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Abstract. We use here a change of variables formula in the framework of functions of bounded
variation to derive an explicit formula for the Fourier transform of the level crossings function of shot
noise processes with jumps. We illustrate the result on some examples and give some applications.
In particular, it allows us to study the asymptotic behavior of the mean number of level crossings as
the intensity of the Poisson point process of the shot noise process goes to infinity.

In this paper, we will consider a shot noise process which is a real-valued random process given by

(1) X(t) =
∑

i∈Z

βig(t − τi), t ∈ R,

where g is a given (deterministic) measurable function (it will be called the kernel function of the shot
noise), the {τi}i∈Z are the points of a homogeneous Poisson point process on the line of intensity λ > 0,
and the {βi}i∈Z are independent copies of a random variable β (called the impulse), independent of
{τi}i∈Z.

Such a process has many applications (see [16] and the references therein for instance) and it is a
well-known and studied mathematical model (see [10], [15], [5] for some of its properties).

We will be interested here in the level crossings of such a process. Usually, the mean number of
level crossings of a stochastic process is computed thanks to a Rice’s formula (see [12] or [1]) that
requires some regularity conditions on the joint probability density of X and of its derivative. This
joint probability density is generally not easy to obtain and to study. Its existence is also sometimes
a question in itself. This is why, instead of working directly on the mean number of level crossings,
we will work on the Fourier transform of the function that maps each level α to the mean number of
crossings of the level α per unit length. Thanks to a change of variables formula, we will be able to
relate this Fourier transform to the characteristic function of the shot noise process (which, unlike
the probability density, always exists and is explicit).

1. General result

In [3], we have studied the level crossings of the shot noise process X when the kernel function g
is smooth on R. We will consider here the case where g is a piecewise smooth function, that is not
necessarily continuous. We first introduce some definitions and notations.

Let I be an open interval of R and k ≥ 0 be an integer. A function f : I → R is said piecewise Ck

on I if there exists a finite set of points of discontinuity of f on I, denoted by

Sf = {s1, s2, . . . , sm}, with m ≥ 1 and s1 < . . . < sm,

and called the jump set of f on I, such that f is of class Ck at any point s of I such that s /∈ Sf .
We moreover assume that f admits finite left and right limits at each point of Sf . For a point s ∈ I,
we will denote

f(s+) = lim
t→s,t>s

f(t) and f(s−) = lim
t→s,t<s

f(t)

the respective right and left limits of f at s. Notice that when s /∈ Sf , we simply have f(s+) =
f(s−) = f(s). We will also use the following notations:

(2) ∀s ∈ I, f∗(s) := max{f(s+), f(s−)}, f∗(s) := min{f(s+), f(s−)},
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(3) and ∆f(s) := f(s+) − f(s−).

Finally, when k ≥ 1, we will denote by f ′, . . . , f (k) the functions that are defined at all points s /∈ Sf

by the usual derivatives f ′(s), . . . , f (k)(s).
In the sequel, we will need assumptions on the kernel function g and on the impulse β of the shot

noise process X defined by (1). These assumptions are grouped together into the following condition
denoted by (C):

(C) : E(|β|) < ∞, g is piecewise C2 on R and g, g′, g′′ ∈ L1(R).

We will also denote the jump set of g on R by

Sg = {t1, t2, . . . , tn}, with t1 < . . . < tn.

As consequence of (C), g has finite total variation on R, which means that

TV (g, R) = sup
P

nP∑

k=1

|g(ak) − g(ak−1)| =

∫

R

|g′(s)| ds +

n∑

j=1

|∆g(tj)| < ∞,

where the supremum is taken over all partitions P = {a0, . . . , anP
} of R with nP ≥ 1 and a0 < . . . <

anP
.

Finally, we assume that the points {τi} of the Poisson point process are indexed by Z in such a way
that for any k ∈ N, one has 0 < τ0 < τ1 < τ2 < . . . < τk < . . . and 0 > τ−1 > τ−2 > . . . > τ−k > . . ..

1.1. Piecewise regularity of the shot noise process. The shot noise process “inherits” the
regularity of the kernel function g. More precisely, we have the following result.

Theorem 1. Assume that the condition (C) holds, then the shot noise process X defined by (1) is a
stationary process which is almost surely piecewise C1 on any interval (a, b) of R. The jump set of
X on (a, b) is

SX ∩ (a, b) where SX =
⋃

i∈Z

(τi + Sg)

and

∀t /∈ SX , X ′(t) =
∑

i∈Z

βig
′(t − τi).

Proof. Note that, since E(|β|) < ∞ and g ∈ L1(R), for any t ∈ R, the random variable X(t) is
well-defined and E(X(t)) = λE(β)

∫
R

g(s)ds, according to [16]. Moreover, since the Poisson point
process is homogeneous, X is a stationary process.

Let us first remark that since the jump set Sg of g contains exactly n points, we can write g as
the sum of 2n piecewise C2 functions on R, each of them having only one discontinuity point and
having the same regularity properties as g. Therefore we may and will assume that g has only one
discontinuity point and we write Sg = {t1}. Let i0 ∈ Z. We set Ii0 := [t1 + τi0 , t1 + τi0+1], Then, for
any t ∈ R,

X(t) =
∑

i>i0+1

βig(t − τi) +
∑

i<i0

βig(t − τi) + βi0g(t − τi0) + βi0+1g(t − τi0+1).

The function t 7→ g(t − s) is C2 on Ii0 for any s < τi0 such that almost surely, for any i < i0, the
function t 7→ g(t − τi) is C2 on Ii0 with g((t1 + τi0 − τi)+) = g((t1 + τi0 − τi)−). Moreover

E

(∑

i<i0

|βi| sup
t∈Ii0

|g′(t − τi)|
∣∣∣ τi0 , τi0+1

)
= λE(|β|)

∫ 0

−∞
sup
t∈Ii0

|g′(t − s − τi0)|ds,

using the fact that {τi − τi0 ; i < i0} is a homogeneous Poisson point process with intensity λ on
] −∞, 0[, and independent of τi0 , τi0+1. Now, for any t ∈ Ii0 and s < 0,

g′(t − s − τi0) =

∫ t

t1+τi0

g′′(u − s − τi0)du + g′(t1 − s),
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such that by Fubini-Tonelli Theorem,
∫ 0

−∞
sup
t∈Ii0

|g′(t − s − τi0)|ds ≤ (τi0+1 − τi0)

∫

R

|g′′(s)|ds +

∫

R

|g′(s)|ds.

Then

E

(∑

i<i0

|βi| sup
t∈Ii0

|g′(t − τi)|
)

≤ λE(|β|)
(

1

λ

∫

R

|g′′(s)|ds +

∫

R

|g′(s)|ds

)
< +∞,

so that a.s. the series t 7→
∑

i<i0

βig
′(t − τi) is uniformly convergent on Ii0 . Therefore, a.s. the series

t 7→
∑

i<i0

βig(t− τi) is continuously differentiable on Ii0 with

(∑

i<i0

βig(t − τi)

)′

=
∑

i<i0

βig
′(t− τi) and

∑

i<i0

βig((t1 + τi0 − τi)+) =
∑

i<i0

βig((t1 + τi0 − τi)−).

The same proof applies for
∑

i>i0+1

βig(t − τi). To conclude it is sufficient to remark that for i ∈

{i0, i0 + 1}, the function t 7→ g(t − τi) is continuously differentiable in the interior of Ii0 . Moreover
g((t1 + τi0 − τi0+1)+) = g((t1 + τi0 − τi0+1)−), g((t1 + τi0 − τi0)+) = g(t1+) and g((t1 + τi0 − τi0)−) =
g(t1−). Finally, a.s. X is continuously differentiable in the interior of Ii0 with

X ′(t) =
∑

i

βig
′(t − τi),

and X((t1 + τi0)+) − X((t1 + τi0)−) = βi0 (g(t1+) − g(t1−)). This ends the proof of the theorem
since R = ∪i0∈ZIi0 . ¤

Remark 1. Theorem 1 implies that, under the condition (C), the shot noise process X has almost
surely a finite total variation on any interval (a, b) of R. By stationarity we can focus on what
happens on the interval (0, 1). Then X has almost surely a finite number of points of discontinuity
in (0, 1) and its total variation on (0, 1) is given by

TV (X, (0, 1)) =

∫ 1

0
|X ′(t)|dt +

n∑

j=1

∑

τi∈(−tj ,1−tj)

|βi||∆g(tj)|.

1.2. Level crossings. We start this section with a general definition and a result on the level
crossings of a piecewise smooth function.

Let f be a piecewise C1 function on an interval (a, b) of R. We can define its level crossings on
(a, b) by considering, for any level α ∈ R,

Nf (α, (a, b)) = #{s ∈ (a, b) ; f∗(s) ≤ α ≤ f∗(s)} ∈ N ∪ {∞},
where the notation #{·} stands for the number of elements of the set {·} and using the notations
defined by (2). The number Nf (α, (a, b)) may be infinite. This is for instance what happens if there
exists a sub-interval of (a, b) on which f is constant equal to α (the value α is then called a critical
value of f). But, according to Morse-Sard Theorem ([13] p.10), the set of these critical values has
Lebesgue measure zero. Let us also mention that a weak variant of Morse-Sard Theorem for Lipschitz
functions can be found in [8], p.112.

Then, a change of variables formula for piecewise C1 functions is obtained in the following propo-
sition.

Proposition 1. Let a, b ∈ R with a < b and f be a piecewise C1 function on (a, b). Then, for any
bounded continuous function h defined on R,

(4)

∫

R

h(α)Nf (α, (a, b)) dα =

∫ b

a
h(f(s))|f ′(s)| ds +

∑

s∈Sf∩(a,b)

∫ f∗(s)

f∗(s)
h(α) dα.
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Proof. Let us assume that Sf ∩ (a, b) = {sj ; 1 ≤ j ≤ m} with m ≥ 1 and s0 := a < s1 < . . . < sm <
sm+1 := b. Then

(5) Nf (α, (a, b)) =

m∑

j=0

#{s ∈ (sj , sj+1) ; f(s) = α} +

m∑

j=1

1[f∗(sj),f∗(sj)](α).

Let h be a bounded continuous function on R. According to the change of variables formula for
Lipschitz functions (see [8] p.99), for any j = 0, . . . , m, we have

∫

R

h(α)#{s ∈ (sj , sj+1) ; f(s) = α} dα =

∫ sj+1

sj

h(f(s))|f ′(s)| ds.

Then, we sum up these equalities for j = 0 to m, and using (5), this achieves the proof of the
proposition. ¤

Notice that a change of variables formula for functions of bounded variation was also obtained in
[6]. But their formula is valid away from the jump set of f , whereas our formula (4) takes explicitly
into account the contribution of the jump set. Let us also mention the fact our formula (4) is a
kind of extension of Banach’s Theorem used by Rychlik in [17] (p.335). The main difference is that
our formula involves a function h that is not necessarily constant, but on the other hand, we are
restricted to a piecewise C1 function f (whereas Banach’s Theorem is valid for functions of bounded
variation).

Let us be now interested in the shot noise process X. For α ∈ R, let NX(α) be the random variable
that counts the number of crossings of the level α by the process X in the interval (0, 1). Using (2),
it is defined by

NX(α) = #{t ∈ (0, 1) ; X∗(t) ≤ α ≤ X∗(t)}.
We will be mainly interested in its expectation, namely in

CX(α) = E(NX(α)).

The function α 7→ CX(α) is called the mean level crossings function and we compute its Fourier
transform in the following theorem. This result has to be related to the heuristic approach of [2] (in
particular their formula (13) that involves the joint density of X(t) and X ′(t) in a Rice’s formula - but
without checking any of the hypotheses for its validity). Our theorem will involve the characteristic
function of the shot noise process which is easily computable. Actually, if we denote for all u, v ∈ R,

(6) ψ(u, v) = E(eiuX(0)+ivX′(0)) and F̂ (u) = E(eiuβ)

then it is well-known (see [16] for instance) that

(7) ψ(u, v) = exp

(
λ

∫

R

(F̂ (ug(s) + vg′(s)) − 1) ds

)
.

Theorem 2. Assume that the condition (C) is satisfied, then the mean level crossings function CX

belongs to L1(R) and
∫

R

CX(α) dα = E(TV (X, (0, 1))) ≤ λE(|β|)TV (g, R).

Moreover, its Fourier transform, denoted by u 7→ ĈX(u) is given for u 6= 0 by

ĈX(u) = E(eiuX(0)|X ′(0)|) + λE(eiuX(0)) · 1

iu

n∑

j=1

(
E(eiu(βg)∗(tj)) − E(eiu(βg)∗(tj))

)
,

and for u = 0 by

ĈX(0) = E(TV (X, (0, 1))) = E(|X ′(0)|) + λE(|β|)
n∑

j=1

|∆g(tj)|.
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Proof. According to Theorem 1, we can apply Proposition 1 such that, for any bounded continuous
functions h defined on R, almost surely

(8)

∫

R

h(α)NX(α) dα =

∫ 1

0
h(X(t))|X ′(t)| dt +

∑

t∈SX∩(0,1)

∫ X∗(t)

X∗(t)
h(α) dα.

Taking h = 1, we obtain that
∫

R

NX(α) dα =

∫ 1

0
|X ′(t)| dt +

∑

t∈SX∩(0,1)

|∆X(t)| = TV (X, (0, 1)).

Using the stationarity of X ′, we have E

(∫ 1
0 |X ′(t)|dt

)
= E(|X ′(0)|) ≤ λE(|β|)

∫
R
|g′(s)|ds and

E


 ∑

t∈SX∩(0,1)

|∆X(t)|


 = λE(|β|)

n∑

j=1

|∆g(tj)|.

Therefore,

∫

R

CX(α) dα ≤ λE(|β|)




∫

R

|g′(s)|ds +
n∑

j=1

|∆g(tj)|


 ≤ λE(|β|)TV (g, R).

Now, taking h(α) = eiuα for some u ∈ R with u 6= 0 in (8), we get

∫

R

eiuαNX(α) dα =

∫ 1

0
eiuX(t)|X ′(t)| dt +

∑

t∈SX∩(0,1)

∫ X∗(t)

X∗(t)
eiuα dα,

=

∫ 1

0
eiuX(t)|X ′(t)| dt +

n∑

j=1

A(j),(9)

where A(j) := 1
iu

∑
τi∈(−tj ,1−tj)

eiuX((tj+τi)+)
(
eiu max(βi∆g(tj),0) − eiu min(βi∆g(tj),0)

)
. Now, let us write

X((tj + τi)+) =
∑

τk 6=τi

βkg(tj + τi − τk) + βig(tj+) and

B(u, tj , βi) :=
1

iu

(
eiu(βig)∗(tj) − eiu(βig)∗(tj)

)
,

such that

A(j) =
∑

τi∈(−tj ,1−tj)

exp


iu

∑

k 6=i

βkg(tj + τi − τk)


 B(u, tj , βi).

Then, for M > max1≤j≤n |tj | + 1, we consider

AM (j) =
∑

τi∈(−tj ,1−tj)

exp


iu

∑

k 6=i;|τk|≤M

βkg(tj + τi − τk)


 B(u, tj , βi), such that AM (j) −→

M→+∞
A(j) a.s..

We have that

AM (j)
d
=

NM∑

i=1

1(−tj ,1−tj)(Ui) exp


iu

NM∑

k=1,k 6=i

βkg(tj + Ui − Uk)


 B(u, tj , βi),

where (Uk)k∈N is an i.i.d. sequence of random variables of uniform law on [−M, M ] independent
from (βk)k∈N, and NM is a Poisson random variable of parameter 2λM , independent from (Uk)k∈N
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and from (βk)k∈N. We adopt the convention that
0∑

i=1

= 0. Now, by conditioning, we get

E(AM (j)) =
+∞∑

m=0

E(AM (j)|NM = m)P[NM = m],

and then computing E(AM (j)|NM = m), for all m ≥ 0, using the independence of (Uk)k∈N and
(βk)k∈N, finally leads to

E(AM (j)) = λE(B(u, tj , β))

∫ 1−tj

−tj

exp

(
λ

∫ M+x+tj

−M+x+tj

(
F̂ (ug(s)) − 1

)
ds

)
dx,

where F̂ is given by (6). As a consequence, using Lebesgue’s Theorem and Formula (7) for E(eiuX(0)),
we get

E(A(j)) = λE(eiuX(0))E(B(u, tj , β)).

Finally, taking the expectation on both sides of Equation (9) and using the stationarity of X, leads

to the announced result for ĈX(u). ¤

Proposition 2. Under the condition (C), if we assume moreover that E(β2) < ∞ and that g′ ∈
L2(R), then, for u 6= 0,
(10)

ĈX(u) =
−1

π

∫ +∞

0

1

v

(
∂ψ

∂v
(u, v) − ∂ψ

∂v
(u,−v)

)
dv+λψ(u, 0)

1

iu

n∑

j=1

(
E(eiu(βg)∗(tj)) − E(eiu(βg)∗(tj))

)
,

where ψ is given by (6).

Proof. Since g′ ∈ L1(R) and since g has a finite number of discontinuity points with finite left and
right limits, it follows that g ∈ L∞(R). Consequently, g ∈ L∞(R) ∩ L1(R) ⊂ L2(R). Therefore,
when E(β2) < ∞ and g′ ∈ L2(R), the characteristic function ψ of (X(0), X ′(0)) is C2 on R

2.

Then,
∫ +∞
0

1
v

(
∂ψ
∂v (u, v) − ∂ψ

∂v (u,−v)
)

dv is well-defined and is the Hilbert transform of the function

v 7→ ∂ψ
∂v (u, v). Moreover, the computations of Theorem 1 in our previous paper [3] yield

E(eiuX(0)|X ′(0)|) =
−1

π

∫ +∞

0

1

v

(
∂ψ

∂v
(u, v) − ∂ψ

∂v
(u,−v)

)
dv.

This ends the proof of the proposition. ¤

2. A particular case

The formula for ĈX(u) can become simpler in some cases. The first particular case is the one when

the kernel g is piecewise constant, since then X ′(0) = 0 a.s. and thus the term E(eiuX(0)|X ′(0)|)
vanishes. Let us also make the following remark.

Remark 2. When β ≥ 0 a.s., then for any h1 < h2 ∈ R, the function u 7→ 1
iuψ(u, 0) · (F̂ (uh2) −

F̂ (uh1)) is the Fourier transform of the function α 7→ P[α − βh2 ≤ X(0) ≤ α − βh1], where β and
X(0) are taken independent.

We will now give a simpler formula for ĈX(u) in the case where g is piecewise non-increasing
(meaning that g′ ≤ 0 and thus g is non-increasing on each of the intervals on which it is continuous,
but it can have jumps tj such that ∆g(tj) = g(tj+)−g(tj−) > 0). In that case, we have the following
proposition.

Proposition 3. Assume that condition (C) holds. Assume moreover that β ≥ 0 a.s. and that g′ ≤ 0.
Then, for all u ∈ R,

(11) ĈX(u) = 2λψ(u, 0) · 1

iu

∑

tj :∆g(tj)>0

(
F̂ (ug(tj+)) − F̂ (ug(tj−))

)
,
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where ψ and F̂ are given by (6). As a consequence, for almost every α ∈ R,

(12) CX(α) = 2λ
∑

tj :∆g(tj)>0

P[α − βg(tj+) ≤ X(0) ≤ α − βg(tj−)],

where β and X(0) are taken independent.

Proof. Since g′ ≤ 0, we have X ′(0) ≤ 0 a.s. and consequently

E(eiuX(0)|X ′(0)|) = −E(eiuX(0)X ′(0)) = i
∂ψ

∂v
(u, 0).

Now, since g is piecewise non-increasing and belongs to L1(R), we have lim
|s|→+∞

g(s) = 0 and thus

lim
|s|→+∞

F̂ (ug(s)) = 1. Then, recalling that ψ(u, v) = exp
(
λ

∫
R
(F̂ (ug(s) + vg′(s)) − 1) ds

)
, we get

∂ψ

∂v
(u, 0) = λψ(u, 0)

∫

R

g′(s)F̂ ′(ug(s)) ds

= λψ(u, 0) ·




∫ t1

−∞
g′(s)F̂ ′(ug(s)) ds +

n−1∑

j=1

∫ tj+1

tj

g′(s)F̂ ′(ug(s)) ds +

∫ +∞

tn

g′(s)F̂ ′(ug(s)) ds




= λψ(u, 0) · 1

u


F̂ (ug(t1−)) +

n−1∑

j=1

(F̂ (ug(tj+1−)) − F̂ (ug(tj+))) − F̂ (ug(tn+))




= λψ(u, 0) · 1

u

n∑

j=1

(F̂ (ug(tj−)) − F̂ (ug(tj+))).

Consequently, by Theorem 2, we get

ĈX(u) = λψ(u, 0) · i

u

n∑

j=1

(F̂ (ug(tj−)) − F̂ (ug(tj+)))

+λψ(u, 0) · 1

iu

∑

tj :∆g(tj)>0

(
F̂ (ug(tj+)) − F̂ (ug(tj−))

)
+

1

iu

∑

tj :∆g(tj)<0

(
F̂ (ug(tj−)) − F̂ (ug(tj+))

)

= 2λψ(u, 0) · 1

iu

∑

tj :∆g(tj)>0

(
F̂ (ug(tj+)) − F̂ (ug(tj−))

)
.

This achieves the proof of Formula (11) for ĈX(u). Formula (12) for CX(α) for almost every α ∈ R

follows from Remark 2 and this ends the proof of the proposition. ¤

A particular case of this proposition is when we make the additional assumption that the function
g is positive and that it has only one positive jump at t1 = 0 from the value g(0−) = 0 to the value
g(0+) > 0. Formula (11) then simply becomes

(13) ĈX(u) = 2λψ(u, 0) · 1

iu
(F̂ (ug(0+)) − 1).

This framework corresponds to the case studied by Hsing in [11], and where he considers up-crossings
that are defined in the following way : the point t is an up-crossing of the level α by the process X
if it is a point of discontinuity of X and if X(t−) ≤ α and X(t+) > α. Then, Hsing proves that the

expected number of such points in (0, 1), denoted by U
(J)

X (α), is given by

(14) U
(J)

X (α) = λ P[α − βg(0+) < X(0) ≤ α],

where β and X(0) are taken independent. Note that the left strict inequality comes from the way
Hsing defines up-crossings of the level α. Now, let us consider up-crossings of the level α as usually
defined (see [7] p.192): the point t is an up-crossing of the level α by the process X if there exists
ε > 0 such that X(s) ≤ α in (t − ε, t) and X(s) ≥ α in (t, t + ε); and let us denote by UX(α) their
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expected number in (0, 1). In a similar way we can define down-crossings of the level α. Let us
remark that, since X is piecewise non-increasing, if moreover X is a.s. not identically equal to α
in any interval of (0, 1) (this is satisfied for instance when P[X(0) = α] = 0), then the crossings of
the level α are either up-crossings as defined by Hsing or down-crossings of the level α. Moreover,
by stationarity of the process X, the expected number of down-crossings of the level α is equal to
UX(α) and the result of Hsing yields to

(15) CX(α) = 2UX(α) = 2λ P[α − βg(0+) < X(0) ≤ α].

The result of Hsing given by Equation (14) is stronger than the similar formula given by Equation
(12) because his formula is valid for all levels α and moreover he needs weaker assumptions on the
regularity of g. On the other hand, his proof strongly relies on the fact that g has only one jump and
that g is identically 0 before that jump, and thus it can not be generalized to other kernel functions g.

Finally, let us end this section by mentioning that we have studied here the case of a piecewise non-
increasing kernel function g, but that, of course, similar results hold for a piecewise non-decreasing
kernel.

3. High intensity and Gaussian limit

We assume here that the assumptions of Proposition 2 hold. It is then well-known (see [15, 10] for
instance) that, as the intensity λ of the Poisson point process goes to infinity, the normalized process
Zλ defined by

t 7→ Zλ(t) =
Xλ(t) − E(Xλ(t))√

λ
,

where Xλ denotes a shot noise process (as defined by Equation (1)) with intensity λ for the ho-
mogeneous Poisson point process, converges to a centered Gaussian process with covariance R(t) =
E(β2)

∫
R

g(s)g(s − t) ds.
Now, how does the number of level crossings of Zλ behave as λ goes to +∞ ? To answer this, we

first determine the asymptotic expansion of the Fourier transform of CZλ
as λ → +∞.

For u ∈ R, we have:

ĈZλ
(u) =

1√
λ

ĈXλ

(
u√
λ

)
e−iuE(Xλ(t))/

√
λ =

1√
λ

E

(
e
i u√

λ
(Xλ(0)−E(Xλ(0)))|X ′

λ(0)|
)

+
λ

iu
E

(
e
i u√

λ
(Xλ(0)−E(Xλ(0)))

) n∑

j=1

(
E(e

i u√
λ
(βg)∗(tj)) − E(e

i u√
λ
(βg)∗(tj))

)

As we have already studied it in Section 4 of [3], the first term of the right-hand side admits a
limit as λ → +∞, and more precisely, as λ → +∞,

1√
λ

E

(
e
i u√

λ
(Xλ(0)−E(Xλ(0)))|X ′

λ(0)|
)

=

√
2m2

π
e−m0u2/2 + o(1),

where m0 = E(β2)
∫

R
g2(s) ds and m2 = E(β2)

∫
R

g′2(s) ds. For the second term, it is the product
of two terms and each of them admits an asymptotic expansion as λ → +∞. Indeed, assuming
moreover that g ∈ L3(R) and E(|β|3) < ∞, we have

E

(
e
i u√

λ
(Xλ(0)−E(Xλ(0)))

)
= exp

(
λ

∫

R

(F̂ (
u√
λ

g(s)) − 1)ds − iu
√

λE(β)

∫

R

g(s) ds

)

= exp

(
−m0u

2

2
− im3u

3

3
√

λ
+ o

(
1√
λ

))

= e−m0u2/2

(
1 +

2ium3

3m0

√
λ

)
+ o

(
1√
λ

)
,
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where m3 = E(β3)
∫

R
g3(s) ds. And for a given jump number j, 1 ≤ j ≤ n, we have

√
λ

iu

(
E(e

i u√
λ
(βg)∗(tj)) − E(e

i u√
λ
(βg)∗(tj))

)
= E(|β|)|∆g(tj)| +

iu

2
√

λ
E(β2)|∆g2(tj)| + o

(
1√
λ

)
.

Finally, we thus have

ĈZλ
(u) =

√
λ e−m0u2/2

E(|β|)
n∑

j=1

|∆g(tj)|

+




√
2m2

π
+

2ium3

3m0
E(|β|)

n∑

j=1

|∆g(tj)| +
iu

2
E(β2)

n∑

j=1

|∆g2(tj)|


 e−m0u2/2 + o(1).

Let us comment this result. When there are no jumps we obtain that ĈZλ
(u) converges, as λ goes to

infinity, to
√

2m2
π e−m0u2/2. This implies that CZλ

(α) weakly converges to
√

m2

π
√

m0
e−α2/2m0 , which is the

usual Rice’s formula for the mean number of level crossings of Gaussian processes (see [7] p.194 for

instance). Now, when there are jumps, the behavior of ĈZλ
(u) is different, since the main term in

√
λ

doesn’t vanish anymore. More precisely we have that 1√
λ
ĈZλ

(u) goes to e−m0u2/2
E(|β|) ∑n

j=1 |∆g(tj)|,
which implies that

1√
λ

CZλ
(α) −→

λ→∞
1√

2πm0
e−α2/2m0E(|β|)

n∑

j=1

|∆g(tj)| in the sense of weak convergence.

Notice also that taking u = 0 in the asymptotic formula for ĈZλ
(u) gives the asymptotic behavior

of the total variation of Zλ. Indeed, we then have

E(TV (Zλ, (0, 1))) = ĈZλ
(0) =

√
λ E(|β|)

n∑

j=1

|∆g(tj)| +
√

2m2

π
+ o(1).

This kind of asymptotic behavior has also been studied by B. Galerne in [9] in the framework of
random fields of bounded variation.

4. Some examples

4.1. Step functions. We start this section with some examples of explicit computations in the case
of step functions.

(1) The first simple example of step function is the one where the kernel g is a rectangular
function : g(t) = 1 for t ∈ [0, a] with a > 0 and 0 otherwise. Notice that this is a very simple
framework, that also fits in the results of Hsing [11]. In this particular case X is piecewise
constant almost surely.

• If the impulse β is such that β = 1 a.s. we will prove that

(16) CX(α) =
+∞∑

k=0

2λe−λa (λa)k

k!
1I{k<α<k+1} for all α ∈ R\N.

Note that X takes values in N a.s. such that CX is constant on any interval (k, k + 1)
with k ∈ N. Moreover, ψ(u, v) = exp(λa(eiu − 1)), which shows on the one hand that
X(0) follows a Poisson distribution with parameter λa such that CX(α) = +∞ for all
α ∈ N. On the other hand, by Formula (13),

ĈX(u) = 2λ exp(λa(eiu − 1))
eiu − 1

iu
.

We recognize here the product of two Fourier transforms: the one of a Poisson distribu-
tion and the one of the indicator function of [0, 1] from which we deduce (16).
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• If the impulse β follows an exponential distribution of parameter µ > 0, then F̂ (u) = µ
µ−iu

and a simple computation gives ψ(u, v) = exp
(
λa iu

µ−iu

)
. On the one hand, the law of

X(0) can be computed: PX(0)(dx) = e−2aλδ0(dx) +
∑+∞

k=1 e−aλ (2aλ)k

k! fµ,k(x)dx, where
fµ,k is the probability density of the Gamma distribution of parameters µ and k, and δ0

is the Dirac measure at point 0. Then, P[X(0) = 0] > 0 such that CX(0) = +∞ and, for
all α > 0, P[X(0) = α] = 0 such that, according to (15), CX is continuous on (0, +∞).
On the other hand,

(17) ĈX(u) = 2λ exp

(
λa

iu

µ − iu

)
1

µ − iu
.

We recognize here the Fourier transform of a non-central chi-square distribution, and
thus

(18) for all α > 0, CX(α) = 2λµe−aλ−µαI0(2
√

aλµα),

where I0 is the modified Bessel function of the first kind of order 0; it is given by

I0(x) = 1
π

∫ π
0 ex cos θdθ =

∑+∞
m=0

x2m

4m(m!)2
.

(2) A second example is a “double rectangular” function given by: g(t) = 1 if −1 ≤ t < 0;
g(t) = −1 if 0 ≤ t < 1, and g(t) = 0 otherwise. Notice that this case does not fit anymore in
the framework of Hsing [11]. However X is still piecewise constant almost surely.

• If β = 1 almost surely, then simple computations show that

ĈX(u) = 4λ
sin u

u
exp(2λ(cos u − 1)).

The last term above is the characteristic function of the difference of two independent
Poisson random variables of same parameter λ (it is also called a Skellam distribution).
Thus, as previously we obtain that CX(α) = +∞ for all α ∈ Z and

∀α ∈ R\Z, CX(α) =
+∞∑

k=−∞
4λpk1I{k<α<k+1}, where ∀k ∈ Z, pk = e−2λ

+∞∑

n=0

λk+2n

n!(k + n)!
.

• If β follows an exponential distribution of parameter µ, we can also explicitly compute

ĈX(u) =
4λµ

µ2 + u2
exp

(
−2λ

u2

µ2 + u2

)
.

4.2. Exponential kernel. In this section, we consider an example that has been widely studied in
the literature: the impulse β follows an exponential distribution of parameter µ > 0, and the kernel
function g is given by g(s) = 0 for s < 0 and g(s) = e−s for s ≥ 0.

A simple computation gives that the joint characteristic function of X(0) and X ′(0) is

∀u, v ∈ R, ψ(u, v) =
µλ

(µ − iu + iv)λ
.

Then, on the one hand, X(0) follows a Gamma distribution such that P(X(0) = α) = 0 for all α ∈ R,
and CX is a continuous function on R according to (15). On the other hand, by Formula (13), we
get

ĈX(u) =
2λµλ

(µ − iu)λ+1
.

We recognize here the Fourier transform of an other Gamma probability density. Thus it implies
that

CX(α) =
2λµλαλe−µα

Γ(λ + 1)
1I{α≥0} for all α ∈ R.

In the case where λ is an integer, the explicit formula for the mean number of level crossings
CX(α) was already given in [14] by Orsingher and Battaglia (but they had a completely different
approach based on the property that in the particular case of an exponential kernel, the process is
Markovian). Finally, let us also mention the work of Borovkov and Last in [4] that gives a version
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of Rice’s formula for the mean number of level crossings in the framework of piecewise-deterministic
Markov processes with jumps.
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75006 PARIS France

E-mail address: agnes.desolneux@mi.parisdescartes.fr


