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ABSTRACT
We investigate the complexity of performing updates on
probabilistic XML data for various classes of probabilistic
XML documents of different succinctness. We consider two
elementary kinds of updates, insertions and deletions, that
are defined with the help of a locator query that specifies the
nodes where the update is to be performed. For insertions,
two semantics are considered, depending on whether a node
is to be inserted once or for every match of the query. We
first discuss deterministic updates over probabilistic XML,
and then extend the algorithms and complexity bounds to
probabilistic updates. In addition to a number of intractabil-
ity results, our main result is an efficient algorithm for in-
sertions defined with branching-free queries over probabilis-
tic models with local dependencies. Finally, we discuss the
problem of updating probabilistic XML databases with con-
tinuous probability distributions.

Categories and Subject Descriptors
H.2.3 [Database Management]: Logical Design, Languages—
data models, query languages; F.2.0 [Analysis of Algo-
rithms and Problem Complexity]: General

General Terms
Algorithms, Theory

Keywords
XML, updates, probabilistic databases, complexity

1. INTRODUCTION
Though traditional database applications, such as bank

account management or order processing, have no room
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for uncertainty, more recent applications, such as informa-
tion extraction from the World Wide Web [4], automatic
schema matching in information integration [17], or infor-
mation gathering from sensor networks [7] are inherently
imprecise. There is a real need for managing in a rigorous
way this imprecision. In a number of cases, such as with
conditional random fields [15] for information extraction, or
uncertain schema mappings [8, 9] in information integration,
these automatic imprecise systems provide probabilities that
the data exists. In other cases, systems do not provide such
probabilities, but confidence values, which can sometimes be
seen after renormalization as approximate probability val-
ues. It makes sense to use these probabilities to represent
the confidence the system has in the information, and to
manipulate this probabilistic information in a probabilistic
database management system [5].

Recent work has proposed models for probabilistic data,
both in the relational [6, 14, 20] and XML [2, 3, 10, 16]
settings. We focus here on the latter, which is particularly
adapted in the case, common on the Web, when the infor-
mation is not strictly constrained by a schema, or when it
is inherently tree-like (mailing lists, parse trees of natural
language sentences, etc.). A number of works on proba-
bilistic XML have dealt with query answering for a vari-
ety of models and query languages [1, 3, 10–13, 16] but
updates have received far less attention, with only a hand-
ful of works [2, 3, 18] that focus on a specific semantics for
updates or on specific models. Updates are, however, an im-
portant part of any database management system, and are
especially important in the case of probabilistic databases,
since probabilistic updates [2] can be seen as the source of
probabilities and of the correlations between these proba-
bilities. We propose in this article a general study of the
complexity of performing updates in probabilistic XML, for
different probabilistic XML models proposed so far. We also
briefly discuss the difficulties that arise in updating proba-
bilistic documents with continuous probability distributions
of data values [1].

We use a general model for probabilistic XML, from [2, 11],
that encompasses various probabilistic XML models from
the literature, in the form of p-documents, that are defined as
trees with ordinary and distributional nodes, the latter spec-
ifying a probability distribution on the children of a given
nodes. Distributional nodes are of different kinds, and we ex-
plore the complexity of updates for p-documents that make
use of these different types. Following the existing XML
update languages, XUpdate [21] and XQuery Update [19],
updates (of two kinds: insertions and deletions) are defined
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Figure 1: Document d: personnel in IT department

in terms of locator queries that specify the nodes where the
update is to be performed. The query language obviously
has an influence on the complexity of performing these up-
dates, and we distinguish between several different subsets
of tree-pattern queries with joins. We also consider two dif-
ferent semantics for insertions: the first one (insert a node at
some position only if some query has a match) mimics the
behavior of XUpdate and XQuery Update, while the second
one (insert a node at some position for all matches of some
query) corresponds to what has been studied in [2].

The contributions of this paper are as follows: (i) a gen-
eral picture of update tractability for various query lan-
guages and probabilistic XML models, with complexity re-
sults; (ii) a polynomial algorithm for only-if insertions and
deletions defined by descendant-free single-path queries on
local models (Theorem 5 and Proposition 8); (iii) the intro-
duction of a very general PrXMLfie model, that is especially
interesting with respect to updates; (iv) the first discussion
of updates in continuous probabilistic XML.

2. DETERMINISTIC DATA AND QUERIES
We assume a countable set of identifiers I and one of la-

bels L, such that I ∩L = ∅. A document is a pair d = (t, θ),
where t is a finite, unordered tree over identifiers and θ is a
function that maps each node v to a label θ(v) ∈ L. Ignoring
the ordering of the children of nodes is a common simplifica-
tion over the XML model that does not significantly change
the results of this paper. We use the standard notions child
and parent, descendant and ancestor, root and leaf in the
usual way. We denote the root of d by root(d). Two doc-
uments d1 and d2 are isomorphic, denoted by d1 ∼ d2, if
there is a one-to-one correspondence between the nodes of
the two documents that preserves labels and edges.

Example 1. Consider the document d from [1], repro-
duced in Figure 1. Identifiers appear inside square brack-
ets before labels. The document describes the personnel of
an IT department and the bonuses distributed for different
projects. The document d indicates John worked under two
projects (laptop and pda) and got bonuses of 37 and 50 in
the former project and 50 in the latter one.

We introduce tree-pattern queries with joins, with join-
free queries and single-path queries as special cases. Let
Var be a countable set of variables. A tree pattern (with
joins), denoted Q, is a tree with two types of edges: child-
edges, denoted E/, and descendant edges, denoted E//. The
nodes of the tree are labeled by a labeling function λ with
either labels from L or with variables from Var. Variables

that occur more than once are called join variables. We refer
to nodes of Q as n, m in order to distinguish them from the
nodes of documents.

A tree-pattern query with joins has the form Q[n̄], where
Q is a tree pattern with joins and n̄ is a tuple of nodes of
Q (defining its output). We sometimes identify the query
with the pattern and write Q instead of Q[n̄] if n̄ is not
important or clear from the context. If n̄ is the empty tuple,
we say that the query is Boolean. A query is join-free if every
variable in its pattern occurs only once. If the set of edges
E/ ∪E// of a query is a linear order of the nodes, the query
is a single-path query. We denote the set of all tree pattern
queries, which may have joins, as TPJ. The subclasses of
join-free and single path queries are denoted as TP and SP,
respectively.

A valuation γ maps query nodes to document nodes. A
document satisfies a query if there exists a satisfying valua-
tion, or a match, mapping query nodes to document nodes
in a way that is consistent with edge types, labeling, and
variable occurrences. More precisely, (1) nodes connected
by child/descendant edges are mapped to nodes that are
children/descendants of each other; (2) query nodes with la-
bel a are mapped to document nodes with label a; (3) two
query nodes with the same variable are mapped to document
nodes with the same label. Let q be a TPJ query and d be
a document, then Val(q, d) denotes the set of all valuations
γ of q in d. Details of query semantics are given in [1].

3. PROBABILISTIC XML
A finite probability space over documents, px-space for

short, is a pair S = (D,Pr), where D is a finite set of
non-isomorphic documents and Pr maps each document to
a probability Pr(d) with Σ{Pr(d) | d ∈ D} = 1.

p-Documents: Syntax. Following [2], we now introduce
a very general syntax for representing compactly px-spaces,
called p-documents. A p-document is similar to a document,
with the difference that it has two types of nodes: ordi-
nary and distributional. Distributional nodes are only used
for defining the probabilistic process that generates random
documents (but they do not actually occur in these ones).
Ordinary nodes have labels and they may appear in ran-
dom documents. We require the leaves and the root to be
ordinary nodes.

Formally, we assume given a set X of Boolean random
variables with some specified probability distribution ∆ over

X . A p-document, denoted P̂ , is an unranked, unordered,
labeled tree. Each node has a unique identifier v and a label
µ(v) in

L ∪ {fie(E)} ∪ {cie(E)} ∪ {exp(Pr)} ∪ {mux(Pr)} ∪ {det}

where L are labels of ordinary nodes, and the others are la-
bels of distributional nodes. We consider different kinds of
these distributional labels: fie(E) (for formulas of indepen-
dent events), cie(E) (for conjunction of independent events),
exp(Pr) (for explicit), mux(Pr) (for mutually exclusive), and
det (for deterministic). If a node v is labeled with (i) fie(E),
then E is a function that assigns to each child of v a propo-
sitional formula ϕ of events from X ; (ii) cie(E), then E
assigns to each child of v a conjunction e1 ∧ · · · ∧ ek of event
literals (x or ¬x, for x ∈ X ); (iii) exp(Pr), then Pr assigns to
each subset of children of v a probability, summing up to 1;
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Figure 2: PrXMLmux,det,cie p-document: IT dpt.

(iv) mux(Pr), then Pr assigns to each child of v a probability,
summing up to 1.

We denote classes of p-documents by PrXML with a super-
script denoting the types of distributional nodes allowed for
the p-documents in the class. For instance, p-documents of
PrXMLmux,det,cie are with mux, det, cie nodes like in Figure 2.

p-Documents: Semantics. The semantics of a p-document

P̂ , denoted by JP̂K, is a px-space over random documents,
where the documents are denoted by P and are obtainable

from P̂ by a randomized three-step process.
1. We choose a valuation ν of the variables in X . The prob-

ability of the choice, according to the distribution ∆, is
pν =
∏
x in P̂,ν(x)=true

∆(x) ·
∏
x in P̂,ν(x)=false

(1−∆(x)).

2. We delete the children v of each fie(E) or cie(E) node
where ν(E(v)) is false, and their descendants. Indepen-
dently for each exp(Pr) (resp., mux(Pr)) node v, we select
a subset of its children V ′ (resp., one of its children v′)
according to the corresponding probability distribution
Pr and delete the other children and their descendants,
the probability of the choice being Pr(V ′) (resp., Pr(v′)).
We do not delete any of the children of det nodes.

3. We then remove in turn each distributional node, con-
necting each ordinary child v of a deleted distributional
node with its lowest ordinary ancestor v′, or, if no such
v′ exists, we turn this child into a root.

The result of this third step is a random document P . The
probability Pr(P) is defined as the product of pν , the prob-
ability of the variable assignment we chose in the first step,
with all Pr(V ′) and Pr(v′), the probabilities of the choices
that we made in the second step for the exp and mux nodes.

In addition to the five kinds of distributional nodes pre-
sented above (all of which except fie from [2]), we occasion-
ally consider ind(Pr) nodes, also from [2], which specify inde-
pendent probabilities for every child of a node. As discussed
in [2], ind can be simulated with mux and det.

Example 2. A p-document P̂ is shown in Figure 2. It
has cie, mux and det distributional nodes. For example, node
n21 has label cie(E) and two children n22 and n24, such that
E(n22) = ¬x and E(n24) = x. Node n11 has label mux(Pr)
and two children n8 and n13, such that Pr(n8) = 0.7 and

Pr(n13) = 0.3. Document d in Figure 1 is in JP̂K, and cor-
responds to the assignment x true, z true, and to the choice
of John under the mux node. If Pr(x) = 1/2, Pr(z) = 1/4,
then Pr(d) = 0.7 · 1/2 · 1/4 = 0.0875.

Two px-spaces S1 = (D1,Pr1) and S2 = (D2,Pr2) are
isomorphic, denoted S1 ∼ S2, if they are identical up to iso-

PrXMLmux
PrXMLind

PrXMLmux,det PrXMLmux,ind

PrXMLexp
PrXMLcie

PrXMLfie

? ?

Figure 3: Efficient translations between PrXML fam-
ilies

morphism, i.e.,
∑
d′∈D1:d′∼d

Pr1(d′) =
∑
d′∈D2:d′∼d

Pr2(d′).,

for all document d. We write P̂1 ∼ P̂2 if JP̂1K ∼ JP̂2K. Two
p-documents are equivalent if their px-spaces are isomorphic.

Expressiveness. We are interested in complete represen-
tation systems: a probabilistic XML model is complete if
every px-space can be modeled. It has been shown in [2]
that both PrXMLind and PrXMLmux are incomplete, whereas
PrXMLmux,det, PrXMLexp and PrXMLcie are complete. The
PrXMLfie model, as a generalization of PrXMLcie, is clearly
also complete. Our study will focus on these complete rep-
resentation systems.

Succinctness. It is also important to understand which
models can be seen as particular cases of other models or, in
other words, if a p-document of a given class can tractably
be transformed into an equivalent p-document of another
class. This is of help to prove complexity results about the
tractability of updates. Figure 3 summarizes the polynomial-
time translation between different classes of probabilistic
documents. As shown in the picture, it is open whether
PrXMLexp is polynomially translatable to PrXMLmux,det or
to PrXMLcie. Apart from this, the figure is complete, mean-
ing that the absence of a path between models means there
is no efficient translation between them. All the results, ex-
cept the ones involving PrXMLfie, were proved in [2].

Tractable translation from PrXMLcie to PrXMLfie is clear
since the latter is a generalization of the former. The follow-
ing proposition shows that PrXMLfie is exponentially more
succinct than PrXMLexp.

Proposition 3. There is a polynomial-time translation
from p-documents of PrXMLexp to equivalent p-documents
of PrXMLfie, but not the other way around.

Proof. (Sketch) A translation from PrXMLexp to PrXMLfie

is illustrated on an example document in Figure 4, and can
be generalized in a straightforward way. The other direction
is clear since there is no efficient translation from PrXMLcie

to PrXMLexp [2].

It is actually possible (but slightly more involved) to show
PrXMLfie is exponentially more succinct than PrXMLexp,cie,
which is a stronger result.

We next investigate updates for the four complete PrXML

models presented in Figure 3 that are different in succinct-
ness: PrXMLmux,det, PrXMLexp, PrXMLcie and PrXMLfie.

4. DETERMINISTIC UPDATES
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A deterministic update, or simply update, is a triple (q, n, t)
also denoted qn,t, where (i) q is a TPJ query, called the con-
dition of the update; (ii) n is a node of q, called the locator
of the update; (iii) t is a document such that nodes(t) ∩
nodes(q) = ∅ and possibly with variables Var(t) among its
labels, with Var(t) ⊆ Var(q). An update is variable-free if t
is a document, i.e., Var(t) = ∅.

The intuition behind the semantics of updates is the fol-
lowing: if q is satisfied in a document d, then one either
inserts t in d as a child of a node corresponding to n, or
deletes all nodes corresponding to n together with all their
descendants. The way how to insert t depends on the spe-
cific semantics of insertions and will be discussed below. For
deletions, t is irrelevant and we just denote qn.

Depending on the type of the query q we distinguish the
following classes of updates: TPJ, TP, SP and RSP, where
RSP is the subclass of SP where n is the (unique) leaf of q.

Only-if insertions. This semantics addresses updates that
are insertions of the kind: “For every professor, insert a
bonus of 5 only if her team is in some EU project.”

Formally, let qn,t be a variable-free update and d a doc-
ument (only-if semantics is only defined for insertions with
variable-free t). A deterministic only-if insertion oi(qn,t, d)
in d by qn,t is a document d′ obtained from d by rooting t to
every v ∈ d such that v = γ(n) for some γ ∈ Val(q, d). Note
that t can be rooted to each node of d at most once. More-
over, if there is no valuation of q in d, then oi(qn,t, d) = d.

For-all insertions. This semantics addresses updates that
are insertions of the kind: “For every professor, insert a
bonus of X for all EU projects with a duration of X years,
that her team is involved in.” This is the semantics that was
considered in [2], except that only variable-free documents
were allowed.

Formally, let qn,t be an update and d be a document. A
deterministic for-all insertion fa(qn,t, d) in d by qn,t is a
document d′ obtained from d by rooting to each v ∈ d, such
that v = γ(n) for some γ ∈ Val(q, d), the forest

{|γ′(t) | γ′ ∈ Val(q, d) and γ′(n) = v|}.

In other words, instantiated versions of t can be rooted to
each node of d multiple times, as many times as the number
of valuations of the query in d. Again, if there is no valuation
of q in d, then fa(qn,t, d) = d.

Deterministic insertions in p-documents. We now extend
the definition of deterministic updates to px-spaces. Let qn,t

be an update and S be a px-space. Then a deterministic for-
all insertion fa(qn,t,S) in S = {(di,Pr(di)) | 1 6 i 6 n} by

qn,t is the px-space:

{(d′,Pr
′(d′)) | d′ = fa(qn,t, d), for some (d,Pr(d)) ∈ S ,

and Pr
′(d′) =

∑

d∈S

fa(qn,t,d)∼d′

Pr(d)}. (1)

We define the only-if insertions oi(qn,t,S) for updates qn,t

with variable-free t analogously to fa(qn,t,S). Finally, we de-

fine insertions for p-documents as fa(qn,t, P̂) = fa(qn,t, JP̂K)

and oi(qn,t, P̂) = oi(qn,t, JP̂K).

Deterministic deletions in p-documents. Let qn be an
update and S be a px-space. Then a deterministic deletion
del(qn, d) in a document d is the document obtained from d
by deleting all nodes γ(n) and their descendants, where γ
in Val(q, d).

Deterministic deletions for px-spaces are defined as in (1),
by substituting “fa” with “del” and “qn,t” with “qn”. For

p-documents P̂ , we define del(qn, P̂) = del(qn, JP̂K).

Problems to Investigate. LetD be a family of p-documents
and Q a class of TPJ queries. We only consider data com-
plexity, i.e., the query is not considered to be part of the
input. We say that D is closed under, say, deterministic fa-
insertions for Q if, for any deterministic update qn,t where

q ∈ Q, and for each P̂ ∈ D there exists a P̂ ′ ∈ D such

that P̂ ′ ∼ fa(qn,t, P̂). The closure is tractable if P̂ ′ can be

computed in time polynomial in the size of P̂ . The closure

is linear if |P̂ ′| = O(|P̂| · |t|) for all q ∈ Q, that is, there

is a constant C > 0 such that |fa(qn,t, P̂)| 6 C · |P̂| · |t| for

all qn ∈ Q, P̂ ∈ D, and documents t. The closure is not in

PSPACE if the computation of p-documents P̂ ′ (in the worst

case) requires more than polynomial space in the size of P̂ .
Finally, the closure is #P-hard if there is a polynomial-time
(Turing) reduction from a #P-hard problem to the problem

of computing a p-document P̂ ′ such that JP̂ ′K ∼ fa(qn,t, P̂).
Recall that #P is the class of functions that count the num-
ber of accepting paths of an NP Turing machine, which is
conventionally deemed intractable. We analogously define
the same notions for oi-insertions and deletions.

If a closure is linear for a class of queries and p-documents,
then a sequence of updates can lead at most to exponen-
tial growth of the original document. More precisely, if
the updates qni,tii , with 1 6 i 6 n are applied one after

the other to a p-document P̂ , resulting in some P̂ ′, then

|P̂ ′| 6 Cn|P̂| · |t1| · · · |tn|.
Clearly, exponential growth of documents is not desirable.

However, in principle tractability of closure does not exclude
the possibility of still larger growth. To see this, note that
a quadratic increase of the document size after each update
results in document growth that is doubly exponential.

5. TRACTABLE CLOSURE WRT UPDATES
We explore in this section tractability results for determin-

istic updates. We now introduce a technical term needed
further in the proofs. One can extend the notion of matches
of queries q ∈ TPJ over documents to p-documents by con-
sidering mappings that ignore distributional nodes and are
still consistent with the edge types, the labeling, and the
variable occurrences in q. We call these matches naive. If γ



is a naive match of q in P̂ ∈ PrXMLfie, then the formula set
of the math γ over q is the set of all the formulas that occur

on the edges of the sub p-document γ(q) of P̂ “covered” by
q after applying γ.

Let us start with a straightforward result about the link
between the only-if and for-all semantics of insertions when
they are used on a very limited query language.

Lemma 4. For insertions with descendant-free RSP con-
ditions, only-if and for-all semantics coincide for p-documents
of any considered type.

Only-if insertions. We now investigate the complexity of
only-if insertions. The following result is somewhat involved
and shows that models with local dependencies behave nicely
with respect to simple only-if insertions.

Theorem 5. For RSP insertions under only-if semantics,
both PrXMLexp and PrXMLmux,det are linearly closed. If con-
ditions are in SP and descendant-free, both classes are tractably
closed.

Proof. If qn,t is an RSP insertion and there is a naive

match γ of q in P̂ ∈ PrXMLmux,det ∪ PrXMLexp, then one
inserts t under γ(n) and iterates the insertion for all such
γ that are distinct in n. The resulting p-document is the

update oi(qn,t, P̂) and it has linear size wrt P̂ since there

are only linearly many naive matches of q in P̂.

Let qn,t be a descendant-free SP insertion and P̂ be in
PrXMLmux,det (the generalization to PrXMLexp is straightfor-

ward). Without loss of generality, assume P̂ has at most

two children for every mux node (any P̂ can be transformed
in such a form in polynomial time). Let V be the set of

all nodes v of P̂ such that there is a naive matches γ with
γ(n) = v. Intuitively, V contains the nodes where the inser-
tion can take place.

For every v ∈ V , the insertion qn,t should add t as a child

of v, but only in some of the possible worlds of P̂ . For v ∈ V ,

let P̂v be a p-subdocument of P̂ rooted at v, and γ1, . . . , γm
the set of all naive matches of q in P̂ such that γi(n) = v
for every 1 6 i 6 m. Then the worlds d where qn,t should
bring t under v are exactly those where (at least) one of the
γi’s matches d.

In order to describe the resulting px-space with a p-document

P̂ ′, we process v by (i) inserting a mux node v′ under it, and

then (ii) rooting n p-documents P̂v1 , · · · , P̂
v
m under v′, one

per match γi. Every P̂vi is a modification of P̂v where (a)

γi is certain and (b) the P̂vi ’s define disjoint px-spaces. We
describe further this construction below.

(a) Let γvi be the restriction of γi to the nodes of P̂v,

and v1, · · · , vki be the nodes of P̂v, that are in the image of
γvi (q) and all have mux parents. Let v′j be the parent of vj for
j = 1, . . . , ki. Then we replace each of these mux nodes v′j by
vj and drop the (possible) second child of v′j . The resulting

p-document P̂ ′iv represents documents that contain γvi (q),

that is, γvi is certain in it. We set the probability p′vi of P̂ ′iv
as the product of the probabilities of all choices performed.

(b) Now we modify every P̂ ′iv in order to make them dis-

joint. We do this by obstructing in every P̂ ′iv all mappings
γv1 , · · · , γ

v
i−1; the resulting, obstructed, p-documents is de-

noted by P̂iv. The obstruction works as follows. To obstruct

Only-if PrXML Model
insertions mux,det exp cie fie

RSP L L L L

SP P∗ P∗ #P-hard L

TP ? ? #P-hard P

TPJ #P-hard #P-hard #P-hard P

Table 1: Tractable closure under deterministic only-
if insertions. L stands for linear and P for polynomial.
∗ for descendant-free SP only.

a mapping γvj in P̂ ′iv , for some j 6 i, we look for the mux

node v′′ in P̂ ′vi covered by γvj that is the most remote from

root(P̂ ′vi ), and we choose the child of v′′ that is not covered
by γvj with the probability qj defined by v′′. Then we con-
nect the chosen node to its lowest surviving ancestor and

delete from P̂ ′vi the mux node v′′ and its child that was not

chosen together with all its descendants. Obstructing in P̂ ′iv
all the mappings γv1 , . . . , γ

v
i−1 results in P̂iv and its proba-

bility is pvi = p′vi ·
∏i−1

j=1
pj . It is easy to see that the P̂iv’s

define disjoint px-spaces and P̂1
v = P̂ ′1v . In some cases it

might be impossible to obstruct a mapping γj in P̂ ′vi . This

means that we cannot make P̂ ′vi to be disjoint from P̂ ′vj ,

which happens if JP̂ ′vi K ⊆ JP̂ ′vj K. Let P̂vi1 , · · · , P̂
v
ik

be all the

obstructions from P̂ ′v1 , . . . , P̂
v
m. Then we root them under

v′ and the probability of the edge going to P̂vij is pvij , with

the resulting document denoted as P̂ ′.
One should also take into account the case when there is

no valuation of q in some of JP̂K, that is, when the proba-

bility of the query is not 1. To do so, one obstructs in P̂ all

naive matches of q in P̂ (let the probability of the obstruc-
tion be p), and roots the resulting p-document together with

P̂ ′ under a common mux node, with the probability p on the
edge to the former p-document and 1− p to the latter.

We thus obtain a p-document that is by construction iso-

morphic to oi(qn,t, P̂). The fact the query is SP is critical for
the construction of the obstructions to be polynomial.

We complete the picture for only-if insertions with the fol-
lowing result, obtaining this way the summary of Table 1.
Note that the case of TP queries and SP queries with descen-
dant edges remains open for PrXMLmux,det and PrXMLexp.

Proposition 6. For the only-if semantics of insertions,
1. the class PrXMLcie is tractably closed under RSP and

the closure is linear;
2. SP insertions are #P-hard for PrXMLcie, while TPJ in-

sertions are #P-hard for PrXMLmux,det and PrXMLexp;
3. the class PrXMLfie is tractably closed under RSP, SP,

TP and TPJ and the closure is linear for RSP and SP.

Proof.

1. Analogous to the case of RSP updates in Theorem 5.

2. By reduction from the computation of the probability
that a Boolean SP query matches a PrXMLcie document,
which is #P-hard [12], as is that of a Boolean TPJ query
matching a PrXMLmux,det document [1].

Let qn,t be an update, where q is a SP query, n is the root
of q and t is a single-node document v 6∈ nodes(q). Then for



For-all PrXML Model
insertions mux,det exp cie fie

RSP L/P L/P L/P L/P

SP not in PSPACE [2] L/P L/P

TP not in PSPACE P P

TPJ not in PSPACE, #P-hard P [2] P

Table 2: Tractable closure under deterministic for-
all insertions. L stands for linear and P for polyno-
mial. L/P means linear for descendant-free queries,
polynomial otherwise.

any cie document P̂, the p-document P̂ ′ = oi(qn,v , P̂) that
represents the update should have some (possible none) cie
nodes under its root, to which v is rooted (since n = root(q))
and the conjunctions of events that label edges going to v

are all disjoint (since any d ∈ JP̂ ′K has at most one v con-
nected to its root). Due to this disjointness and the fact that
we can compute in polynomial time the probability that a
given node occurs in a world of a cie p-document (just com-
pute the probability of the conjunctions of events on the
way to the root), we can also compute in polynomial time

the probability p that the label v occurs in a world of P̂ ′.

Since p is the same as the probability that q matches P̂ , its
computation is a #P-complete problem. Hence, polynomial

construction of P̂ ′ implies #P-hardness of the update.
The case of TPJ queries and PrXMLmux,det (or PrXMLexp)

is even simpler, since the probability of TP queries can be
computed in polynomial time in such models [12].

3. Let qn,t be an SP update. If there is a naive match γ of

q in P̂ ∈ PrXMLfie, then let Γ be the set of all γ′ such that
γ′(n) = γ(n). If ϕγ is the conjunction of all the conditions of
the match γ(q), then one inserts a fie node v under γ(n) and
roots t under v. The formula that labels the edge from v to t
is ∨γ∈Γϕγ . One iterates the insertion for all such γ that are

distinct in n. The number of nodes inserted in P̂ is at most
(|t| + 1) · |nodes(P̂)|, and the number of formulas occurring

under introduced cie nodes is at most |formulas(P̂)|. Hence,

the construction of oi(qn,t, P̂) is linear.
For the classes TP and TPJ the proof is similar to the

case of SP and the case of RSP is subsumed by SP. For TP

and TPJ the updated p-document oi(qn,t, P̂) is not linear
due to the fact that in some cases the number of formulas
occurring under introduced cie nodes can be quadratic in

|formulas(P̂)|.

For-all insertions. We now consider the tractability of for-
all insertions, for which some of the results come from [2],
and some are novel, as shown on Table 2.

Proposition 7. For the for-all semantics of insertions,
1. the classes PrXMLmux,det and PrXMLexp are tractably

closed under RSP, moreover the closure is linear for
descendant-free locator queries;

2. TPJ insertions are #P-hard for the classes PrXMLmux,det

and PrXMLexp;
3. the classes PrXMLcie and PrXMLfie are tractably closed

under RSP and SP, TP and TPJ, and the closure is lin-
ear for RSP and SP with descendant-free locator queries.

Deletions PrXML Model
mux,det exp cie fie

RSP L L L L

SP P∗ P∗ #P-hard L

TP ? ? #P-hard P

TPJ #P-hard #P-hard #P-hard P

Table 3: Tractable closure under deterministic dele-
tions. L stands for linear and P for polynomial. ∗ for
descendant-free SP only.

Proof.

1. Straightforward. The linear bound holds due to Proposi-
tion 4 and Theorem 5.

2. Let P̂ be a p-document and q be a TPJ query. Let a

be a label that does not occur in either P̂ or q. Let qn,t be
an update such that n is the root of q and t is a tree with
a single node labeled a. If we can compute the insertion

P̂ ′′ ∼ fa(qn,t, P̂) in P, then we can also compute the prob-
ability that a is in P ′ in P [11]. But this probability is the

probability that the TPJ query q matches P̂ . Computation
of the probability that a TPJ query matches a p-document
is #P-hard [1], hence the statement is proved.

3. For PrXMLcie and SP the proof can be based on the
same techniques as in Case 3 of Proposition 6. In short,
one inserts a new cie node v under γ(n) for every distinct
γ′ ∈ Γ and roots γ′(t) under v. The formula marking the
edges from v to root(γ′(t)) is ϕγ′ . Again linearity follows
from the fact that there are linearly many naive matches of
SP descendant-free queries in p-documents.

For PrXMLcie and TP, TPJ the proof is analogous to the
one for SP. The linearity is lost because the number of val-
uations is polynomial and the number of introduced events
is quadratic.

For PrXMLfie the proof is the same as for PrXMLcie.

Deletions. We now study the complexity of deleting nodes
defined by a locator query. The results of the following
proposition are summarized in Table 3 and are exactly the
same as for only-if insertions. The tractability of deletions
in local models is still open for SP with descendant edges
and TP queries.

Proposition 8.
1. PrXMLmux,det, PrXMLexp, PrXMLcie, and PrXMLfie are

tractably closed under RSP deletions and the closure is
linear.

2. PrXMLmux,det and PrXMLexp are tractably closed under
descendant-free SP deletions.

3. TPJ deletions are #P-hard for the classes PrXMLmux,det,
PrXMLexp.

4. SP deletions are #P-hard for PrXMLcie.
5. PrXMLfie is tractably closed under SP, TP and TPJ

deletions and SP deletions are linear.

Proof.

1, 2. The proof is analogous to the one for the first part of
Theorem 5.

3. Let P̂ be a p-document in PrXMLmux,det and q be a TPJ

query. Let a and b be labels that occur neither in P̂ nor in q.



rP̂ :

b

cie

a · · · a

ψ1 ψn

rqn:

b

a

Figure 5: #P-hardness of SP deletions for PrXMLcie.

Then one can construct in constant time (i) a p-document

P̂ ′ from P̂ by adding a child labeled a to the root of P̂ and a
child labeled b to a, and (ii) an update q′n by adding a child
labeled a to the root of q and a child n labeled b to a. If we

can compute the deletion P̂ ′′ = del(q′n, P̂ ′) in polynomial
time, then we can also compute the probability p that a is
a leaf of P ′ in polynomial time due to the results of [11].
At the same time p is the probability that the TPJ query q

matches P̂ , which is a #P-hard problem.

4. #P-hardness can be shown by reduction from #DNF,
using the p-document and update in Figure 5, where n is
labeled with b.

5. Let qn be an update and P̂ be a p-document in PrXMLfie.

For a naive match γ of q in P̂ , one constructs Γ as in the
proof of Case 3 in Proposition 6. Assume that v is the parent

of γ(n) in P̂ . Then one modifies P̂ as follows: one deletes

the edge between v and γ(n) in P̂ and introduces a new fie
node as a child of v and the parent of γ(n). The formula
that labels the edge to γ(n) is ¬

∨
γ′∈Γ

ϕγ′ , where ϕγ′ is

the formulas in the formula set of γ′. If one iterates the
modification over all γ that are different in n, one obtains a

p-document P̂ ′. It is easy to see that P̂ ′ = del(qn, P̂).

If q is in RSP or SP then P̂ ′ has size linear in P̂ , since
there are only linearly many naive matches γ and the overall

size of all the formulas introduced into P̂ ′ is also linear in
|events(P̂)|. This proves that the closure is linear for RSP

and SP.
If q is in TP or TPJ then the overall size of all the for-

mulas introduced into P̂ ′ is in the worst case quadratic in

|events(P̂)|. This proves that the closure is tractable for TP

and TPJ.

6. PROBABILISTIC UPDATES
We now discuss a probabilistic variant of updates. An

example is, for example, “with a confidence 1/3, make a
bulk insertion of a bonus equal to 5 for every professor only
if her team is in some EU project.” Probabilistic updates
are also important because they can be seen as a way to
obtain probabilistic documents from regular documents.

A probabilistic update is a pair (qn,t, p), which we also
denote qn,t,p, where qn,t is an update and p ∈ (0, 1] is a
rational number, called the confidence in the update. In-
tuitively, the confidence defines the probability the update
operation is carried out.

Let qn,t,p be a variable-free probabilistic update and d be
a document. The probabilistic only-if insertion oi(qn,t,p, d)

in d by qn,t,p is the px-space {(d′, p), (d, 1− p)}, where d′ =
oi(qn,t, d). If there is no valuation of q in d, then oi(qn,t,p, d) =
{(d, 1)}.

The semantics of probabilistic fa-insertions is defined sim-
ilarly to probabilistic oi-insertions, that is, fa(qn,t,p, d) :=
{(d′, p), (d, 1− p)}, with the difference that d′ = fa(qn,t, d).

We now extend the definition of probabilistic updates to
px-spaces. Let qn,t,p be a probabilistic update and S be a
px-space. Then the probabilistic for-all insertion fa(qn,t,p,S)
in S = {(di,Pr(di)) | i = 1, . . . , n} by qn,t,p is the px-space:

{(d′,Pr
′(d′)) | d′ ∈ S or d′ = fa(qn,t, d), for (d,Pr(d)) ∈ S ,

and Pr
′(d′) = p×

∑

d∈S

fa(qn,t,d)∼d′

Pr(d) + (1− p)×
∑

d∈S

d∼d′

Pr(d)}. (2)

The only-if insertions oi(qn,t,p,S) are defined for updates
qn,t,p with variable-free q and analogous to fa(qn,t,p,S) with
the difference that fa should occur in (2) instead of oi . Fi-

nally, we define updates for p-documents fa(qn,t,p, P̂) =

fa(qn,t,p, JP̂K) and oi(qn,t,p, P̂) = oi(qn,t,p, JP̂K).
The syntax and semantics of probabilistic deletions are

defined similarly. Note that there is a crucial difference be-
tween deterministic and probabilistic updates of a px-space
S . The former never increase the cardinality of the resulting
space S ′, that is |S ′| 6 |S|, because S ′ consists of the up-
dated versions d′ of all documents d ∈ S . The latter never
decrease the cardinality of the resulting space S ′, that is
|S| 6 |S ′|, because the resulting space consists of both: all
the documents of S and the updated documents d′ for every
document d ∈ S .

We extend the definitions of closure and tractable closure
from deterministic to probabilistic updates in a natural way.
In terms of tractable closure, probabilistic updates affects
all classes of p-documents in the same way as deterministic.

Proposition 9. Let Q be one of RSP, SP, TP, or TPJ,
and D one of PrXMLmux,det, PrXMLexp, PrXMLcie or PrXMLfie.

1. If for all conditions from Q, the class D is tractably
closed under deterministic insertions or deletions, for
only-if or for-all semantics, then the same is true for D
under probabilistic insertions or deletions, respectively,
for that semantics.

2. For D, hardness of closure under Q only-if (for-all) de-
terministic insertions or deletions implies hardness for
probabilistic Q only-if (for-all) insertions or deletions,
respectively.

Proof. (Sketch) We give an intuition of the proof for
probabilistic oi-insertions. For other updates the proof is

analogous. If we can compute P̂ ′ = oi(qn,t, P̂) in linear time,

then we construct a p-document P̂ ′′ that “gathers” both P̂

and P̂ ′ under a common mux root (or the analogue in the

other p-document families) with an edge to P̂ ′ labeled by p,

and to P̂ labeled by 1 − p. The constructed P̂ ′′ is exactly

oi(qn,t,d, P̂) and is of linear size in |P̂|.

7. UPDATING CONTINUOUS PROB. XML
Many applications of probabilistic databases require the

possibility of representing continuous probability distribu-
tions. For example, imprecision on the measurement of a
sensor may be modeled by a normal distribution centered at
the measured value, and a totally unknown value between



0 and 1 by a uniform distribution. We have introduced
in [1] the semantics for another kind of distributional node,
cont, that can be used to specify that a leaf of the tree fol-
lows a continuous distribution of a given type (Gaussian,
uniform, Poisson, etc.), independently of the distribution of
other leaves. In this section, we briefly discuss the compli-
cations that arise when updating continuous p-documents.

Consider the very simple p-document P̂ ∈ PrXMLcont that
consists of a root with two ordinary children, labeled a and
b, each of them having an identical continuous child hav-
ing uniform distribution between 0 and 1. First, note that
the query languages that were defined in Section 2 are not
really meaningful in the context of continuous probabilistic
documents: the probability of any query imposing a condi-
tion on the value of the continuous leaves, or the probability
of a value-based join, is 0 since the probability to pick any
given constant at random is typically 0. More interesting
query languages for continuous data involve range queries.
Consider for instance the Boolean (tree-pattern-with-join)
range query Q: “Is there an a node whose child has value
greater than that of a b node?”, and the only-if insertion
i that adds a node labeled by c as child of the root if Q
matches. The semantics of Q is quite clear, and one can

compute the probability that Q matches P̂ , which is 1
2
. On

the other hand, it is possible to show that there is no p-

document P̂ ′ of PrXMLcont,cie that represents the result of

applying i to P̂. Intuitively, this is because in the result doc-
ument the continuous distributions under a and b nodes are
correlated. It is therefore necessary to have a syntax and
semantics for correlated continuous distributions (perhaps
as an algebra over independent continuous variables) to rep-
resent the result of an update over continuous probabilistic
documents.

8. CONCLUSION
We have discussed the tractability of updates in a variety

of probabilistic XML models. The situation is a bit more
complex than the one presented in [2]: if it is true that mod-
els with arbitrary dependencies (cie, fie) can usually express
the result of an update more concisely than local models,
at the cost of higher complexity of queries, there are cases
(only-if descendant-free SP insertions and deletions) where
it is possible to efficiently apply an update to local models
and not to a cie document. There are a couple of open is-
sues with respect to the tractability of only-if insertions and
deletions. More importantly, an interesting question is the
possibility of applying a sequence of updates in a more effi-
cient way than with the exponential algorithm that is given
by the simple iteration of the algorithms for elementary up-
dates. Finally, the results of this paper can be extended
to insertions of probabilistic documents, either given as con-
stant or obtained as part of the query match.
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