Eq. (38)
with the the Debye length λ = 5 nm and the number density
of elementary surface charges σ = −0.05 nm−2; the latter
value is slightly larger than −0.04 nm−2 given in Ref. [33].
The temperature dependence of the straight line arises from
the thermoelectric coefficient δα; the second curve accounts
moreover for the variation of the viscosity, as explained in
the main text. (Reprinted with permission from Ref. [98].
Copyright 2009 American Chemical Society.)

and KCl at 100 mM/l [28, 30], where the coefficient α as
a function of salinity shows a sharp dip towards negative
values. A similar dip has been observed for the Soret co-
efficient ST of lysozyme protein: the value measured at
n0 = 100 mMol/l is significantly smaller than those at 20
and 400 mMol/l [32]. With the ionic heats of transport
of Table I, one finds δα = 0.6 for NaCl solution at room
temperature.

In the absence of data on the temperature dependence
of the thermoelectric coefficient δα, we tentatively as-
sume a linear behavior, similar to that of the Soret coef-
ficient α. The straight line in Fig. 11 is calculated from
Eq. (38) with

δα(T ) = 0.8 +
0.025

K
(T − 298 K). (42)

Its parameters roughly correspond to the measured value
at 25 ◦C given in Table I, and to the T -dependence of α.
Thus Eq. (42) crucially relies on the assumption that α
and δα have a similar temperature dependence. In terms
of the ionic transport quantities introduced in Eq. (32),
this means that Q∗Na and Q∗Cl would follow the same law
as a function of T .

We briefly return to the temperature variation of the
viscosity η. In the range between 10 ◦C and 40 ◦C, the
viscosity decreases by about 50% from 1.3 × 10−3 Pa·s
to 0.65 × 10−3 Pa·s [99]; this reduction corresponds to
a logarithmic derivative d ln η/dT ∼ −0.02 K−1. The
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straight line in Fig. 4 is calculated with the constant
value η0 at 30 ◦C. The second curve is calculated with
the temperature-dependent viscosity data η(T ) from Ref.
[99]. For the present discussion, the difference between
the two curves is of little significance.

The data reported by Iacopini et al. for sodium
dodecylsulfate (SDS) micelles and sodium polystyrene-
sulfonate (NaPSS), are almost identical to those for
polystyrene beads shown in Fig. 11. In all cases, DT

changes sign at T ∗ ≈ 5◦ C, increases linearly with tem-
perature, and attains values between 3 and 5 µm2/Ks
above 30◦ C; the same behavior is found for the peptide
β-lactoglobulin and for DNA, with a change of sign at
20◦ C [33]. The results on polystyrene beads and DNA
are confirmed by Ref. [6]. These colloids are negatively
charged (ζ < 0) and are soluted in a NaCl electrolyte.

In view of the good agreement of the data with Eq.
(42) it is tempting to conclude that the temperature de-
pendence arises from that of the thermoelectric coeffi-
cient δα of the NaCl solution. Yet experimental findings
on the positively charged peptide poly-lysine do not sup-
port this picture: The measured mobility DT increases
with temperature [33, 100], similar to that shown in Fig.
11, whereas from the above discussion one would expect
a negative slope dDT/dT < 0 for a positive surface po-
tential (ζ > 0) [101]. At present it is not clear whether
this discrepancy is due to hydrophobic interactions or to
a more subtle coupling of the thermoelectric field. De-
finitively settling this question would require an experi-
mental study of the electrolyte coefficient δα(T ).

H. Slip boundary condition

Our discussion so far relies on Stokes boundary condi-
tions vx|z=0 = 0 for the fluid motion near the particle;
in a microscopic picture this means that the first layer of
solvent molecules sticks to the solid surface. Though this
condition is verified on a macroscopic level, alternatives
have been debated since the early days of fluid mechan-
ics. Navier proposed that a sheared fluid could slip along
the surface, with the velocity jump v0 being proportional
to the applied shear stress Σ0,

ηv0 = bΣ0, (43)

where the material specific constant b has the dimension
of a length. Fig. 12 shows the resulting velocity profile
through the boundary layer and illustrates the meaning
of the parameter b.

A number of experiments indicate the occurrence of
hydrodynamic slippage, mainly under non-wetting con-
ditions; recent reviews are given by Refs. [102, 103]. Sim-
ulations of the molecular dynamics at a charged interface
related the slip length to van der Waals force parameters
of the non-wetting fluid and to ion-specific interactions
[104]. These simulations show that continuum hydrody-
namics provide a good description of the fluid motion
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FIG. 12: Schematic view of the fluid velocity field in the
boundary layer close to a particle of radius a, after Ref. [105].
The external field acting on the electric double layer accel-
erates the charged fluid with respect to the solid. A finite
surface velocity v0 arises from hydrodynamic slip in a molec-
ular layer (thick grey line); the slip length b is defined as the
distance where the linear velocity profile would vanish. At a
distance B, well beyond the electric double layer, the fluid at-
tains the boundary velocity vB . (Reprinted with permission
from Ref. [106].)

even on the scale of nanometers, and that slip occur-
ring in a few molecular layers may significantly accel-
erate externally driven transport, such as the flow in a
microchannel [105].

Following Ref. [106] and proceeding as in Sect. II A,
we derive the motion of a particle with slip boundary
conditions. We write the fluid velocity and stress at z =
B as

vB = v0 +∆v, ΣB = Σ0 −∆Σ, (44)

where the variation through the boundary is given by the
quantities

∆v =
1

η

∫ B

0

dzzf̃x, ∆Σ =

∫ B

0

dzf̃x, (45)

with the shorthand notation f̃x = fx − dP/dx. Thus
the boundary velocity vB is the sum of an intrinsic slip
contribution v0 and the change through the boundary
layer ∆v, sometimes referred to as apparent slip [70]. The
former occurs if the fluid molecules do not fully adhere to
the solid, whereas the latter is due to the forces exerted
by the surface on the nearby fluid.

The above equations are closed by the stress-velocity
relation outside the boundary layer. Simplifying for B ≪
a one obtains from Eq. (17)

aΣB = −2ηvB. (46)

Solving the relations (43)-(46) one finds the boundary
velocity vB as a function of Navier’s slip length,

vB =
∆v + b∆Σ/η

1 + 2b/a
. (47)
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The velocity and stress increments ∆v and ∆Σ do not
depend on the particle size. For Stokes boundary condi-
tions (b = 0) one recovers vB = ∆v, and the boundary
velocity vB is independent of the radius a. The oppo-
site limit b → ∞ leads to vB = 1

2a∆Σ/η, which varies
linearly with a.

The boundary velocity comprises two contribution of
different physical origin. The first term involves Ander-
son’s “quasislip” velocity ∆v, which arises from osmotic
flow due to interfacial forces; this velocity occurs on a
length scale determined by the range of interaction, e.g.,
the Debye length in the case of electrokinetic phenomena.
The second contribution, proportional to the change of
stress ∆Σ, corresponds to slip in the sense of the Navier
relation (43); in the framework of continuum hydrody-
namics, there is no associated length scale, in a micro-
scopic picture slippage is related to the weak adhesion of
the first molecular layers to the particle, as occurring for
water at a hydrophobic surface [104]. Some aspects of hy-
drodynamic slippage at a solid-fluid interface are similar
to the flow on a gas bubble in a viscous liquid [107, 108].

As an example, we evaluate Eq. (47) for electroosmotic
flow, where a charged particle with its screening cloud
is subject to an external electric field E0. Straightfor-
ward integration gives ∆Σ = −σE0 and ∆v = −εζE0/η,
where ζ and σ are the surface potential and charge den-
sity [70]. Thus we find the boundary velocity vB and the
electrophoretic mobility µ = −vB/E0,

µ =
1

η

εζ + σb

1 + 2b/a
. (48)

For b = 0 we recover the Helmholtz-Smoluchowski ex-
pression µ = εζ/η, whereas in the opposite limit b→∞,
the mobility simplifies to µ = aσ/2η. In the weak-
coupling limit, the surface potential reads as ζ = λσ/ε;
for moderate slip length b≪ a, this results in the correc-
tion factor µ = (1 + b/λ)εζ/η given previously in [109].
The case of large Dukhin number is discussed in [110].

A physical picture for the slip-enhanced mobility is ob-
tained in terms of the range of the shear stress σE, that
is exerted by an electric field on the surface of charge
density σ. For b = 0 the stress occurs over the width λ
of the double layer, resulting in the relation for the ve-
locity ηu/λ ∼ σE, as illustrated in Fig. 4b. A finite slip
b length spreads the stress over a larger distance; from
Fig. 12 one finds ηu/b ∼ σE, and the particle velocity
augments accordingly. This effect saturates if b exceeds
the radius a; then the stress operates over a distance of
the order of the particle size, ηu/a ∼ σE.

Now we discuss how slip boundary conditions affect
motion driven by chemical and thermal gradients. For
the sake of notational simplicity, we consider the weak-
coupling case only, where the surface potential is small,
eζ < kBT . General results for strong coupling are ob-
tained by inserting the force (22) in Eq. (45). In Debye-
Hückel approximation one has ψ = ζe−z/λ and ζT =

1
2ζ.

Integrating Eqs. (32) and (45) results in the transport

velocity

u =
εζ2

12η

(
∇ε

ε
+
∇n0
n0

− ∇T
T

)
1 + 2b/λ

1 + 2b/a
. (49)

Note that this result has been obtained in boundary layer
approximation, which is valid for λ ≪ a only. The de-
pendence on the Navier slip length b is given by the last
factor. A discussion of the strong-coupling case in terms
of the Dukhin number is given in Ref. [110].

For b = 0 we recover Ruckenstein’s expression for
thermally driven transport, which is proportional to the
square of the surface potential and opposite to the tem-
perature gradient [2]. Moderate values of b enhance the
velocity by 1+2b/λ. In comparison to the electrophoretic
velocity at low surface potential,

u =
εζE0
η

1 + b/λ

1 + 2b/a
,

Eq. (49) shows an additional factor of 2 in the numerator,
which is related to the quadratic dependence on ζ. For
b≫ a the enhancement factor in (49) reduces to a/λ and
no longer depends on the slip length; in this range the
transport velocity is proportional to the particle size [12,
72]. Numerical studies of non-wetting interfaces suggest
that b takes values of less than ten nanometers; from Eqs.
(48) and (49) one expects a rather moderate increase of
the transport velocity.

I. Size dependence

The hydrodynamic and electrostatic treatment of col-
loidal particles presented so far, relies on the bound-
ary layer approximation, which is valid for short-ranged
solute-solvent forces. In this limit the thermophoretic
mobility does not depend on the particle size [40, 70],

DT constant (a≫ λ). (50)

The essential argument is illustrated in Fig. 4, show-
ing how the boundary velocity arises from the local bal-
ance of interfacial forces and viscous stress and thus is
insensitive to the particle radius. A similar relation has
been known for a long time for electrophoresis [111] and
for motion driven by chemical gradients [70]. Morrison
has shown this statement to hold true for bodies of any
shape, as long as the curvature radius is large compared
to the range of the interface forces [112]. As two excep-
tions to the rule (50), we note hydrodynamic slippage on
non-wetting surface, and liquid droplets without or with
weakly adsorbing surfactants; these cases are discussed
in Sects. II H and VI D, respectively. Contrary to DT ,
the diffusion coefficient

D =
kBT

6πηa
(51)

is proportional to the inverse particle radius, resulting in
a linear variation of the Soret coefficient ST = DT /D.
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FIG. 13: Schematic view of a charged particle of radius a,
and its screening cloud with Debye length λ≫ a. The arrows
indicate the fluid velocity field. At distances within one Debye
length, the fluid is dragged by the moving particle to the left.
At larger distances, the velocity field is described by (23);
close to the midplane it is opposite to the particle motion.
(Reprinted from Ref. [115] with permission of the European
Physical Journal EPJ E.)

Most experiments on suspended particles and AOT-
water-oil emulsion droplets [15, 67, 113, 114] confirm the
relation (50); yet note the linear increase of DT ∝ a ob-
served in [6]. For a recent discussion of experimental data
on the size dependence see Ref. [67].

Here we address the opposite limit where the parti-
cle is smaller than the characteristic length scale of the
forces. For example, in a weak electrolyte the Debye
length takes values of hundreds of nanometers and may
by far exceed the size of nanoparticles or micelles. The
small-particle limit a ≪ λ rather generally applies to
molecular ions. For long-ranged forces, the pressure gra-
dient in the Stokes equation is negligible and the solute
velocity can be evaluated in the Hückel limit

u =
F

6πηa
(a≪ λ), (52)

where the particle-fluid interaction is treated like an ex-
ternal field F. The latter is given by the integral of the
total force density (22) exerted by the particle on the
surrounding fluid,

F = −
∫
dV f . (53)

The flow pattern in the vicinity of the particle is indicated
in Fig. 13; within one Debye length one finds v ∼ 1/r,
whereas at larger distances one recovers the variation v ∼
1/r3 of Eq. (17); for a detailed discussion see [115].

In physical terms, the Hückel limit relies on the wide
spreading of counterions and the smooth variation of the
viscous stress in the diffuse layer. Thus the hydrody-
namic equations reduce to the Stokes drag of a particle
of charge q in an electric field Eext. Its velocity is given

by Eq. (52) with F = qEext, and the electrophoretic mo-
bility by µ = q/6πηa. Inserting the surface potential of
weakly charged particles, ζ = λq/4πεa2, one finds that
the mobility of small particles, µ = 2

3εζ/η, is by a factor
2
3 smaller than the Helmholtz-Smoluchowski expression
εζ/η [77].

Regarding the thermophoretic mobility the argument
is less straightforward. Integrating the force F due to
thermoosmotic flow, expanding in powers of a/λ, and
truncating at leading terms, Morthomas found that DT

is given by two terms [115]

DT =
εζ

ηT

(
τ

3
ζ +

2

3
ψ0

)
(a≪ λ), (54)

the first of which arises from the permittivity gradient in
a non-uniform temperature and the second one accounts
for the thermoelectric field. Since the temperature co-
efficient τ = −(T/ε)dε/dT is positive and rather close
to unity, τ ≈ 1.4 at room temperature, the mobility DT

differs little from the expression for large particles, Eq.
(38). Thus the discussion of large colloidal particles in
Sect. II applies equally well to small solutes. There is a
strictly positive contribution proportional to the square
of the surface potential, whereas the thermoelectric effect
may drive the solute to the cold or the warm, depending
on the relative sign and magnitude of ζ and ψ0. The size
dependence ofDT arises from the surface potential which
reads in Debye-Hückel approximation

ζ =
qλ

4πεa(a+ λ)
.

For a≪ λ this simplifies to ζ = aeσ/ε, with the surface
charge density eσ = q/4πa2.

It turns out instructive to compare Eq. (54) with a
model where the force acting on a particle is calculated
as the gradient of the charging energy, that is, of the
work required for accumulating a charge q from infinity
onto the particle surface, U = 1

2qζ [93, 116—118]. The
gradient has been evaluated by Dhont et al. [117]; to
leading order in the small parameter a/λ, the result for
the effective force Feff = −∇U reads in our notation

Feff = −2πεζ2τ
∇T

T
.

Since there is no external field acting on the suspended
particle, Feff describes the force exerted by the charged
diffuse layer. Inserting this expression in (52) one finds
that the resulting expression for DT is identical to the
first term of (54). Moreover, the Soret coefficient ST =
DT/D can be written as the temperature derivative of
the charging energy,

ST =
dU

dT
= 2πa

εζ2

kBT 2
(a≪ λ). (55)

Thus for small particles the effective-force approach pro-
vides the correct expression for the contribution propor-
tional to ζ2. This is related to the fact that in the Hückel
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limit (52) the viscous effects are accounted for by the
Stokes mobility factor. There are two sources for the
size-dependence discussed in [117]: the explicit variation
with a arising from the diffusion coefficient, and that of
the surface potential.

III. DISPERSION AND DEPLETION FORCES

A. Colloid-polymer mixtures

Adding polymers to a colloidal suspension affects both
its phase behavior and transport properties [119, 120].
Here we consider thermally driven depletion forces in the
“colloid limit”, where the particle is larger than the gy-
ration radius of the added polymer. This situation is
illustrated in Fig. 2a.

We start from the general description of a colloidal
particle interacting with a molecular solute. As pointed
out by Derjaguin [121] and reviewed by Anderson [70],
driven transport is significantly enhanced by accumula-
tion of the solute in the boundary layer. The interaction
potential ϕ between the particle and the solute molecules
results in an excess pressure

P = ckBT (e
−ϕ/kBT − 1).

Since dispersion force have no lateral component, fx =
0, the integrand of Eq. (15) is given by the derivative
dP/dx. This pressure gradient maintains a flow along the
particle surface. Noting that only the potential ϕ depends
on the vertical coordinate z, one obtains the quasi-slip
velocity

vB = −1
η

d

dx
ckBT

∫ ∞

0

dzz
(
e−ϕ/kBT − 1

)
. (56)

The case of an externally applied solute gradient ∇c
and constant temperature corresponds to diffusiophore-
sis [70]. For an attractive interaction one finds vB < 0,
that is, the particle is driven towards higher solute con-
centration (u > 0). In the case of strong attraction and
high solute density, advection in the boundary layer is
limited by diffusion in the nearby fluid, requiring a more
detailed analysis [80].

Depletion forces arise from the reduction of the trans-
lational entropy due to the finite size. In the above Eq.
(56) depletion is accounted for by an infinite repulsive
potential for distances shorter than R; with ϕ = ∞ for
z < R and ϕ = 0 for z > R, the integral in (56) takes
the value −1

2R
2. Thus the colloidal particle moves at a

velocity

u = − 1

3η
∇
(
ckBTR

2
)
. (57)

Sano and co-workers realized such a stationary con-
centration gradient by a non-uniform temperature [15].
In their experiment shown in Fig. 14, a laser locally

FIG. 14: Schematic view of the non-uniform colloid-polymer
mixture studied in Ref. [15]. Laser heating increases the
temperature in the center. Because of their positive Soret
coefficient, the polymers diffuse to the colder outside region.
Their concentration gradient exerts a depletion force on the
colloidal particles, which accumulate in the heated spot.

heats a colloid-polymer mixture, consisting of charged
polystyrene particles of radius a = 50 nm and neutral
poly-ethylene-glycol (PEG) of molecular weight Mw =
7500. The size of an ethylene unit does not exceed a few
Å, and each chain is made of N = 13 repeat units; the
gyration radius R is much smaller than the particle size,
thus justifying the boundary layer approximation in (56).

The authors of Ref. [15] discard the variation of the
gyration radius and replace the gradient in (57) with
R2∇(cT ). Under the assumption of a temperature-
independent Soret coefficient SmT , the non-uniform poly-
mer concentration reads as

c(r) = c0e
−Sm

T
∆T (r). (58)

(A detailed discussion of polymer solutions is given in
Sect. IV below.) Inserting the gradient ∇c = −cSmT ∇T
gives the transport velocity of the colloidal particles

u = −
(
D0T −

kB
3η
R2c(TSmT − 1)

)
∇T, (59)

where the first term describes the effect of the thermal
gradient on the electric double layer and the second one
the depletion force exerted by the polymer solution. The
number density of colloidal particles is given by Eq. (11),
with the Soret coefficient

ST = S
0
T − 2πcR2a(SmT − 1/T ). (60)

Fig. 15 shows the relative colloid density n/n0 as a
function of the temperature increment ∆T , for different
weight fractions of polymer content.

For c = 0 the depletion force vanishes and the Soret
motion is described by the electric double-layer forces
accounted for by Eq. (38). The reduction of n(r) in the
heated zone means that the colloidal particles are driven
towards the cold and that the bare Soret coefficient is
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FIG. 15: Reduced colloidal density n/n0 in the heated spot,
as a function of the temperature increment and for several
values of the polymer concentration c. The particle radius is
a = 50 nm. Figure by courtesy of M. Sano. (Reprinted with
permission from Ref. [15]. Copyright 2009 American Physical
Society.)

positive. Multiplying (38) with the Einstein coefficient
one finds

S0T = 2πa
εζ(ζ + 3ψ0)

kBT 2
.

The measured value S0T = 0.35 K−1 corresponds to pre-
vious findings for charged polystyrene particles. The two
terms in the numerator are expected to be of compara-
ble magnitude; we note that the numerical value of S0T
is well reproduced with a surface potential ζ of about 45
mV and ψ0 = 0.

Adding a small amount of polymer reduces the Soret
coefficient according to Eq. (60), as shown by the curve
for 1% PEG in Fig. 15. At higher concentrations deple-
tion forces overcome the electrostatic mechanism; then
the effective value ST is negative and the colloidal par-
ticles accumulate in the heated zone. A temperature in-
crement of 4 K and a polymer volume fraction of 5%
enhance the colloidal density by a factor of about 200.

Thus increasing the polymer concentration switches
the colloidal Soret effect from thermophobic (ST > 0)
to thermophilic behavior (ST < 0). Depletion forces are
more efficient for longer polymers; the dependence of the
polymer Soret coefficient on the gyration radius given in
Eq. (72) below, S(m)T ∝ R, leads to

ST − S0T ∝ acR3. (61)

This scaling is valid for dilute solutions and as long as the
gyration radius is small compared to the particle radius.
The linear decrease of S∗T with polymer concentration is
confirmed by the inset of Fig. 15. Regarding the size
dependence, the experiments on particles of a = 50 and
100 nm confirm the linear law in (61).

The straight lines in Fig. 15 are calculated from Eq.
(60) with a polymer Soret parameter SmT = 0.056K−1 [8],
and a gyration radiusR = 5 nm; the latter corresponds to
a Kuhn length of about 3 ethylene units. Finally we dis-
cuss SmT in view of Eq. (72) derived below: The measured
value of SmT is met with the definition of the Einstein
coefficient (68), the expansivity β = 0.2× 10−3 K−1, the
radius of a water molecule d0 = 1 Å, and the Hamaker
constant H = 5.5× 10−20 J.

B. Non-uniform solvent

Here we discuss thermophoresis of an uncharged spher-
ical particle of radius a in a non-uniform solvent, as il-
lustrated in Fig. 2. Dispersion forces decay rapidly with
distance and are most efficient close to the particle. Thus
the hydrodynamic treatment is based on the boundary
layer approximation, where the particle is replaced by a
flat surface; cf. Fig. 4.

On a mesoscopic scale, van der Waals interactions are
described in terms of the Hamaker constant H. This
parameter is defined through the potential energy U per
unit area A of two parallel bodies at a distance h [77],

U

A
= − H

6πh2
.

Here we are interested in the forces exerted by a particle
on the surrounding solvent and thus rewrite the potential
energy density as

ϕ(z)

Vs
= − H

3πz3
, (62)

where Vs is the volume of a solvent molecule and z its
distance from the particle surface.

The Hamaker constant H takes values of several 10−20

Joule, that is, about ten times the thermal energy, H ∼
10kBT . For non-polar materials, the Berthelot mixing
rule

H =
√
HPHS (63)

provides an approximate expression in terms of the
Hamaker constants of the particle and the solvent mate-
rial. It works less well for polar materials. For example,
with the constants of polystyreneHP = 8×10−20 J and of
water HS = 5×10−20 J one finds

√
HPHS = 6.3×10−20

J; the measured value H = 1.3 × 10−20 J is about five
times smaller. In spite of this uncertainty we use the
relation (63), simply because for most systems the inter-
action parameter H is not known.

The van der Waals potential energy ϕ diverges at
z = 0, where the solvent molecules are in contact with the
solute particle. This unphysical singularity is avoided by
introducing a phenomenological cut-off d0 related to the
molecular structure; in a static situation this length may
be viewed as the minimum distance of atomic dipoles on
solute and solvent, and thus takes a value of one or two
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Ångström. A modified picture arises in the present prob-
lem, where the shear force acts along the particle. The
notion of a sheared fluid has no meaning at length scales
below the size of the solvent molecules; this suggests to
identify d0 with the solvent molecular radius.

In an isotropic solvent, the dispersion forces on both
sides of the particle cancel each other. A finite transport
velocity arises from a spatial variation of the solvent con-
centration, c(r) = c̄+ r ·∇c, with c̄ = 1/Vs. The result-
ing force on the solvent molecules reads as [122, 123]

f = −c∇ϕ. (64)

Note that the gradient ∇ϕ is perpendicular to the sur-
face; hence there is no force along the particle, fx = 0.
Because of its weak variation over the size of the particle,
a|∇ ln c| ≪ 1, the concentration may be taken constant
in the normal force, fz = c̄∂zϕ, and the perpendicular
component of Stokes’ equation (14a) is readily integrated,

P = P0 − cϕ. (65)

Yet it is essential to retain the concentration gradient in
the parallel component along the particle surface; evalu-
ating Eq. (15) with ∂xP = −ϕ∂xc, one finds the bound-
ary velocity at a distance B ≫ d0,

vB = −
1

η

∫ B

d0

dzz
dP

dx
= − H

3πηd0

∂xc

c̄
, (66)

where ∂xc ∝ sin θ depends on the polar angle. Dispersion
forces being of short range, the parameter B corresponds
to a few molecular layers from the particle surface.

The particle velocity takes the opposite sign and is
directed towards higher density. In the present context,
the non-unifiorm density is related to a thermal gradient.
With the thermal expansivity

β = −1
c

dc

dT

we find u = −DT∇T with the thermophoretic mobility

DT =
2βH

9πηd0
. (67)

Except for water below 5 ◦C, liquids in general expand
upon heating (β > 0); thus a temperature gradient drives
particles to colder regions. With the parameter of com-
mon liquids one finds DT ∼ 10µm2/Ks. Much higher
values of 300µm2/Ks were reported in an early experi-
ment on polystyrene particles in water and hexane [124].

We stress that the macroscopic pressure is assumed to
be constant throughout the sample. In agreement with
the general theory of stationary non-equilibrium systems,
the temperature gradient and the resulting density profile
are not related to a pressure variation [1]. The excess
pressure (65) arises from the solute-solvent forces and
thus vanishes rapidly beyond a few nanometers from the
solute surface.
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a) b) 

FIG. 16: a) Schematic view of a charged polystyrene particle.
Because of the ionic molecular groups grafted on its surface,
the “plane of shear”, where the lateral velocity vanishes, is at
a distance d0 that corresponds to the size of the surfactant. b)
Micelle of ionic surfactants; their electrostic interaction keep
the surface smooth, and the cut-off distance d0 is given by the
size of a water molecule.

C. Dispersion forces in aqueous solution

For charged colloids in aqueous solutions both electric-
double layer and dispersion forces contribute to the ther-
mophoretic mobility. With a surface potential ζ ∼ 50
mV and the viscosity η ∼ 10−3 Pa.s of water, the electric
part in Eq. (38) takes the value

εζ2

3η
∼ 2µm2/Ks.

Evaluation of the term driven by dispersion forces is less
simple, since the cut-off parameter d0 appearing in Eq.
(67) may take rather different values, depending on the
solute surface properties. Moreover, the Hamaker inter-
action parameter H of organic materials in aqueous so-
lution is not well known. Finally, the thermal expansion
coefficient β varies strongly with temperature. It vanishes
at 4◦ C because of the density anomaly of water, then in-
creases steadily up to the boiling point: β = 0 (4◦ C);
β = 0.2× 103 K−1 (20◦ C); β = 0.5× 103 K−1 (50◦ C).
Therefore the mobility (67) vanishes close to the freez-
ing point, but may take significant values above room
temperature.

As a first example, consider a suspension of charged
polystyrene particles. The surface charge density σ stems
from ionic molecular groups grafted at the particle sur-
face. As illustrated by Fig. 16a, these groups shift
the “plane of shear” by a distance d0 into the solvent.
Hamaker constants for the interaction of polar and non-
polar materials are rather small. Evaluating (67) with
d0 ∼ 1 nm, H ∼ 2 × 10−20 J, and the thermal expan-
sivity at 20◦ C, we find DT ∼ 0.3µm2/Ks. This is sig-
nificantly smaller than the electric contribution, suggest-
ing that van der Waals forces are of little relevance for
thermophoresis of polystyrene particles in water. This
statement is confirmed by the measured variation of DT

with the electrolyte strength.
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As a counterexample, we sketch in Fig. 16b a SDS
micelle. The headgroup interactions keep the surface
smooth, such that the cut-off parameter corresponds to
the size of water molecule, d0 ∼ 0.2 nm. Because the
polar headgroups interact more efficiently with the sur-
rounding water, one may assume a larger Hamaker con-
stant, H ∼ 4× 10−20 J. With these parameters one has
DT ∼ 2µm2/Ks, which is comparable to the double-layer
contribution.

These remarks suggest that the van der Waals interac-
tion and the electric-double layer forces may contribute to
the thermophoretic mobility. The dependencies on salin-
ity and temperature give clues about which term prevails
in a given system, and how to separate their respective
contributions. For example, Piazza and Guarino found
that DT of dilute SDS micelles increases almost linearly
with the inverse salinity. In view of DT ∝ ζ2 and the vari-
ation of the surface potential with salinity (ζ2 ∝ 1/n0 for
weak coupling), this observation indicates that, at least
at room temperature, the micellar motion is driven by
double-layer forces [4].

Regarding the temperature dependence, Piazza and
coworkers [32, 33] and Brenner [47] have pointed out that
DT of SDS micelles, proteins, and DNA, is strongly cor-
related with the thermal expansion coefficient β of water;
in view of Eq. (67) this would indicate dispersion forces
to be relevant. On the other hand, the fit of Fig. 11
suggests that double-layer forces show a similar increase
with temperature, and Eq. (42) is supported by the es-
tablished proportionality between the thermal expansiv-
ity and the salt Soret coefficient [28].

D. The effect of coating

In a study on the Soret motion of octadecyl coated sil-
ica particles in toluene, Wiegand and co-workers found
an inverse Soret effect (DT < 0) at room temperature;
upon heating the thermophoretic mobility increases lin-
early with T , changes sign at about 40◦ C, and becomes
positive at higher temperature [7]. These findings are
surprising for two reasons: First, for an uncharged sys-
tems one would expect DT > 0: According to Eq. (67)
the van der Waals interaction with the solvent forces
drive the particle towards the cold. Second, since its
parameters hardly depend on temperature, the mobility
DT should be roughly constant with respect to T .

The DT values measured for dilute suspensions vary in
the range ±0.4 µm2/sK[7]; this is by one order of magni-
tude smaller than what is usually found for organic sys-
tems; see, for example, the numbers for polystyrene in
Fig. 19 below. This low thermophoretic mobility can be
explained through the surface roughness due to coating
and the high thermal conductivity of silica. According
to the discussion Fig. 16a, the octodecyl groups grafted
on the silica beads shift the plane of shear by a distance
d0 ∼ 1 nm into the solvent and thus reduce the thermoos-
motic flow. On the other hand, the heat conductivity of
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FIG. 17: Schematic view of thermophoresis of a coated par-
ticle. a) Dispersion forces drive the particle to higher solvent
density and thus lower temperature. b) Small molecular sol-
vents, such as octodecane in toluene, show an inverse Soret
effect and rather diffuse to the warm. c) The combination
of both mechanisms may drive the coated particle in either
direction.

toluene κS = 0.13 W/mK is by almost one order of
magnitude smaller than that of silica, κP = 1.1 W/mK.
According to (24) this ratio reduces the temperature gra-
dient at the particle surface by about 70%. With the
properties of toluene and H ∼ 10−20 J we obtain

D0T =
3κS

2κS + κP

2βH

9πηd0
∼ 0.3µm2/Ks,

in qualitative agreement with the measured values.
As an important clue to the puzzling sign of DT of

coated silica beads, Wiegand and co-workers observed
that octodecane molecules in toluene show a negative
Soret effect, Dm

T = −5µm2/sK. This does not come as
a surprise; as discussed in detail in Sect. V, because of
their random wriggling through the sample, small mole-
cules are subject to an additional negative Soret contri-
bution, which may lead to Dm

T < 0.
As illustrated in Fig. 17, a silica bead is subject to two

opposite thermal driving mechanisms,

DT = D
0
T + χD

m
T ,

where the first one accounts for the dispersion forces be-
tween the bead and the solvent, and the second one for
the negative Soret effect of the molecular groups grafted
on its surface. From this picture one expects long and
flexible coating molecules to be more efficient. The fac-
tor χ accounts for the reduced mobility of the octodecyl
groups; its temperature dependence could result in the
change of sign reported in Ref. [7]. The detailed physical
mechanism remains to be elucidated.

IV. POLYMER THERMOPHORESIS

A. Hydrodynamic interactions

When averaging over the configurations of a polymer
in three-dimensional space, one finds that the molecule
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occupies a volume ∼ R3; the characteristic length R is
given by the gyration radius which varies with the num-
ber N of beads as

R = ℓNν .

For a flexible and ideal polymer, ℓ = 2a is the size of a
building block, and the exponent ν takes the value 1

2 ; for
real chains in a good solvent, one has ν ≈ 3

5 [125].
If the polymer is subject to an applied force such as

gravity, or simply the Langevin force due to the thermal
fluctuations of the solvent, the resulting velocity depends
strongly on N and thus on the molecular weight Mw.
Each bead induces in the surrounding fluid a velocity
vF (r) ∼ 1/r that is proportional to the inverse distance.
When considering the velocity of a given bead n, one has
to sum over the flow due to all parts of the molecular
chain; evaluating the response to the Langevin force and
the corresponding mean-square displacement, one finds
the Einstein coefficient [125]

D =
kBT

6πηRh
, (68)

where the hydrodynamic radius Rh is closely related to
R; in the following we use Rh ≈ 0.7R [126]. With respect
to that of a single bead, kBT/6πηa, hydrodynamic inter-
actions reduce the diffusion coefficient by a factor a/Rh.
Thus a polymer of 105 repeat units diffuses about thou-
sand times more slowly than a monomer. As illustrated
in Fig. 18a, the molecular chain drags a volume 4

3πR
3
h;

note that the figure shows the fluid velocity field in the
frame attached to the molecule.

A rather different situation occurs for the motion
driven by thermoosmosis, where the velocity of high poly-
mers in dilute solution is independent of the molecular
weight Mw [34]. In Fig. 19 we plot values measured
by Giddings and co-workers for polystyrene in different
solvents, in the range from Mw = 20000 to 160000 [35];
despite their scatter these data give clear evidence that
DT is constant with respect to Mw. This has been con-
firmed for other polymers and extended to an even larger
range of Mw [9, 37, 127—129].

Brochard and de Gennes showed that this property is
related to the fact that thermophoresis is insensitive to
hydrodynamic interactions within the polymer chain. In
dilute solution, the intermolecular distance is much larger
than the gyration radius, and it is sufficient to consider
a single molecular chain of N beads at positions rn. Ac-
cording to Eq. (67), the non-uniform solvent concentra-
tion imposes on each molecular unit a transport velocity
u. In addition, it experiences the velocity field induced
by the motion of the other beads m. As a consequence,
at any instance the velocity of a given mer n is obtained
by adding to the single-bead velocity the flow induced by
the neighbors,

Un = u+
∑

m�=n

v(rn − rm), (69)

 

a) b) 

FIG. 18: Fluid velocity field v(r) in the frame attached to a
soluted polymer. a) Body forces such as gravity; because of
hydrodynamic interactions, the polymer retains a fluid vol-
ume ∼ R3. b) In the case of osmosis-driven motion, there are
no hydrodynamic interactions, and the fluid passing through
the polymer is hardly perturbed. (Reprinted from Ref. [72].)

where v(r) is given in Eq. (17).
The velocity v(r) and the resulting shear are so weak

that they do not affect the statistical properties of the
polymer; in other words, the external field ∇T is treated
in linear response approximation. In particular there is
no orientational order of nearby polymer beads with re-
spect to the thermal gradient. When integrating over the
spatial orientation of the distance vector rn−rm, i.e., the
polar angle θ in (17), one finds that the mean drag field
vanishes,

〈v(rn − rm)〉 = 0. (70)

Each mer drifts with mean velocity 〈Un〉 = u, and so
does the polymer as a whole, independently of its length
and branching structure. In the frame attached to the
molecule this means that the fluid flows through the poly-
mer coil without significant perturbation, as illustrated
in Fig. 18b.

As a consequence, the thermophoretic mobility of a
polymer chain does not depend on the number of beads
and is given by Eq. (67),

DT =
2βH

9πηd0
. (71)

The numerical prefactor of this expression has been ob-
tained from hydrodynamics, that is for a structureless
solvent, and for solutes much larger than the range of
their interactions. One should keep in mind that, all
molecular units being of comparable size, these assump-
tions are not really justified for a polymer in an organic
solvent.

B. Soret coefficient

The results of the preceding sections, in particular the
constant mobility DT , rely on the fact that polymer
thermophoresis is insensitive to hydrodynamic interac-
tions. On the other hand, diffusion becomes slow for
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FIG. 19: Molecular weight dependence of the thermophoretic
mobility of polystyrene in different solvents at about 30◦ C.
The data are from Ref. [35]; the lines are a guide to the eye.
The mass of styrene -(C8H8)- corresponds to 104 atomic units
or 104 g/Mol. Thus the investigated polymers range from 200
to about 1600 repeat units.

long chains; because of the large fluid volume dragged
by a polymer, its diffusion coefficient (72) varies with
the inverse hydrodynamic radius. As a consequence, the
Soret coefficient ST = DT/D is proportional to Rh and
increases with the molecular weight as Nν . Multiplying
with temperature we obtain the dimensionless quantity

TST =
4Rh
3d0

βH

kB
, (72)

which corresponds to Giddings’ thermal diffusion factor
α [35]. With known values of the thermal expansivity and
the Hamaker constant one has βH/kB ≈ 2; the variation
of the hydrodynamic radius with N results in TST ∝
Nν . This power law compares well with measured data
for polystyrene [35], and has been confirmed for many
systems.

At the largest molecular weightMw = 16×104 of Ref.
[35], the Soret coefficient attains the value ST ≈ 0.3 K−1.
A temperature variation∆T leads to a change in polymer
concentration by the factor e−∆TST . Heating one side of
the sample by five percent in absolute temperature, or
∆T = 15 K, enhances the polymer concentration in the
colder region by a factor of 90, that is almost two orders
of magnitude.

C. Solvent properties

The data of Fig. 19 and more recent experiments show
that the absolute value of DT varies strongly from one
solvent to the other. In Table III we compare the mea-
sured mobility DT , the solvent parameters β and η, and
the effective Hamaker constant H =

√
HpHs, and de-

termine the cut-off length d0. As discussed in detail by

previous authors [10, 122, 130], the numbers of the sec-
ond and third columns confirms the relation DT ∝ 1/η,
and give evidence that the dispersion of the mobility data
stems to large extent from the solvent viscosity.

In the last column we determine the cut-off distance
d0 according to (71). In itself, this quantity is of lim-
ited physical meaning; it has been introduced in order to
regularize the divergence that arises from the continuous-
body approximation (62) for the van der Waals interac-
tion. In the present context it is of some interest as a sig-
nature for the validity of the continuous-solvent model:
Eq. (71) has been obtained by treating the solute as a
macroscopic body and by neglecting the solvent molec-
ular structure. These assumptions are questionable for
polymer beads that are of the same size as the solvent
molecules. Regarding polystyrene, the values in the last
column of Table III range from 0.6 to 1 nm; these num-
bers roughly correspond to the size of a solvent molecule
calculated in Ref. [131]. This agreement rather supports
the hydrodynamic approach to the transport coefficient
DT : The notion of a velocity field ceases to be meaningful
at distances shorter than the molecular size.

Analyzing data for five different polymers, Hartung
and Köhler found a significant correlation between the
mass of a single bead of the polymer chain and the coef-
ficient DT [130]. The biggest values of DT occur for the
polymers with the largest mass, poly-α-methylstyrene
(PαMS, 118 g/Mol), polystyrene (PS, 104), and poly-
methylmethacrylate (PMMA, 100). On the other hand,
polyisoprene (PI, 68) and poly-dimethylsiloxane (PDMS,
74), are built of lighter repeat units and show mobilities
that are by a factor of 2 or 3 smaller. This ratio holds
true for several solvents.

TABLE III: Thermophoretic mobility DT of polystyrene at
22◦ C in different solvents of viscosity η and thermal expan-
sivity β ; the data are from [130] with the Hamaker con-
stant Hp = 8.1 × 10−20 J. The last line accounts for poly-
ethylen glycol in water at 25◦ C, with Hp = 6× 10

−20 J and
DT = 5.9µm2/Ks from Fig. 25. We use the Berthelot mixing
rule H =

√
HpHs. The cutoff length is calculated according

to Eq. (67).

Polymer/solvent
mS

amu

DT

µm2

sK

103η

Pa.s

103β

K−1

Hs

10−20 J

d0

Å

PS/MEK 72 18 0.39 1.32 4.6 6.1

PS/ethyl acetate 88 13 0.44 1.38 4.2 7.2

PS/toluene 92 11 0.57 1.07

PS/THF 72 10 0.48 1.29 5.7 10.8

PS/benzene 78 8 0.63 1.23 5.0 8.6

PS/cyclohexane 84 7 0.95 1.23 5.2 6.8

PS/cyclooctane 112 3 2.42 0.98

PEG/water 18 6 0.95 0.25 5.0 1.3
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D. Temperature dependence

The transport coefficient DT varies with solvent vis-
cosity and thermal expansivity, and the Soret coefficient
with the molecular weight. These dependencies are well
understood, as illustrated by the good agreement of the
theoretical expressions with various experimental find-
ings [8, 11, 37, 127, 129, 132]. The situation is less clear
regarding their variation with temperature. In view of
Eq. (71) we note that both the Hamaker parameter and
the thermal expansivity β are constant with respect to T .
By contrast, the viscosity changes significantly, according
to

η = ATeB/T , (73)

where T is the absolute temperature. The resulting Ar-
rhenius law for the Einstein coefficientD ∝ e−B/T is con-
firmed by experiment [35], where the activation energy
B may be viewed as hindering potential of elementary
molecular jumps. Assuming the other parameters in Eq.
(17) to be constant, one would expect a similar behav-
ior for the thermophoretic mobility DT ∝ (1/T )e−B/T .
On the other hand, the viscosity factors cancel in the
Soret coefficient, and the reduced quantity TST should
be independent of temperature.

Fig. 20 shows mobility and Soret data for polystyrene
in ethylbenzene between 0◦ and 75 ◦C [35]. From 0 to 40
◦C the coefficient DT increases by about 25 percent and
saturates at higher temperatures. The solid curve is cal-
culated fro Eq. (17), with the constantsH/d0 = 2×10−10
J/m and β = 10−3 K−1; for the solvent viscosity we take
A = 1.9 × 10−8 Pa·s/K and B = 1400 K. Although the
temperature dependence of the viscosity accounts quali-
tatively for the increase of DT , there are significant dis-
crepancies: The slope of the theoretical curve is larger
than that of the experimental data, and at higher tem-
perature it does not account for the observed saturation
[35]. This indicates that the strong variation of 1/η is at-
tenuated by another factor which decreases with rising T ;
as a consequenceDT increases more weakly thanD. This
is confirmed by the Soret data shown in the lower panel,
where the additional factor in DT results in a moderate
decrease of the coefficient TST with rising temperature.
The data of Fig. 20 at 0◦ and 70 ◦C differ by about 30%,
independently of the molecular weight. Though this ob-
servation has been made more than 30 years ago, there
is still no satisfactory explanation.

Enge and Köhler reported a similar discrepancy for
mixtures of poly-ethylmethyl-siloxane (PEMS) and poly-
dimethyl-siloxane (PDMS) in the temperature range be-
tween 280 and 370 K [133]. Both the Einstein coefficient
D and the thermophoretic mobility DT show Arrhenius
behavior, albeit with different activation energies. As
a consequence, augmenting the temperature from 280 to
370 K reduces the Soret coefficient ST by a factor 2. This
additional temperature dependent factor is the same for
different PEMS/PDMS mixtures; it does not change with
the molecular weight.
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FIG. 20: Upper panel: Thermal diffusion coefficient DT of
polystryrene in ethylbenzene, as a function of temperature.
The data are taken from Ref. [35] for molecular weights 19800
(o), 51000 (�), 97200 (△), 160000 (▽). The curve is given by
Eq. (17) with a temperature dependent viscosity as discussed
in the main text. (Reprinted with permission from Ref. [98].
Copyright 2009 American Chemical Society.) Lower panel:
Reduced Soret coefficient for the same parameters. The lines
are a guide to the eye.

E. Semidilute solutions

In dilute solutions the distance between neighbor
chains is much larger than the gyration radius. Then
the polymer coils don’t overlap, interactions are irrele-
vant, and the thermophoretic mobility is independent of
the molecular weight. Experimental studies at higher
polymer concentration show that the mobility decreases
in dense solutions. Here we discuss a few aspects of the
semidilute case where interaction effects set in and mod-
ify the single-chain picture.

In the simplest approach, hydrodynamic coupling of
nearby molecules is accounted for by a concentration de-
pendent viscosity. Einstein’s formula η = η0(1 +

5
2φ)

describes viscous thickening due to the volume fraction
φ of colloidal particles. Polymers give rise to a similar
behavior albeit with an effective volume 4

3πR
3
h per mole-
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cule, where Rh = 2aNν is the hydrodynamic radius [134].
Thus one finds for the viscosity as a function of the poly-
mer content φ and the number of beads N per chain,

η = η0
(
1 +CN3ν−1φ

)
. (74)

The numerical constant C depends on the persistence
length and the detailed molecular structure. As an exam-
ple for the resulting decrease of the thermophoretic mo-
bility, Fig. 25 shows data of Chan et al. for polyethylene
glycol in aqueous solution [8]. In this experiment the
chain length N is varied at a constant ethyleneoxide con-
centration of 9 g/l, The decrease of DT for long chains,
N > 20, is well described by Eq. (74) with C = 0.9 and
ν = 1

2 .
A more significant molecular-weight dependence of

DT has been observed for several polyelectrolytes. For
sodium polystyrene sulfonate (NaPSS) in 100 mM/l NaCl
solution, Iacopini et al. [33] found a reduction by about
one third upon increasing the chain length N from 74 to
360 at constant polymer content of 2 g/l. This observa-
tion cannot be explained by Eq. (74): The same varia-
tion with N occurs for the Soret coefficient ST = DT /D,
which does, however, not depend on viscosity. Thus the
effect of the PSS chain length is not related to viscous
thickening, indicating the existence of another mecha-
nism that reduces the thermophoretic mobility of long
polyelectrolytes. This conclusion is confirmed by Duhr
and Braun’s data on DNA [6]: At a constant base pair
concentration of 50 µM/l, an increase of their number
per molecule from N = 50 to 48500, reduces DT by a
factor of five. The strongest variation occurs for rather
short chains, N < 103, where the quantity N3ν−1φ is
smaller than 10−3 and where the viscosity is not affected
by the presence of the polymer.

V. MOLECULAR-WEIGHT DEPENDENCE

So far we have evaluated the thermophoretic mobil-
ity by inserting the interfacial forces in Stokes’ equation.
Treating the solute as a macroscopic body, we have ne-
glected its Brownian motion when calculatingDT . More-
over, this hydrodynamic approach takes the solvent as a
continuous medium and does not account for its molecu-
lar diffusivity [47, 48]. These assumptions are justified for
big particles and high polymers, as long as their size and
gyration radius are much larger than the length scales set
by the interaction and by the solvent molecular structure.

Clearly, this is not the case for binary mixtures of small
molecules, where solute and solvent size, and the range
of the dispersion forces are of the order of one nanome-
ter. As a consequence, beyond the hydrodynamic treat-
ment, molecular diffusion in a thermal gradient has to
be taken into account. In analogy to the Rayleigh pis-
ton shown in Fig. 3b, both solute and solvent molecules
undergo Brownian motion and thus visit regions of lower
and higher temperatures. Because of the gain in chemical
potential, they are slightly more eager to stay at the cold

side. It turns out that the competing forces depend in a
subtle way on the ratio of solute and solvent molar mass,
and on the mutual interaction. Thus it is not surpris-
ing that in dilute molecular mixtures the thermophoretic
mobility may take both signs.

A. Non-equilibrium thermodynamics

The stationary state of a non-equilibrium system cor-
responds to a minimum of the entropy production rate σ
per unit volume [1], which is a bilinear form of general-
ized fluxes and forces, that is, the time derivatives of the
dynamics variables and the corresponding driving fields.
Onsager’s phenomenological equations relate these fluxes
and forces; the steady state of a closed system without
chemical reactions is described by zero currents.

As a simple example consider the electric current den-
sity j flowing in a metallic wire upon application of an
electric field E. The frictional forces on the charge car-
riers dissipate energy; the heat produced in a volume V
per unit time reads Q̇ = jEV , and the entropy Ṡ = Q̇/T .
Thus we find the entropy production rate per unit volume

σ =
jE

T
. (75)

Non-equilibrium thermodynamics deals with linear force-
current relations like Ohm’s law j ∝ E but does not
provide a framework for calculating the transport coeffi-
cients. In the present example, the electric conductivity
j/E is obtained from kinetic theory for electrons in a
metal.

Generalizing this scheme to a binary mixture of mole-
cular species i = p, s with a non-uniform temperature,
one obtains the rate of entropy production as a bilinear
form of generalized fluxes and forces [1],

σ = JQ ·∇
1

T
+
1

T

∑

i

Ji ·Ki. (76)

The heat flow JQ is related to ∇(1/T ), and the particle
currents Ji to the thermodynamic forces that comprise
the gradients of temperature and the chemical potentials
µ,

Ki = −T∇
µi
T
. (77)

In the steady state of a multicomponent system, one of
the concentrations can be eliminated. For a binary sys-
tem with volume fractions φ1 = φ = 1 − φ2, Onsager’s
“phenomenological equations” thus reduce to the heat
and mass currents

JQ = −κ∇T −DF∇φ, (78a)

J1 = −D∇φ− φ(1− φ)DT∇T. (78b)

The diagonal terms account for heat conductivity with
coefficient κ and for particle diffusion with the Einstein
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coefficient D. The Dufour coefficient DF describes heat
flow due to a non-uniform solute concentration; whereas
the thermophoretic mobility DT accounts for motion
driven by the thermal gradient. In linear-response ap-
proximation, the coefficient are related to the equilibrium
current-current correlation functions [135].

Onsager’s theory establishes linear relations between
forces and currents, and symmetry properties of off-
diagonal transport coefficients such DF and DT ; it does
not provide an explicit scheme for calculating them. In
the hydrodynamic approach which the preceding sections
rely on, this is achieved by treating the colloidal parti-
cle as a macroscopic object in a homogeneous fluid. The
interfacial forces maintain the motion of the solute; the
resulting flow in the viscous fluid produces entropy at a
rate [1]

σ = −Π : Σ

T
, (79)

which is the contraction of the velocity derivatives Σαβ =
∂βvα+∂αvβ and the viscous pressure Παβ. Just as Ohm’s
law relates the electrical current to the applied field, the
viscous pressure is determined by the derivative of the
velocity field through Π = −ηΣ, with the viscosity η as
“phenomenological coefficient”. The equation of motion
of a fluid volume element

ρ∂tv = f −∇P −∇ ·Π
comprises, beyond the force f exerted by the particle sur-
face, the hydrostatic and viscous pressure components.
In the steady state ∂tv = 0; inserting Π = −ηΣ and
noting ∇ · v = 0, one readily recovers Stokes’ equation
(14a).

In this hydrodynamic picture the solvent is treated as
a continuous medium; it neglects both the solvent mole-
cular diffusivity [47] and fluctuations [48]. In the limit
of very small particles or short solute molecules, how-
ever, the molecular structure of the solvent becomes im-
portant. Then the picture of a macroscopic solute in a
uniform medium breaks down, and one has to consider
diffusion of each species of a molecular mixture.

B. Thermodiffusion

The thermodiffusion solute flow J is determined by the
generalized forces Ki that are given by chemical poten-
tial and temperature gradients. As a simple model we
consider a binary mixture of beads of equal size but dif-
ferent interaction potential. The chemical potential µi
comprises the translational entropy and the interaction
free energy −ǫi. The latter arises from the van der Waals
potential of nearby molecules, and is closely related to the
Hamaker constant. In a denser system, there are more
nearby neighbor molecules, and the van der Waals bind-
ing energy increases accordingly. In the simplest picture,
the gradient of the free-energy parameter

∇ǫi = −ǫiβ∇T (80)

gradT 

FIG. 21: Thermal diffusion of a single bead. The solute (in
grey) has a tendency to diffuse towards higher solvent den-
sity or lower temperature. The same is true for the solvent
molecules; the two terms of Eq. (81) account for this com-
petition. The solute moves to the cold if its van der Waals
energy exceeds that of a solvent molecule ǫp > ǫs; otherwise
it is pushed towards the warm.

is determined by the thermal expansivity β.
The generalized forces are readily obtained by inserting

µi in (77). The actual problem consists in determining
the corresponding mobilities. The following discussion
relies on the assumption that all mobilities are given by
the friction coefficient 6πηa due to Stokes drag of a sphere
of radius a. The gradient of the volume fraction gives
rise to the Fick diffusion current −D∇φ; here we are
interested in the additional terms due to the temperature
gradient. From the condition of zero overall flow J1 +
J2 = 0, one derives the transport coefficient defined in
(78b),

DT =
ǫ1 − ǫ2
6πηa

(
β +

1

T

)
. (81)

The terms depending on the thermal expansivity β arise
from the non-uniform dispersion forces that attract each
molecule towards higher mass density and thus towards
lower temperature. The remaining ones, proportional to
1/T , account for the entropy of a given molecule wrig-
gling in the cage formed by its neighbors; in a non-
uniform system this gives rise to a net force. Because
of the assumptions on the mobility factor, Eqs. (80) and
(81) should be considered as a qualitative expression for
the two contributions in the thermal forces Ki.

The occurrence of the difference of the free energies ǫ1
and ǫ2 has a simple physical meaning: As illustrated in
Fig. 21, the migrating solute bead “1” requires a solvent
molecule to move in the opposite direction; the net ve-
locity is determined by the difference of their respective
force and thus proportional to ǫ1 − ǫ2. Comparing with
the transport coefficient (67) derived for a particle much
larger than the solvent molecules, and putting ǫ1 ∼ H
and a ∼ d0, one recovers the term proportional to βǫ1
in (81). This implies that the remainder vanishes in the
limit of large solute particles.

Through the van der Waals interactions, DT depends
on the fraction φ of solute molecules. In a mean-field
approach, the single-molecules energies may be written
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FIG. 22: Soret coefficient of benzene in cyclohexane as a func-
tion of relative benzene content φ.In the dilute limit benzene
diffuses to the warm (ST < 0); the Soret coefficient increases
linearly with φ and changes sign at φ ≈ 0.7. Full and open
symbols indicate protonated and deuterated benzene, respec-
tively. The data are from Debuschewitz and Köhler [38].

as ǫ1 = φǫ11 + (1 − φ)ǫ12 and ǫ2 = φǫ12 + (1 − φ)ǫ22,
where the coupling parameters ǫik are closely related to
the Hamaker constants. Defining ǫ0 = ǫ12 − ǫ22 and ǫ =
ǫ11 + ǫ22 − 2ǫ12 one finds

DT =
ǫ0 + φǫ

6πηa

(
1

T
+ β

)
. (82)

This simple model with the chemical potentials µi,
equal molecular radii, and Stokes drag, accounts for a
number of experimental observations. Eq. (81) may be
positive or negative, depending on the difference of the
molecular energies; indeed, both signs of DT occur in
molecular mixtures [38, 136—138]. Moreover, for alcohol
in water and several binary mixtures of organic mole-
cules, an almost linear variation of DT with φ has been
observed, in accord with Eq. (82). In Fig. 22 we plot
Soret data of Debuschewitz and Köhler for normal and
deuterated benzene in cyclohexane [38]. In the dilute case
benzene shows an inverse Soret effect. The coefficient ST
increases linearly with the relative benzene content φ and
changes sign at about 80%, implying 0 < −ǫ0 < ǫ.

C. Mass and volume effects

Experiments on binary molecular mixtures indicate
that the molecular mass and volume are essential pa-
rameters. As a rule of thumb, heavy and large molecules
diffuse to the cold, whereas small and light molecules
rather show the opposite tendency [38, 138]. This ob-
servation has been related to the fact that light particles
carry mainly kinetic energy, which is larger at high T ,

-5

-4

-3

-2

-1

0

6 8 10 12 14 16 18

S
T
 (

10
-3

 K
-1

)

n

alkanes / benzene

C
n
H

2n+2
 / C

6
H

6

FIG. 23: Soret coefficient of normal alkanes in benzene at
equal mol fractions. Starting from heptane, short alkanes
show a strong negative Soret effect; their ST increases with
increasing number of ethylen units and would become positive
for n > 18. The data are from Polyakov and Wiegand [137].

whereas the energy flow due to the larger component in-
volves rather molecular interactions which prevail at the
cold side [139]; this argument agrees with Chapman’s
theoretical result (8) for thermal diffusion in gases.

As an illustration of the mass effect in liquids, Fig.
22 shows that deuterated benzene (m = 84 amu) has a
more positive Soret coefficient than the protonated iso-
mer (m = 78 amu). Since their size and shape are iden-
tical, the excess contribution ∆ST ≈ 0.8 × 10−3 K−1

of deuterated benzene is related to the mass difference.
As expected the heavier isotope has a tendency to move
towards lower temperatures. Debuschewitz and Köhler
have investigated a variety of fully or partially deuter-
ated molecular mixtures [38]; their analysis gives evi-
dence that the Soret coefficient is the sum of indepen-
dent mass and chemical contributions. This mass effect
is confirmed by molecular dynamics simulations of Reith
and Müller-Plathe, for spherical beads of equal size but
different mass [140].

The volume difference is a relevant parameter for bi-
nary mixtures of molecules of different size but roughly
constant mass density. As an example for the size depen-
dence, Fig. 23 shows data by Wiegand and co-workers for
mixtures of normal alkanes CnH2n+2 and benzene [137];
the strongest inverse Soret effect occurs for the shortest
molecule investigated (n = 7). The coefficient increases
with the number of ethylene units, suggesting a change
sign beyond octodecane (n = 18). The many data on bi-
nary mixtures of normal alkanes of different length con-
firm the rule that the larger molecules migrates to the
cold [141].

Volume effects have been widely discussed in the liter-
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ature, and there are various attempts to generalize the
transport coefficient (81) by introducing weight factors
depending on the molecular volume or mass ratio. In
the heat-of-transport approach [142—145], the Soret co-
efficient is obtained from the Gibbs-Duhem equation, re-
sulting in the volume dependence

ST =
Q1V2 −Q2V1
V̄ kBT 2

, (83)

with V̄ = φV1 + (1 − φ)V2. Similar expressions have
been proposed with the molecular masses instead of the
volumes. Artola and Rousseau have discussed several of
these models and compared with their molecular dynam-
ics simulations [146]. The heat-of-transport parameters
Qi are mostly related to the molecular energies or en-
thalpies. For V1 = V2 and noting ST = DT/D, one
readily establishes the link to Eq. (81).

It turns out instructive to discuss (83) for a dilute sus-
pension of large molecules. With φ → 0 the volume de-
pendence simplifies to ST ∝ Q1 − (V1/V2)Q2; thus the
Soret coefficient is proportional to the solute volume and
an extensive quantity for V1 ≫ V2. Since the diffusion
coefficient varies with the inverse solute size, this vol-
ume dependence implies that the thermophoretic mobil-
ity DT = STD ∝ V 2/31 varies with the square of the
particle radius. Yet this dependence contradicts the well-
known fact that electrophoretic and thermophoretic ve-
locities of large particles are independent of the size, as
discussed below Eq. (50). In agreement with this state-
ment, recent MD simulations of Galliéro and Volz find
that, for the aspect ratio a1/a2 ranging from 2 to 12, the
coefficient DT is independent of the solute size whereas
D is proportional to 1/a [147]. These findings shed some
doubt on the physical meaning of Eq. (83).

D. Thermoosmosis versus thermal diffusion

The above approach to thermal diffusion for small
solutes is complementary to thermoosmotic driving stud-
ied in Sects. II and IV. Here we discuss the cross-over
between these pictures, that is, we address the question
how polymer thermophoresis depends on the number of
beads in a single chain N , or the molecular weight Mw.

Studies on various polymers show that in the range
Mw > 20 kg/M the thermophoretic mobility is indepen-
dent of the molecular weight. According to recent mea-
surements by Köhler and co-workers, this rule ceases to
be valid for shorter chains [9, 10], as illustrated in Fig.
24 by data for polystyrene in several solvents. With the
mass m = 104 g/M of a styrene unit, the plotted range
from 0.1 to 103 kg/M corresponds to 1...104 repeat units.
For long chains (Mw > 10 kg/M or N > 100) the mobil-
ity DT is constant indeed. The picture changes below 10
kg/M, where DT decreases and even becomes negative
for effective monomers. The end group of a real polymer
necessarily differs from the repeat unit; in order to ex-
clude that the observed dependence on Mw was a simple

FIG. 24: Molecular-weight dependence of the reduced ther-
mophoretic mobility ηDT of polystyrene in various solvents
at room temperature. For high polymers, the quantity ηDT

is independent of Mw and, more remarkably, independent of
the solvent. Short polystyrene molecules, of less than 100 re-
peat units, diffuse more slowly, and are sensitive to details of
the solvent molecules; in some cases, DT even changes sign
for effective monomers. Figure by courtesy of W. Köhler.
(Reprinted with permission from Ref. [10]. Copyright 2008
American Chemical Society.)

end group effect, the authors of Ref. [10] studied two
possible monomers, which correspond to the lowest val-
ues of Mw in Fig. 24: The first one, ethylbenzene (of
molar mass 106) differs from a styrene unit merely by
two hydrogen atoms; the second one, dimethylbutylben-
zene (162 Dalton) may be viewed as a styrene with an
aliphatic four-carbon group.

Fig. 24 shows the quantity ηDT and thus reveals an
additional feature with respect to the solvent properties.
For long chains ηDT takes almost identical values for all
solvents, thus confirming that the difference in DT stems
to a large extent from the viscosity; cf. Table III. For
short polystyrene chains, however, one observes a strong
dispersion of the mobility from one solvent to another.
For example, DT in cyclohexane and cyclooctane differs
by a factor of three, although the physico-chemical prop-
erties of these solvents are almost identical. This disper-
sion of the mobility indicates that for short chains, other
solvent parameters besides the viscosity become relevant.
The data of Fig. 24 are well fitted by the phenomenolog-
ical law [9, 10]

DT = D
∞
T − δDT

N
, (84)

where D∞T is the mobility of high polymers and δDT

accounts for the variation for short chains.
A similar behavior has been observed by Chan et al. for

polyethylene glycol (PEG) in aqueous solution [8]. Fig.
25 shows experimental data as a function of the chain
length N , yet at constant constant concentration of eth-
ylene units ceth = 0.2 M/l, which corresponds to a vol-
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ume fraction φ of about 1%. The initial increase of DT is
well fitted by Eq. (84), as shown by the curve calculated
at constant viscosity η0. The slow decrease at higher
molecular weight is probably due to the increase of vis-
cosity with the degree of polymerization, resulting in the
modified mobility (η0/η)DT . The viscosity increases ac-
cording to the Einstein relation (74), thus reducing the
thermophoretic velocity. For the plot we use ν = 1

2 and
the coefficient C = 0.9; the hydrodynamic volume is af-
fected by hydration effects which are known to play an
important role for PEG solutions [148].

These experiments suggest that the thermophoretic ve-
locity consists of two contributions,

u = u∞ + δu, (85)

where the first one stems from thermoosmotic flow
around the solute, as outlined in Sect. IV, and the sec-
ond one accounts for effects occurring for short chains.
For the sake of simplicity, we do not distinguish between
the bead radius a and the cut-off distance d0 appearing
in Eqs. (81) and (71) and thus have

u∞ = − βε0
6πηa

∇T. (86)

The numerical prefactor is chosen such that the denomi-
nator corresponds to the Stokes friction coefficient 6πηa.

Comparison with the mobility obtained from the
single-bead model (81) shows that u∞ corresponds to
the term proportional to βε1, which derives from the van
der Waals force exerted by the solvent on a solute bead.
In view of (77) the flow driven by the molecular entropy
remains to be evaluated; this directed Brownian motion

results from thermodynamical forces [149]. Since motion
driven by dispersion forces hardly depends on the chain
length, the size-dependent term δu is related to thermal
diffusion, that is, to the molecular entropy or to diffusive
motion. The molecular-weight dependence of DT and
the significant increase with N are confirmed by mole-
cular dynamics simulations of Zhang and Müller-Plathe
[150]. A finite persistence length ℓp modifies the behavior
of short chains.

VI. MICROFLUIDIC APPLICATIONS

Here we discuss a few examples of microfluidic appli-
cations, where thermal or chemical gradients are used for
moving or accumulating molecular solutes and suspended
particles or droplets in a controlled manner. Unlike elec-
trophoresis, these fields operate equally well on charged
and neutral systems. For thermophoresis of solid par-
ticles, the resulting velocity is independent of the size
of the solute, whereas thermocapillary driving of liquid
droplets and gas bubbles is proportional to their radius,
and thus achieves much higher transport velocities.

A. Optothermal DNA trap in a microchannel

An optothermal trap for a DNA solution in a mi-
crochannel with an ambient flow of velocity v has been
realized by Duhr and Braun [14]. As shown schematically
in Fig. 26, a laser heats the grey region by a temperature
∆T ; if the thermal conductivities of the fluid and outside
material are comparable, the excess temperature profile
T − T0 = ∆T (r) is isotropic in 3-dimensional space and,
at distances beyond the heated spot, decreases as 1/r.

In an otherwise homogeneous solution, the tempera-
ture profile acts as an effective barrier that slows down
the solute molecules approaching the heated zone, and
that accelerates them once they have passed the temper-
ature maximum. As a consequence, the solute accumu-
lates in the upstream region where the thermal gradient
is positive; its concentration decreases downstream of the
thermal barrier. The total current of the molecular solute
of concentration n,

J = nv−D∇n− nDT∇T, (87)

comprises a convection term nv, diffusion with the Ein-
stein coefficient D, and thermophoresis with the mobility
DT > 0. The steady state is reached if the overall current
takes everywhere the constant value Jst = n0v.

The essential physics is grasped by a one-dimensioinal
model, which neglects the velocity profile across the chan-
nel and accounts for the variation in the flow direction
only. Since the thermal gradient modifies the mean mole-
cular velocity, the constant steady-state current Jst im-
plies a non-uniform concentration [14],

nst(y) = n0
v

D
e−ψ(y)

∫ ∞

y

dy′eψ(y
′), (88)



30

 

Temperature profile

0

0.2

0.4

0.6

0.8

1

1.2

Molecule density

Ambient flow

Thermophoretic drift

T∇  

v 

a) 

b) 

FIG. 26: a) Schematic view of a microchannel with ambient
flow velocity v; local heating in the grey spot creates a tem-
perature gradient along the channel. b) Temperature profile
and steady-state solute concentration n in the microchannel;
the horizontal line gives the mean concentration n0. The ar-
rows indicate the ambient flow v and the thermophoretic drift
velocity u = −DT∇T . After Ref. [14].

where y is the coordinate along the channel and the ex-
ponential factor is given by

ψ(y) = ST∆T (y)− yv/D. (89)

Far away from the heated spot, the concentration takes
the constant value nst = n0. The solid line of Fig. 26b
displays the steady-state concentration nst close to the
heated spot: Accumulation upstream of the thermal bar-
rier is followed by depletion below the mean value n0
at the opposite side. With a maximum temperature in-
crease of 16 K, Duhr and Braun obtained a 18 times
higher DNA concentration.

According to Eq. (88) the enhancement factor varies
exponentially with the dimensionless parameter ST∆T ;
since the Soret coefficient increases with the molecular
weight, longer chains accumulate more strongly. More-
over, the enhancement depends on the flow velocity v;
its maximum occurs where v is comparable to the ther-
mophoretic velocity u, that is, of the order of a few mi-
crons per second.

B. Lateral fields in a microchannel

Now we turn to the case where the external field is ap-
plied perpendicular to the flow. Consider a microchannel
of width L, in which a colloidal suspension is injected as
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FIG. 27: a) Salinity-driven focussing of colloidal particles in
a microchannel [151]; the inset shows the lateral variation of
the salinity. At position 1, there is no salt present in the
lower half channel. Downstream (to the right of position 1)
the salt diffuses through the channel, resulting at position 2
in a lateral gradient of the order ∇n0 ∼ n0/L. This salinity
gradient focusses the colloidal particles as indicated by the
dashed line. Still further downstream, the salinity reaches a
constant value across the channel, and the effect disappears.
b) Thermal focussing in a microchannel with ambiant flow
velocity v; a lateral temperature gradient is applied in the
grey zone. Thermophoresis drives the colloidal particles to
the colder side.

illustrated in Fig. 27a. For the sake of simplicity we ne-
glect the velocity profile and assume a constant value v
across the channel. Uncharged particles would, starting
form the position 1, diffuse freely and explore the whole
channel width after a time ∆t ∼ L2/D, corresponding to
a downstream distance v∆t.

On the contrary, focussing may occur for charged col-
loids in an electrolyte solution, as shown by Bocquet and
co-workers [151, 152] in an experiment similar to Fig.
27a. The important point is that the Einstein coeffi-
cient Ds of salt ions much larger than D; their ratio is
roughly given by that of the radii of the colloidal parti-
cles and the salt ions, Ds/D ∼ a/as ≫ 1. Thus after a
time ∆ts ∼ L2/Ds, the salinity profile across the chan-
nel looks like curve 2 in the inset of Fig. 27a; because of
∆ts ≪ ∆t, particle diffusion is negligible. According to
Eq. (31), the salinity gradient pushes the colloidal par-
ticles towards regions of higher electrolyte strength, and
thus focusses the suspension as illustrated by the dashed
line in the Figure. For a sufficiently negative value of the
parameter γ, the particles would migrate in the opposite
direction. Note that this effect vanishes further down-
stream, well beyond a distance v∆ts, where the salinity
reaches a constant value across the channel.
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Similar effects occurs when applying a lateral tempera-
ture gradient, with the noticeable difference that its range
along the channel is an experimental control parameter,
contrary to the above salinity gradient. Moreover, heat
conduction is much faster than ion diffusion; a thermal
gradient can be switched on and off vary rapidly, whereas
diffusion of salt ions over a 50 micron wide channel takes
several seconds.

A possible experimental setup is shown in Fig. 27b,
where a lateral temperature gradient ∇T = ∆T/L is
applied on a colloidal suspension in a channel with am-
bient flow velocity v. With a temperature difference
∆T ∼ 25 K over a width L = 50µm, and assuming a
thermophoretic mobility DT ∼ 10 µm2/Ks, the particles
migrate at a velocity u = 5µm/s and reach the steady
state after the time L/u. The stationary lateral distrib-
ution reads as

n(x) = n0
ℓ

L

e−x/ℓ

1− e−L/ℓ , (90)

where the vertical coordinate x is measured from the up-
per boundary (0 ≤ x ≤ L) and where n0 is the initial
uniform density. The characteristic length

ℓ =
D

u0

plays the role of a sedimentation length. For the above
parameters one finds ℓ = 2µm; thus the particles are
trapped in a micron size layer at the lower boundary.
The steady-state distribution is readily obtained from
the condition of zero current; there is no closed solution
for the transient kinetics. The time dependent distribu-
tion function n(x, t) has been given as series in powers
of e−L/ℓ; a rather simple expression arises for the case of
strong confinement L≫ ℓ [153].

C. Hydrodynamic attraction of confined colloids

We consider a thin film without ambient flow, where
a temperature gradient drives the colloidal particles to-
wards the lower boundary. Because of the hydrodynamic
interactions with the boundary, the sedimentation kinet-
ics of a particle close to a wall is an intricate problem. As
the particle approaches the wall at a distance h, its veloc-
ity due to the buoyancy force decreases linearly with the
ratio a/h [108, 154, 155]; on the other hand, the veloc-
ity u0 driven by osmotic forces, such as electrophoresis
or thermophoresis, is less sensitive to confinement and
decreases as (a/h)3 [156].

Here we are interested in the steady state, the verti-
cal probability distribution of which is given in Eq. (90).
Several experiments on micron-sized particles achieved a
sedimentation length ℓ of the order of 1 µm, such that
Brownian motion perpendicular to the confining plane is
almost negligible. If the particle mass density exceeds

that of the solvent by ∆ρ, the buoyancy force even re-
duces the sedimentation length further,

1

ℓ
=
u0
D
+
∆ρVpg

kBT
. (91)

For ∆ρ = 0.1 g/cm3 and a particle radius a = 1µm, one
finds that ℓ is smaller than one micron. Then the colloidal
particles are confined in vertical direction but still show
two-dimensional diffusion along the plane. Electrostatic
repulsion keeps the particle at a distance h ≈ a+λ from
the wall, where λ is the Debye length.

The double-layer forces continue to pump fluid along
the particle surface at a velocity given by Eq. (25), result-
ing in an outward vertical and an incoming radial flow.
The radial component along the solid boundary acts as
an attractive hydrodynamic force on neighbor particles
[16, 17] and, at sufficiently high density, leads to the for-
mation of hexagonal crystals. Such effects are well known
form electrophoretic deposition; they are linear in an ap-
plied dc field, whereas high-frequency ac fields results in
more complex dependencies [158—162].

First consider the simple case of an unconfined particle
that is immobilized by an external force such as optical
tweezers. The quasi-slip condition at the particle surface
imposes a finite boundary velocity similar to Eq. (16),

n · u|P = 0, t · u|P = u0, (92)

where n and t are radial and tangential unit vectors in
polar coordinates r, θ. Imposing zero velocity at infinity,
one finds

v
(0) = u0

[
Cn
(
a

r
− a

3

r3

)
− S
2
t

(
a

r
+
a3

r3

)]
, (93)

with C = cos θ and S = sin θ. In terms of hydrody-
namic multipoles [163], this flow consists of a “stokeslet”
proportional to 1/r and a “source doublet” proportional
to 1/r3, which are driven by the external force and the
quasi-slip at the surface, respectively. The velocity field
is shown schematically in Fig. 28a.

Now we introduce a wall B at a distance h from the
particle center. Stokes boundary conditions require both
parallel and perpendicular velocity components to vanish
at B; as is obvious from Fig. 28a, this is not satisfied by
the velocity field v(0). The method of reflections [108]
provides an iterative scheme for improving the velocity
field u such that it satisfies both the quasi-slip at the
particle surface and the condition at the solid boundary,
u|B = 0. In the first step we add a term v̂

(0) that solves
the force-free Stokes’ equation ∇2

v̂
(0) = 0 and that can-

cels v(0) at the wall, (v(0)+ v̂(0))|B = 0. This additional
flow may be viewed as arising from the mirror image of
the particle with respect to the plane B. As shown in Fig.
28b, the image flow differs significantly from the original
v
(0); in the language of hydrodynamic multipoles it com-

prises a “source doublet”, in addition to the stokeslet and
the source doublet present in v(0).
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a) b) c)

FIG. 28: Schematic view of the velocity fields close to a par-
ticle at a solid boundary. a) Flow pattern v

(0) due to the
quasislip at the surface of an immobile particle in the absence
of the wall. b) Velocity field v̂(0) due to an image particle. c)
The superposition u(0) = v(0)+ v̂(0) satisfies the stick bound-
ary condition at the wall B. (Reprinted from Ref. [164].)

The superposition u(0) = v
(0) + v̂(0) is illustrated in

Fig. 28c; it satisfies the condition at B but not that
at the particle surface P . An improved solution is ob-
tained by projecting v̂(0) at the particle surface, that
is, by adding a contribution v(0) that is determined by
(v̂(0) + v(1))|P = 0. The corresponding mirror flow v̂

(1)

is chosen such that it obeys (v(1) + v̂(1))|B = 0. By it-
erating this scheme one constructs a sequence u(k), with
k = 0, 1, 2, ...that converges towards the exact solution
[164]. It turns out that the lowest order k = 0 is too
small by a factor of about 2. The velocity at k = 1 pro-
vides a more satisfactory approximation, except at very
short distances close to the particle. Higher orders k ≥ 2
mainly modify the short-range behavior.

As shown schematically in Fig. 28c, the inward radial
flow along the boundary acts as a hydrodynamic force
F (ρ) = 6πηauρ on nearby particles; the resulting com-
petition between diffusion and advection results in an
enhancement of the steady-state probability distribution
function n(ρ) = n0e−V/kBT , where the effective potential
is defined through F (ρ) = −∂ρV . For the experiments to
be discussed below we truncate the series at linear order
k = 1 [164],

V

kBT
= 8
u0a

D

(
ah(a2q3 − p1h2)

r̂3h
− 6q3

a3h3

r̂5h

)
. (94)

where the coefficients

p1 = 1 +
9

8

a

h
, q3 = −1−

3

8

a

h
,

depend on the ratio a/h; the quantity r̂h =
√
ρ2 + 4h2 is

given by the horizontal spacing of the particles ρ and their
vertical distance from the boundary h. The prefactor
defines the dimensionless Péclet number

Pe=u0a/D

which is the ratio of the advection velocity u0 and that
of diffusion over a particle size D/a. For large values,
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FIG. 29: Advection-driven attractive force of nearby particles
as a function of their lateral distance. Experimental data
of Weinert and Braun [16] for the effective potential V are
indicated by triangles, those of Di Leonardo et al. [17] for the
force F = −∂ρV by squares. The curves are calculated from
(94) and F = −∂ρV with Pe = 6 and 24, respectively.

Pe≫ 1, advection is faster than diffusion, and hydrody-
namic interactions provide an efficient trap. The zero-
order approximation k = 0 is obtained by putting p1 = 1
and q3 = −1; the resulting expression is identical to that
given previously by Di Leonardo et al. [17].

Weinert and Braun investigated thermophoresis of
polystyrene particles in a thin aqueous film; heating the
upper boundary creates a vertical temperature gradient
which pushes the particles towards the lower glass wall.
The in-plane motion of the polystyrene beads is observed
by single particle tracking: the statistical analysis of the
two-dimensional pair correlation function gives the effec-
tive potential V in terms of the radial distance ρ [16].
Data points are given as triangles in Fig. 29. At the
smallest investigated distance of two and a half particle
radii, the attractive potential takes a value of about four
times the thermal energy, which corresponds to an en-
hancement of the probability distribution n(ρ) of almost
two orders of magnitude. The theoretical curve has been
calculated from Eq. (94) using Pe = 6; the correspond-
ing slip parameter u0 = 1.3 µm/s roughly agrees with
the numerical analysis of Ref. [16]. With the applied
thermal gradient ∇T = 0.28 K/µm, one calculates the
transport coefficient DT ≈ 5 µm2/Ks, which lies in the
range expected for weak electrolytes [42].

A direct measurement of the attractive force F has
been reported by Di Leonardo and co-workers [17]. Us-
ing optical tweezers, these authors determined the ra-
dial attraction between silica beads (a = 1µm) in a
water/alcohol mixture; their data are indicated in Fig.
29 by squares. The theoretical curve is calculated with
the Péclet number Pe = 24; thus the velocity scale
u0 = −DT∇T is four times larger than that of the ex-
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a) 

b) 

FIG. 30: a) The finite curl of the advection velocity field leads
to a rotation of the neighbor particles. b) View of the velocity
field across a small aggregate along the dashed line. In the
middle of the aggregate, the lateral advection fields of the
surrounding particles cancel. Only the outer particles rotate
significantly; the slip flow of inner particles is compensated
by the vertical fluid flow in the “chimneys”. (Reprinted from
Ref. [164].)

periment of Ref. [16].
The curl of the velocity field u exerts a torque on a

neighbor bead; thus two nearby particles rotate in oppo-
site direction as shown in Fig. 30a. Evaluating ∇×u to
leading order in ε and 1/r̂h one finds the frequency [164]

Ω = 6u0h
2aρ/r̂5h. (95)

At sufficiently high particle density, the hydrodynamic
forces favor the formation of cluster as illustrated in Fig.
30b; such two-dimensional crystals have indeed observed,
both due to electroosmotic flow in an external field E
[162] and its thermoosmotic counterpart in a tempera-
ture gradient ∇T [16, 17]. Such clusters show an intri-
cate flow pattern: The outer particles behave like those
in a dimer; their rotational motion is maintained by the
asymmetric radial flow, as shown in Fig. 30b. There is
no flow towards the inner particles; the osmotic upward
flow at the particle surface is counterbalanced by down-
ward currents in the triangular space between adjacent
particles. This rotational motion at a frequency of about
1 Hz of the outer particles has indeed been observed ex-
perimentally for polystyrene beads in an ac electric field
[165]. A similar behavior with Ω ∼ 1 sec−1 is expected
to occur for charged micron-size particles in a thermal
gradient ∇T ∼ 1 K/µm.

D. Thermocapillary effects

So far we have discussed motion arising from thermoos-
mosis at solid-fluid interfaces. Microfluidic chemical re-
actors rely to a large extent on laser-induced manipula-
tion of emulsion droplets and liquid films. Besides the
electrostrictive or radiative pressure in normal direction,
Marangoni forces parallel to the interface are commonly
used in microfluidic devices [21—23]. As an efficient means
of microactuation, local heating by laser absorption in-
duces a temperature gradient which, in turn, modifies the

energy density σ(T ) along the interface, and thus results
in the gradient in the tangent plane,

∇‖σ =
3κs

2κs + κd

dσ

dT
∇‖T, (96)

where∇‖T denotes the parallel component of the applied
gradient. The prefactor with the ratio of the droplet
and solvent thermal conductivities is the same as in Eqs.
(7) and (24). Thermocapillary forces have been used to
control the spreading of micron-sized liquid films [166]
and to move suspended gas bubbles [107, 167] or liquid
droplets [168—171].

For a free droplet in a bulk liquid, the thermocapillary
migration velocity is proportional to its radius a. The
gradient ∇‖σ exerts a lateral force on the fluid at both
sides of the interface. In analogy to the case of hydro-
dynamic slip at a solid surface treated in Eq. (47), the
macroscopic boundary conditions involve the changes of
velocity ∆v and shear stress ∆Σ through the interface.
Anderson’s solution for the droplet velocity in an un-
bounded outer fluid reads in our notation [70]

u = − 3ηd
2ηs + 3ηd

〈∆v〉 − a

2ηs + 3ηd
〈∆Σ〉 , (97)

where ηd and ηs are the inside and outside viscosities, and
〈...〉 denotes the orientational average along the particle
surface. In the limit of a highly viscous droplet, ηd →∞,
the second term vanishes and one recovers the velocity
u = −〈∆v〉 of a solid particle with no-slip conditions.
For a micron-sized fluid droplet, on the other hand, the
second term prevails because of the presence of the radius
a, which is much larger than the range of the interface
forces. The corresponding boundary condition requires
that the thermocapillary term cancels the change of the
shear stress through the interface, ∆Σ = ∇‖σ. Assuming
κd = κs in (96) one finds

u = −2
3

a

2ηs + 3ηd

dσ

dT
∇T. (98)

The effective interface tension usually decreases with ris-
ing temperature, dσ/dT < 0. Then the droplet migrates
along the applied gradient ∇T towards higher tempera-
tures. (Note that some authors define the derivative as
its absolute value |dσ/dT |.)

By equilibrating the buoyancy of gas bubbles in a liq-
uid with the thermocapillary force, Young et al. found
the velocity to be proportional to the temperature gra-
dient and to the radius [107]; these dependencies were
confirmed for microemulsion droplets [168]. Studies on
droplets moving on a solid surface revealed a more com-
plex behavior [171—173], including contact angle hystere-
sis and a threshold value ac for the radius; droplets
smaller than ac are pinned at the surface [173]. Brochard
analyzed their shape and the underlying forces in terms
of the spreading coefficient [172]. With typical gradients
−dσ/dT ∼a few mN m−1K−1, measured velocities for
millimeter sized droplets are of the order of mm/s.
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FIG. 31: Thermocapillary valve for water-in-oil droplets of
variable size in a 200 micron tube. a) Water is injected from
the left, and oil from the lateral channels. b) A neck forms
and c) finally pinches off a droplet. The lower panel shows
the same sequence, but with a laser heating the indicated
spot. The resulting temperature gradient along the oil-water
interface blocks formation of the neck and thus results in big-
ger drops. Figure by courtesy of J.-P. Delville. (Reprinted
with permission from Ref. [174]. Copyright 2007 American
Physical Society.)

Thermal actuation of droplets in nanofludic and mi-
crofluidic devices provides a useful tool for addressing
chemical reactors [21—23]. Note that for a bubble size
comparable to the pipe section, Eq. (98) ceases to be
valid; the viscous stress occurs in the narrow range be-
tween the bubble and the channel border, leading to a
migration velocity that is independent of the size [175].A
thermocapillary valve in a cross-shaped microchannel has
been realized by Baroud et al. [174]. The upper panel
of Fig. 31 shows how the water finger advances in the
oil phase, forms a neck, and finally pinches off a droplet.
In the lower panel, absorption of laser light heats the tip
of the finger, stabilizes the neck, and thus delays pinch-
ing. The blocking time increases linearly with the laser
power, and so does the volume of the droplets. In order
to single out the mechanism that inhibits neck formation,
Baroud et al. tracked seeding particles inside the droplet
and found convection rolls such that both fluids move
along the interface towards the hot spot. This indicate
an increase of tension with temperature, dσ/dT > 0, and
has been related to the presence of surfactant molecules
at the interface [176].

Adding surfactants reduces the thermocapillary veloc-
ity at the interface and thus slows down the droplet. At
the phase boundary between two pure liquids, the tan-
gential velocity is continuous across the interface whereas
the normal component vanishes,

t · (vd − vb) = 0, n · vd = 0 = n · vb. (99a)

This means that the molecules at the interface have a fi-
nite velocity with respect to the center of the droplet, as
illustrated in Fig. 32a; the velocity field of the bulk phase
b in the laboratory frame is the same as that shown in Fig.
5. Weakly adsorbing surfactants diffuse between interfa-
cial layer and bulk phases [177]. The surfactant current
carried by the moving interface is maintained by a con-
stant rate of adsorption on the left side in Fig. 32b, and

 

a) b) c) 

FIG. 32: Flow pattern inside a liquid droplet or gas bubble
that moves to the left at a velocity u. a) The continuous
tangential velocity at the fluid interface implies rolls inside
the droplet. b) In the case of a weakly adsorbing surfactant,
there is a constant rate of adsorption at the left side, then the
molecules move with the interface along the droplet surface
and desorb at the right side. c) A strongly adsorbing surfac-
tant diffuses very little along the interface, and the droplet
behaves like a solid particle.

desorption on the right side, resulting in an additional
friction mechanism that enhances the effective droplet
viscosity.

Strongly adsorbing surfactant molecules suppress the
fluid character of the interface and change the hydro-
dynamic boundary conditions [178, 179]; Eq. (99a) is
replaced by the stronger condition of zero velocity in the
frame attached to the droplet,

vd = 0 = vb. (99b)

As a consequence, the contribution proportional to 〈∆Σ〉
in (97) disappears, and the droplet mobility is strongly
reduced. Regarding the cross-over from the liquid to the
solid interface, there is a close analogy to the suppression
of hydrodynamic slippage in Eq. (47) as the slip length
tends to zero. The resulting expression for the droplet
velocity is identical to that of a solid particle and thus is
independent of the radius. This has indeed been found in
a recent experiment on nano-droplets in an AOT-water-
oil emulsion [113].

Pieranski’s observation of macroscopic reorganization
of bicontinuous lyotropic crystals, provides a striking
illustration for thermal effects in complex phases [20].
For example, 50-micron inclusions in the binary sys-
tem water/C12EO2 changed their shape upon applying
a weak temperature gradient ∇T = 1 K/mm; for a given
crystal orientation, positive and negative values of ∇T
produce completely different effects. If some aspects are
well understood in terms of de Gennes’ work on the Soret
motion in porous media [105], there remain open ques-
tions, in particular whether these experiments are de-
scribed by thermoosmosis at rigid surfacted interfaces,
or whether the capillary motion of the interface itself is
an essential ingredient.
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VII. CONCLUSION AND PERSPECTIVES

In the last years it has become clear that the ther-
mal response of the electrolyte plays a major role for
the transport of charged colloids [5, 42]. In many in-
stances, this thermoelectric contribution to the mobility
DT exceeds the Ruckenstein term and thus dominates
the colloidal Soret effect. The present understanding of
thermophoresis relies on a single-particle picture, where
DT is independent of the colloidal volume fraction and,
in the case of polyelectrolytes, of the chain length. Re-
cent experiments show, however, that this picture ceases
to be valid in semi-dilute systems where DT depends on
the volume fraction of a suspension of silica beads [96],
and the molecular weight of NaPSS and DNA solutions
[6, 33, 180]. At present is not clear to what extent hydro-
dynamic or electrostatic effects are responsible for these
observations.

The temperature dependence of the mobility of
charged colloids is strongly correlated with the ther-
mal expansivity of water [33, 47] and shows a linear
increase from 0◦ to 40◦ C. At present it is not clear
whether this variation arises from the thermal response
of the electrolyte, i.e., the thermoelectric coefficient (42),
or whether the dispersion forces in (67) contribute to
the temperature dependence. A particularly intriguing
aspect occurs for dense peptide solutions: The posi-
tively charged poly-lysine shows a temperature depen-
dent mobility similar to that of the negatively charged
β-lactoglobulin, DNA, and NaPSS [33]; from the linear
thermoelectric effect, however, one expectsDT to be pro-
portional to the surface potential and thus an opposite
temperature derivative for positive and negative valency.

As one of the most striking features of polymer ther-
mophoresis in organic solvents, the mobility of high poly-
mers is independent of the molecular weight [3], whereas

a strong variation occurs for short chains of less than hun-
dred repeat units. Recent work on polystyrene ranging
from 1 to a few hundred repeat units, shed some light on
this observation [10, 149]: In addition to the well-known
constant mobility due to solute-solvent forces, there is a
term proportional to the inverse gyration radius of the
polymer. Still, this does not explain the negative DT

reported for ‘light’ polymers in ‘heavy’ solvents, such
as PDMS (monomer mass m = 74 g/M) or polyethylene
(m = 28 g/M) in cyclooctane (m = 112 g/M) [181].

Regarding molecular mixtures, experiments and nu-
merical simulations give conclusive evidence that light
and small solutes move to the warm, and large and heavy
ones to the cold; yet this finding lacks a physical pic-
ture so far, and there is no satisfactory description for
the volume and mass dependencies. We mention two
experimental observations. Thermophoresis is sensitive
to surface properties; grafting octadecyl groups on sil-
ica particles changes the sign of DT and gives rise to
an intricate temperature dependence [7]. On the other
hand, deuteration of benzene or cyclohexane results in
a significant isotope effect illustrated in Fig. 22; since
the protonated and deuterated molecules are chemically
identical, this indicates the Soret motion to be sensitive
to the characteristic velocity

√
kBT/m of the molecular

thermal agitation.
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