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Abstract

The situation of time consuming computer experiments isictamned, where the output is deterministic and the datargéng
function is of high complexity. In such situations the urdieig functions often are non additive but at the same tinae,afl
interactions are active. Hence neither a model considetdingteractions as well as an additive model is adequatea #aution
a modified Kriging model is proposed, which reflects the ext&pn structure inherent to the data generating mechariins
is achieved by exploring the interaction structure of thgpotibased on FANOVA methods. For illustrating the intei@act
structure, a graph is developed which summaries the striofithe output generating function in additive parts. Fjnanodified
covariance kernels are defined, which allow for a more peatisdeling of simulation output.

Keywords. Sensitivity Analysis, Computer Experiment, FunctionatBeposition, Graph, Kriging

1 Introduction

For many phenomena there exist time consuming simulatiotefsavhich are capable of predicting the output of real world
experiments very precisely and are thus used as a replatéanesal experiments. These simulation models are oftégrden-
istic such that repetitions and randomization are not gpjmte for designing simulation experiments. Working vétimulation
models one often has to deal with the constraint that duertgpatation time only very limited runs of the simulation avaié
able. Hence conducting simulation experiments requirefalplaning which simulation runs should be realized. Asnmally
not all combinations of input variables of interest are klde, fast models for predicting the simulation outputratried design
points are desirable. The standard model in this situatidfriging, see e.g/[15] and][7], which is capable of modehighly
complex data and also can be used as interpolation method.

As a motivation for constructing a Kriging prediction moaeinsider the so called Ishigami function, which is a popular
function for illustrating sensitivity analysis, see el@i3[:

f(x) = sin(x1) + Asin?(x) + Bx3sin(x;) 1)

with x € [—m, 13 andA = 7,B = 0.1. The Ishigami function is often chosen as it has a high cerifyl including relevant
interaction terms. Assuming that the function is unknowd ae have observed 100 runs of the function, the aim is to ooctst



a prediction model for the unknown function. One popularichas Kriging, also called Gaussian process modeling, whic
assumes that the observations are drawn from a gaussiaondiedd:

Y(X) = H+Z(x), 2)

with Z(x) being a Gaussian process. The prediction function is theandhditional mean given the observation. A key part about
Kriging is the covariance dZ(x). A standard approach is to assume a stationary, anisostpicture:

d
cov(Z(xV),Z(x?))) = a? M gk(xff) — xl((z); 6k), ©)
k=1

where® is a correlation parameter (-vector). The functip(h; 6) is a one-dimensional correlation function only depending o
thek-th input variable. The parametgiso, 6 have to be estimated from the sample. Implicitly this camace structure assumes
that all possible interactions are (at least at a very smalk$ active. However, in case of the Ishigami function, Wwsesve, that
there is a special structure of the function. It is neithengemdditive model nor it is a function, where all interansare active.
Hence modifying the covariance structure up to this spestialcture might yield a better fit to the data. Therefore wsiase
the following covariance structure:

cov(Z(xY),z(x?)) =0 [] o(x —%: 60+ 085(6" — X7 6s). (@)
ke{1,3}

Assuming this covariance structure, again all paramet@nsbe estimated and predictions can be made. Fitting bottelsiod
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Figure 1: Prediction plots for the Ishigami function. On tbft hand plot the result for a standard Kriging model is given the
right hand side the result for Kriging model with modified eoance function.

(with pg(.) being a Matern B2 correlation function) to the same 100 observations, ptidiis are made for 1000 additional
observations. The predictions can be compared with thedibservations. In figurigl 1 the prediction power of both moékels
compared, with the result that the modified model greatlyrougs the fit. Hence it looks attractive to try to fit modelshatt
data, which are more sensitive to the data than for examghelatd Kriging models. Two major tools for doing so are ugdte
functional decomposition introduced for example byl [164 6] and considered in a stochastic framework for examplfQby
and mathematical graphs.

The article is structured as follows: First theory aboutclional decompositions, graphs and Kriging is revised. nThe
estimation issues are addressed in section 3. The modifigihgfrmodels are applied in section 4 and a discussion about
advantages, disadvantages and applications to areastbémeprediction is done in section 5. An outline is conclgdihe
article.

2 Theory

The aim of this section is to introduce new Kriging modelsittftom a relevant combination of kerne[s{R2.3). Such conattions
are based on the cliques of “FANOVA-graphs”, introduceld.id & which vertices represent variables and edges camnesip
the presence of (any order) interactions. The first sulmeirecalling the main concept of the FANOVA decomposition



2.1 Functional ANOVA

Consider a continuous function: A — R, f € Ly(A,R) with A= A3 x ..., xAq. Let X be a random vector over the domain
with integration measurév. We assume thafy, ..., Xy are independent, i.e. thdt = dv; ...dvy. Consider a function f such
that the random variablg(X) is square integrable. Then we have the so-called FunctiaN&VA (FANOVA) decomposition

(seel[6] or[16]):

d
f(X) = to+ Z\M(Xi)Jr zkﬂjk(xjvxk)JF ik (Xj, X, X) + -+ 4tz d (Xa, X, - Xq). (5)
i= j< j<k<«l
where each term is centered and orthogonal:
E(k(Xs)) =0 ©6)
VI #£ 35 E((X0)Hy (Xy)) =0 (7)

In the equations above, we have used the usual index seiomotRor instance witd = {1, 2}, X; meangXy, Xz), andpy means
H1.2.

The functions H1(X1),- .., Hd(Xd) can be interpreted as main effects,
and the termsgi; k(Xj, %), j < k as twofold interactions. This functional decomposition t& uniquely obtained by recursive
integration:

Ho = E(f(X)), (8)
Hi(%) = E(f(X) X« = %) — Ho, 9)
Hik(Xj; %) = E(FX)X) = X5, X = %) — Hj(X)) — H(X) — Ho (10)
and more generally:
Ha(x0) = E(F(X)[Xs =x)) —JZ Hy (Xy)- (11)

Based on the FANOVA decomposition, sensitivity indices t@ndefined and are interpreted in an analogue manner as for
standard ANOVA[[16]. The overall variance of the functiomgigen by:

D = var (f(X)) = E(f(X)?) — 1. (12)
Now for each terny; a similar variance can be obtained:
Dy = var(Hi(Xy))- (13)
As for standard Least squares ANOVA a variance decompaditidds:

d
D= D.. (14)
k;p =k

Hence it makes sense to norm the sensitivity indices to

S D

(15)
The sensitivity indice§; are an attractive tool for investigating a functibas they do not require limiting assumptions. Although
they are difficult to calculate analytically, they can beccédted numericallyi [13].

2.2 FANOVA graphs

Graphs are used in a wide range of mathematical fields andes@ibed for example i [3]. In statistics graphs are used in
different contexts, e.g. for variable selectibh [1] andrfardeling dependence structure of random vectars [5]. A& (V,E)
is a finite set of vertice¥ and a set of edges combining the vertice¥ inThe elements iV are indexed by = {1,...,d} and
E is a set of pairs of vertices from, which specify the edges of the graph. A concept regardiaglgg which is used in the
following is the clique. A cliqueC is a subgraph o& which is complete and which looses the completeness if @netrtex is
added taC. This can be illustrated using figurke 2. For the left hand gxerthere are two cliqueB; = {1,2,3},C, = {4,5,6},
whereas for the right hand example there are three clig@gs: {1,2,3},C, = {4,5,6},C3 = {3,4}. For example, for both
graphs, the subgraph defined by the set of vertj&e8} is not a clique, since it is possible to obtain a larger cotepdebgraph
by adding vertex 4. As we only consider undirected graphsjusestate(j,k), j < k in the set of edges instead ©ff, k) and
(k.J).

The intention for the following analysis is, that in genetere are 2— 1 terms in the functional decomposition. Even for
medium values ofl, e.g. d = 5, this is a huge amount of data. Therefore most articles dISmdices only consider main
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Figure 2: Example of two graphs with= {1,...,6}.

effects. Here a methodology is suggested, which reduceshiststill gives good insight in the interaction structufetee
function f by using graphs.

The set of vertice¥ is set to be{1,...,d}, such that each vertex represents one input variables. d$ie idea is that two
vertices / input variableg k are connected in the graghif there is any term index sétwhich includesj,k with p;(x;) # 0.
More precisely:

Definition 1. (FANOVA graph)

(j.K) € E & 3us(x)) 20 with {j,k} €J,j £k (16)

and vice versa
(j,k) € E < V3 with {j,k} €J itholds that uy(x;) = 0. a7)

Definition 1 is equivalent to stating that an edgek) is not part of the graph iff for all Sobol indice% with (j,k) C J it
holds: S; = 0. Hence the graph illustrates the parts of the funcfievhich are purely additive. If a graph with cliqu€s, . ..,C_
holds for functionf then the functiorf is additive in the cliques.

Using the information of the graph the functional decompasibecomes

L
f(x) = , 18
(X) = o+ |; Yo (Xg) (18)

with
e (X)) == IC% (%) (19)

This can be simplified when inserting directly the conditibexpectations:

L
fx) =S E(f(X)Xg =Xg)- 20
() I; (FX)Xe =xc) (20)

Remark and assumption.In general, the equalitiés118 and 20 hold onhalmost surely. Nevertheless, it is well known in
measure theory that for continuous functions, almost sgueléies are true equalities in the supporvofThus[I8 an@ 20 will
hold forall xin Aif f isa continuous function and the support of v isequal to A (since the continuity of implies the continuity
of the i, ’s). Obviously, such an assumption is not restrictive foisbgractical applications, and we will consider it from now
on.



Note that under this hypothesis, the FANOVA graph will nopeled onv since® is also a true equality on the supporepénd
thus onA (second part of our assumption). In particular the fact tmatyt; is identically zero then depends entirely on the form
of the functionf and not on the integration measure.

2.3 Building Kriging models from FANOVA graphs

The information contained in the graph can be used to cortstitwation specific covariance functions for a Kriging rabdn
the context of computer experiments, Kriging is a standaadi to predict expensive to evaluate functions at untrieditions
(see e.g.[I15]/17]). For Kriging, the assumed model is:

p
Y = 3 Befe(0) +Z(x) (21)
k=1

wherey?_, Bcfk(x) represents the trend value at locatioandZ(.) is a centered Gaussian process with covariance function, or
kernelK. We assume tha(.) is stationary, which implies th& depends only on the difference between two locations, awsl th
can be written a& (x*,x?) = k(x* — x?) with k(.) = 0?R(.; 8), whereo? is the process variancRthe correlation function and
6 a vector of parameters.

A reason for the success of Kriging is that it interpolatesdhata, which is desired for deterministic simulators, ahe to
its probabilistic nature, also gives a measure of ignorataeknown points. In this paper, we will focus on the intéapar,
given by:

p
Y) =Y Bef(x) +k(x)K "y —FB) (22)
k=1

wherex is a new point at which to predicK is the covariance matrix at data(x) the covariance vector between data and
andF the design matrix containing the trend values at data pointgractice, the parametef, 02 and 6 are estimated and
plugged in equatiol (22).

The functionf considered above is understood as a realization of the Gayz®ces¥ (.). As we see in[(21), the departure
from the trend relies on the kernlkel Therefore, it is of primary importance to specify it progerdn computer experiments,
kernels are often obtained as tensor products of 1-dimeaki@rnels:

d
k(h) = 02 % 23
(h) Gﬂlgk(kek) (23)

Famous 1-dimensional covariance functions are the Gaussia,g(h; 6) = exp(f%) and the Matérn &2 one :g(h; 0) =

(1+ @ + 35,—22) exp(f@). Their differentiability properties are directly linked the smoothness of the sample functions

of Z (in mean square sense): existence of derivatives at any wiitle the Gaussian covariance, existence of second order
derivatives with Matérn &2. In practice, the Matérn /2 choice may correspond to more realistic assumption$,and is
sometimes recommendéd[17].

Now in our framework, we can specify kernels to take advamtd#ghe additional knowledge given by the FANOVA decom-
position. Assume that a graj@y , is given, with clique<y,...,C.. Then, Equatior{18) leads to consider the following model
for Z(.):

L
200 = 3 7,4 (24)
=1

where theZc, (.) are independent centered Gaussian stationary processes.
Hence, equation 24 implies an additive clique decompasftothe kernel ofZ,

L

cov(Z(x}),Z(x?)) = ZCOV(ZQ (% ),Z0, (6Z) (25)

which leads to consider kernels of the form .
k(h) = qu (hg) (26)
|=

where eaclk, is a kernel defined on the subset of input variables given bycligueC;. Even if it can make sense in some
context, we will assume a common type for all these kernelsiistance Matérn 2).

3 Estimation methodology

We now give some insights how to achieve the data-driventoaetgon of Kriging models based on FANOVA graphs in pragtic
(sedZP and 2 3). The two different estimation problemtinjasing the graph and the new Kriging models) are first askid
separately, for a general function (Sectibng 3.1[and 3.i2gllly the global estimation procedure is explained in theecof an
expensive-to-evaluate function (Sectionl 3.3).



3.1 Graph estimation

As it is seldom the case that the Sobol’ indices can be cadkaianalytically they have to be calculated numericallywigeer,
based on Monte Carlo methods it is very demanding to cakalhSobol’ indices and is therefore not applicable forreating
the graph of a functiori. Hence another method is applied here that basically chesdisivity of a two dimensional projection
of the function.

Recall fron{ 2.2 thaf is assumed to be a continuous function on a domagqual to the support of the integration measure
v. This is to guarantee that the equalities below will holdrgwhere orA and not only almost surely. Now, for amy ; ), we
consider the function of the two variabbesandxy,

B 1 (X1 — F(X). 27)

It's FANOVA decomposition can be written as (with analogoosation as ifb):
fxf(j,k) (XJ Xi) = IJO;Xf(j‘k) + IJj;X,“-'k) (XJ) + I-lk;x,“-,k) (%) + I‘ljkixf(j.k) (XJ %) (28)

This decomposition of course depends on the valygy), but nevertheless a qualitative statement can be made tigostruc-
ture of the functional decomposition:

Proposition 1
For the functional decomposition of equati¢nl(28) it holdsttthe edgéj, k) is inactive if and only if for allx_; y), fxf(j,k) is

additive, i.e.Ujix_; , (X}, %) = 0.
Proof. Without loss of generality, let us specify= 1 andk = 2. Remark that equatiof (28) can be rewritten under the form:

fug,.xg (X1, %2) = fo(X3, ..., %) + f1(X1, X3, ..., Xq) + f2(X2, X3, ..., Xq) + f1.2(X1, X2, X3, ..., Xq)

where, by definitionfy, . x,(X1,X2) = f(X1,...,Xq). Thusfy, _ , is additive for allxs, ...,Xq if and only if there is no term de-
pending both orx; andx; in f, which is equivalent to say thét, 2) is inactive in the graphl

Hence it makes sense to use the interaction term of the tme+tsional projections as an indicator wether or not to ohelan
edge into the graph. As a measure of importance, the un-ieedé&obol index of the interaction term of the two-dimemsil
projection is used:

Djk(X_(jx) = var (ujk;xf(j‘k) (X}, %)) (29)

This Sobol index is a function of_j \. In order to have a measure for assessing if an edge is actiggrateD i (X_j i) W.r.t
X (K-
= (1K)

Definition 2

Djk:=EDjk(X_(jx))- (30)

Obviously®; x > 0. For the index® « the following proposition holds:

Proposition 2
Given functionf with corresponding grapB+ v, it holds that

@j,k>0<:>(j,k)EE. (32)

Proof. This result is a direct consequence of Propositian 1

Example 1 For the Ishigami function with independent integration measure, Uy 2x, = H2.3x, = 0, and g 3x,(X1,X3) = B(xg —
E(X3))(sin(x1) — E(sin(X1))). Thus, D12 = D3 = 0, while D4 3 = B?var (X3)var (sin(X;)). Remark that these indices are the
same as the usual (un-normalized) 2nd order Sobol indices. Thisis because the Ishigami function involves only 2nd order (non
linear) interactions.

Example 2 Now consider the function g(xa, . .., Xq) = X1X2X3, again with independent integration measure and withd > 3. Itis
easy to seethat D = 0if j > 3or k> 3. Consider j = 1and k= 2. Wehave Ly 2x_, , (X1,X2) = (X1 — E(X1)) (X2 — E(X2))Xs.
Thus, D12, , = var (Xg)var (X2)x4, which depends on xs. Finally, D1 » = var (X1)var (X2)E(X2). D13 and D 3 are computed
in the same way. These results are different from the usual 2nd order Sobol indices D1 »,D1 3 and D2 3, that are all null.



The idea of fixing variables in the FANOVA is close to the “ddiBMR expansion” (see e.gl_[13], chapter 9). Cut-HDMR is
equivalent to a FANOVA decomposition where the integratiweasure is a product of one-dimensional Dirac-measurdieln
above methodology, equatidn (B.1) is actually the FANOVAataposition obtained with integration measdred vy Ms¢{j.ky Ok

In a sense, it is thus intermediate between the usual FANGA®®hposition and cut-HDMR. With this approach, there attg on
(g) indices®  in contrast to 9 — 1 Sobol indices. If it would be possible to calculag analytically, the decision of includ-
ing the edge j,k) in the graph could be based on checking whefgg > 0. However, this is usually unrealistic. Therefore a
threshold need to be introduced and the decision rule isfieddinclude the edggj, k) into the graph, if

@j,k/f)> 5, (32)

where® | x andD are Monte Carlo estimates fBrand® | x. The threshold should be chosen small, e = 0.01.
Estimating the measur® jx based on Monte Carlo methods is done in the following waye uniform random numbers

of X_jx) are drawn. For each of the resulting poingk), . ,x(f(lj)k), the functionfx% . (Xj,X) is decomposed according to

equation[(ZB) and the Sobol indﬁ)qk(xg)(jlk)) is calculated. As this is just a two-dimensional functidme tnteraction term
can be calculated from just knowing the Sobol main effect tiedtotal effect for one of the two parameters. Hence efficien
methods like the Extended Fourier Amplitude SensitivitgtTgl4], implemented in the-packagesensitivity) can be used

for estimatingjjk(x@(j k>). Finally the estimate foD j is

éjk: — Ijjk(xi)j,k))- (33)

Although applying Monte Carlo methods can be time-consugptims approach only requirs@) Monte Carlo estimates in
contrast to 9 — 1 for a conventional, complete Sobol decomposition.

Finally, note that the indice®; and®; x can be used to provide a quantitative information to the lyrafoweight is now
added to each edge, proportionally to the valu®gf, which indicates the strength of the interaction betweenviriables;
andxx. The same is done for the vertices (materialized by circled)cating the strength of main effects. Examples arergine
the next section.

3.2 Kriging model estimation

The estimation of Gaussian processes defined by equBkfiphé8been intensively studied when the kernel is a tensaiugto
of 1-dimensional kernels (ef.123), see e.g. [7]] [15]of [XQlir purpose is to give some insights about its adaptatideoels
associated to cliques defined by €.]1(26). First, even if ftehaencountered in practice, remark that estimation isahvaays
possible with such kernels. Indeed, as remarked by [4] fdit&e kernels, some special design configurations resuttoin-
invertible covariance matrices. To face this problem, haokernel can be added to the additive decomposition, diépgion
the whole vectoh:

L
k(h) = qu (he)) +ko(h) (34)
|=

In geostatistics (see e.d.][2]), a common choicekfgh) is 28 (h), wheret? is called a nugget effect, resulting in adding a
small positive number on the covariance matrix diagonabtAar choice, also common in geostatistics, is to choossaropic
kernel, e.g. a kernel defined by equation (gg. 23) with thesitamt: 6, = ... = 64. In practice, such problems are not often
encountered, because design points are usually chosemdainaand in our experience a small nugget effect is usuathyigh

to overcome the difficulty. Concerning estimation, we haveuted on the maximum likelihood estimation (MLE), sincis it
known to be a good competitor among other existing techisigueh as cross-validation. The likelihood expressiondalted

in appendix. Its optimization requires special care, dubémroblem dimensionality and the multimodalities obsdrwith few
data. Three procedures have been implemented: a sequaTgiak in[[7], a direct optimization, and a constrained ogtiion
performed after a change of variables. We refer to the appémda precise description. The first one is more time cornisgm
due to the sequentiality, and has not shown a clear supgri@m the examples presented below, the three algorithresdiaen
comparable results, where the fastest computation timeslieen achieved by the constrained optimization.

3.3 Global estimation procedure

In the setting of computer experiments there are normaltyemough runs for performing Monte Carlo estimates directly
the objective function. As a way out, a first standard Krigingdel is estimated. Then the FANOVA graph is estimated from
the Kriging interpolator, in replacement 6f as described in-3.1. This may be efficient, provided thatrthial Kriging model
has enough predictive power. In the following, the cliqueataposition of the graph is used to build a kernel structame, the
corresponding model is estimated as shown ih 3.2. The gfpmbakdure is illustrated in tadlé 1.



Step
1 For a data set with observatiopd),...,y™ x@ ... x™ fit a Kriging model
with anisotropic product kernel.

2 Use the standard Kriging model for estimatingAthe indidgg

3 Include the edgéj, k) into the set of edgesg;, if Dy is larger than a tolerance
0.

4 Use the standard Kriging model for estimating the Sobol neffiects.

5 Plot the graph using the information from steps 3 and 4.

6 Set up the modified Kriging model with the covariance kerpekified accord-

ing to the clique structure of the graph.

Table 1: The estimation procedure.

Function name| f(x) Design space
Ishigami sin(x1) +Asin?(xp) + Bxasin(x;) [, m®
a cos([1, X1, X2, %3] B) + Sin([1, X4, X5, Xs] Y) [-1,1]°
b COS([l,Xl,Xz,Xg]B)+Sin([1,)(4,X5,X6]y) [717 1]6
+ ([15)(37)(4]5)2

Table 2: Three analytical examples.

4 Applications to prediction

The design space for the following case studies was alwaedto bg—1,1]%. Furthermore the settings for the Kriging model
as described in section 2.3 and 3.2 are used with a unifoegriation measure over the design space. Three analytaal@gs
and two real data sets are considered. The quality of theqgtiedlis judged based on the root mean square eRBISE).

4.1 Analytical examples

The three analytical examples are shown in table 2. In figlitee3rue graphs for each function are plotted. The following
constants are choses = 7,B = 0.1 for the Ishigami function as in the introductory sectigh= [-0.8,-1.1,1.1, 1),y =
[-0.5,0.9,1,—1.1] andd = [0.5,0.35,—0.6]' for the second and third example.

Ishigami function Function a Function b

(8] (8] (2)

@ 6 6 ©
o o

Figure 3: True (unweighted) FANOVA graphs for the analyteseamples of tablg]2.

4.1.1 Ishigami function

The Ishigami function is revised here in order to demonstitst the process of estimating the graph works properlgratbre
the same setting as in the introduction is used. The starkiggihg model is used as a replacement for the true functiwh a
hence all Monte Carlo estimat@; «,D;,D are based on the standard Kriging model. The resulting gsagiown in figuré}.
Hered = 0.1 was used as a threshold. Figlle 4 shows that the graphrisagsti correctly. As a comparison, a standard plot for
the main effects and total effects based on Sobol indiceglatied on the right hand side. Although in this special ¢ag®uld

be possible to derive the interaction structure from thbtrigand side plot, this is not the case in general.
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Figure 4: Estimated graph (left hand plot) and Sobol indid¢ain effects and total effects, right hand plot) for thei¢gtmi
function

4.1.2 Functiona

The Functiona is chosen as an example as it has high interaction terms aimdemaction structure, which is not just visible
from the main/total effects plot. The graph is separabde,the function can be split up into two parts, which are nlateel to
each other. Here (as well as for Function100 runs from a Maximin Latin Hypercube are used for modgthre output and
additional 1000 runs from a uniform distribution over thesige space are used for comparing the different predictiombe
(estimated) graph in figufé 5 shows, that the interactiortketlique{4,5,6} are weaker than that ones for the cligue?2, 3}.
The prediction plots in figulgl 6 show that a big increase otigien is achieved with the modified Kriging model.

4.1.3 Functionb

Functionb has a close relationship to functiarbut is not separable. It is visible from the main/total effgulot in figure, that
there are differences between functmand functionb but it is unclear, what are the core differences with theratdgons of
functiona. In order to clarify the structure of functidnagain the procedure for estimating the graph is appliedchvigsults in
the left hand graph of figuféd 7. In figuré 8, the correspondiegliction plots are drawn. The modified Kriging model dels/a
much better prediction than the conventional Kriging model

Functionb can also be used for illustrating strategies for data wightdimensional input space. In such situations it often
occurs, that only some input variables have a high influendax@any others are of negligible influence. Consider e.gctamb
as a function with 16 input variables, where the first six in@riables are chosen as before, and the remaining tenvapables
have no influence. Just deleting these input variables iamaiption, as these input variables still might have a snfi@tein
reality. The corresponding graph has the same three cligsiéeforeC; = {1,2,3},C, = {4,5,6},C3 = {3,4}) but also ten
more cliques for the nonactive input variabl€g & {7},...,Ci3 = {16}). Defining the Kriging model according to this clique
structure yields a model with very many covariance pararagtehich dramatically increase computation times fomeating
the parameters as well as reduces prediction power. Amatige is to include all nonactive input variables into ofigue
with isotropic structure resulting in the cliqu€s = {1,2,3},C, = {4,5,6},C3 = {3,4},C4 = {7,...,16}, whereC, is modeled
as the isotropic clique. This decreases the number of Gvegiparameters from 31 to 13. Comparing three differentetsod
(standard Kriging approach, graph based and a graph baseel kdth summarizing unimportant variables into an isptco
clique) results figurgl9. Here 160 observations accordimghtaximin Latin Hypcercube have been used for modeling ai0® 10
additional runs for judging the prediction quality. Here thrediction plots for 1000 additional runs of all three misd&ow, that
the modified Kriging model with one isotropic clique for atbmactive input variables performs best with a RMSE of 0.2264
compared to 0.0436(modified Kriging model without isotmglique) and 0.2301 (standard Kriging model). At the same it
had a much smaller computation time for estimating the damae parameters than the modified Kriging model with 13uai)
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Figure 5: Estimated graph (left hand plot) and Sobol ind{t4asin effects and total effects, right hand plot) for Fuoota
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Figure 6: Prediction plots for Functi@a On the left hand side for a standard Kriging model, on thistiigaind side for a modified
Kriging model with covariance structure according to fighre
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Figure 7: The left hand graph is the estimated one for FundtidOn the right hand side Sobol indices (Main effects and total
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Figure 8: Prediction plots for Functidn On the left hand side for a standard Kriging model and onititeé hand side using the
modfied Kriging model.
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(290 seconds compared to 645 seconds.) Hence this can lageggtior working with high dimensional data situations.

Modified Kriging model Modified Kriging model
without isotropic clique including isotropic clique

Standard Kriging model

YKRCIACLY, 1)
YHRCIZC Lisal, 1]

— RMSE =0.2301 | —— RMS3E =0.0436 I — RMSE =0.0264

Figure 9: Prediction plots for Functidnincluding 10 inactive factors. On the left hand side for ad&ard Kriging model, in the
middle for a modified Kriging model without an isotropic alig and on the right hand a modified Kriging model including an
isotropic clique for inactive factors.

4.2 Case studies
4.2.1 Autoform

The first example is based on data from a case study for theghmtk analysis during sheet metal formihy [8]. The output
reflects the amount of spring back after sheet metal formifilge process has been simulated by the engineering software
Autoform, which simulates sheet metal forming. The inpuatapis 3-dimensional and there is%f@ll factorial design available

as learning data set and another 101 runs for validationgsep Applying the methodology for estimating the graphltesn a
graph with just on edggl, 3), which can be interpreted such that the second influencenedea just has additive influence. The
results for the RMSE and the graphical results show thaetisesin increase in precision of about 20%.

4.2.2 Piston slap data set

Piston slap is an unwanted noise of engines, which decreasssimer satisfaction. It can be simulated using finite efgm
methods and is analyzed inl [7], p. 153 ff. The piston slap casiimulated in dependence of 6 input parameters describing
details of the piston. I1[7] there are two data set consitlefesmaller one with 12 runs and a larger one with 100 runs. [7]
use the smaller one for fitting a meta model and the larger onguéiging the prediction precision. As the prediction fesu
based on the smaller data set is not satisfying we will fastiiation purposes uses the larger data set for fitting a haode
the smaller one for validating the prediction results. Tésuits of our analysis, which yield a complex interactioncure,
justifies this procedure as the function is too complex fodglimg it just based on 12 observations. The resulting gsijoiws a
rather complex interaction structure. Input variakydnas interactions with three other input variable whereasample input
variablexs, which has the highest main effect, is only interacting wighinput parametexs shows interesting behavior as it only
is active via interactions. Input varialg seems to be completely inactive, as it has no interactiodsaarery small estimate
for the main effect. The resulting graph has 5 cliques= {1,6},C, = {5,6},Cs = {4,6},C4 = {2,5},Cs = {3}. Constructing

a Kriging model with a correlation structure according ttligues structure, the prediction error can be calculatet) on the
data set of size 12. The prediction plots for the modified rhadevell for the standard Kriging model can be found as well
in figure[11. The RMSE for the standard Kriging model is 0.1,92Bereas for the modified Kriging model a RMSE of 0.1105
is achieved, which represents a substantial improvememtrégiction. As the validation data set is of rather smadiee, the
RMSE was also estimated by leave-one-out statistics, wioeiie= 1,...,n, observatiorx!), yl) was deleted from the data set
and a prediction based on the remaining observations usagarameter estimates for the complete data set was cedduct
This yields a RMSE of 0.0864 for the standard Kriging model arRMSE of 0.0371 for the modified data set, which confirms
the improvement of the modified Kriging model.
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5 Discussion

We expect the graph based Kriging prediction to be better thatandard one, if the unknown function has a relatively hig
degree of complexity and if there are mainly lower dimenalanteractions like twofold or threefold active. If the fetion has

a very low complexity (e.g. is mainly linear) than also a stam Kriging model will be able to give a very precise fit ancite
the graph based model will not necessarily improve, eventeadly decrease prediction power as there are more pagasrtet
be estimated. On the other hand if the unknown funcfidvas thed-fold interaction highly active, the corresponding graplai
complete graph and hence the graph based Kriging model arsidhdard one are the same.

One of the reasons why the prediction will be better if an adéejgraph is chosen, which is not complete is that the regult
prediction function is the sum over several prediction fiorss, with each prediction function has input dimensiomdothand.
Hence some kind of dimension reduction is done via replaghglimensional function by a sum over several lower-dimemaio
functions.

One drawback of the methodology presented here is that &Kfiigihg model is necessary for estimating the graph. This
works only if the first Kriging model has at least some prdditpower. Here ways for estimating the graph without reqgir
a first model are desirable. This can include constructirgisp designs, which allow for efficient estimation of theygin and
sequential methods, which reduce the influence of the irtiling model. The definition of the FANOVA graph yields a
unique graph, which is than used for defining appropriatagaxce kernels. However, in situations with uncertaintgeision
between different graphs, which can be reasonable, hasrt@bte. A complex graph can produce overfitting and potewtiels
very many parameters to be estimated. Hence choosing a gapt i terms of prediction and a simple but adequate model is
desirable.

Given the information of the grapB+ , for f, there are several aspects where the graph can be usefuédesediction.
One such topic are derivatives, and, subsequently, ogtioizmethods using derivatives. Due to the additive stinecdf f (X)
described by its graph, there is structural informatiorilatsée for the gradient. If the gradient is not known analgtiy for
optimization methods, it normally is estimated. If therkn®wledge about the structure of the gradient, this can terporated
in the algorithm in order to improve convergence.

For robust design problems, whetg ..., xq are divided into control factors and noise factorgy, KNN =2 KUN =
{1,...,d} (Taguchi situation), the graph can help to illustrate whdohtrol factors can be used for controlling the mean of some
output and which control factors can be used for controliivegvariance of the output.

Other aspects where the graph can be of interest are sé@gsitialysis based on Sobol indices and design of expergnent
The estimation of Sobol indices based on the modified Kriginediction function has the potential to perform bettemtha
estimates directly obtained from a standard Kriging modeha model already takes into account the interactiontstreiof the
unknown functionf. For design of experiments, if the graph belonging to a fiemct is known a priori, this information can be
used to construct space filling designs which are custontéte functionf.

6 Conclusion

In this article a methodology has been presented in ordeaikor tKriging models to the analysed data set by constrgctin
covariance kernels which take into account the interactiorcture of the data generating mechanism. The interastiocture
explored by FANOVA methods is presented in a graph whichgjareeasy to understand graphical illustration of the ictera
structure. The clique structure of the resulting graph énthsed for defining the data-driven covariance kernels.haw/s in
section 2.2, the clique structure represents additives pdithe data generating mechanism. Applying this methagaio a data
set can resultin substantial prediction improvements@&@safly for modeling functions which have high interacsactive but at
the same time there are not all input variables interactitiy ®ach other. One potential drawback of the method is thatder to
estimate the graph and hence the covariance kernel a firg¢ictonal (anisotropic) Kriging model has to be constrdctEhus
further research will address this issue by consideringeetipl strategies as well as strategies for defining apfaigpgraphs
and clique structures.
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Appendix: MLE for kernels defined by cliques

Suppose that the functidrwas evaluated atdesign point(, ... x(", and denote the vector of observatigns (Y1, ..., y(M).
Assuming that the data are drawn from model (31§ normal with mear and covariance matrik , where :

o F=(f(xV), ... f(xM)Y, is then x p experimental matrix
o K= (K(x,x)))1<i j<n, is the covariance matrix at design points
The likelihood is given by:

Liysw) = (-0 FBYK Hy-Fp)) (@)

1
— e
(2m)m2|K M2

Its vector argumeri¥ depends on the trend and kernel parameters. Assuming titevadtique decompositiori (26), we have:
K :KC1+"'+KC|_

where eacl ¢, is the covariance matrix &, at design points. Due to the stationarity assumption, we Kay = 6Rc,, where
the so-called correlation matriXc, does not depends an. Thus¥ = (8,v,©)’, wherev = (012, el aLz)’ contains the variances
parameters an@ = (Oc,,...,Oc, )’ the covariances parameters, where éaghis the vector of the covariance parameters of the
kernelkg, (I =1,...,L).

Writing the first order condition results in an analyticapeassion foif3, as a function o and®:

B\ _ (F/K 7lF)71FIK71y

Therefore maximizing the likelihood (B5) is equivalent taximizing overv and © the "concentrated” log-likelihood ob-
tained by plugging in the expressionsf&f

— 2logL(y; B.v,©) = nlog(2m) + log K| + (y — FB)'K ~(y — KB) (36)

Direct optimization. A direct solution consists of optimizing directly (36), ngia standard optimization procedure. Note that
the analytical gradient can be computed analytically (sge[€0] or [11]):

5|09L(V;E7V7@) _ Sy -19K 1 ) 10K

. oK . - . -
with s25 = 2% and 2K, = R,. It can be given to the optimizer to improve efficiency.
96, — 96, ao, I

Constrained optimization A drawback of the direct optimization is that it involves unimded variances parameters, resulting
in a huge optimization domain. To overcome this difficulty,a similar way as[[12], the problem can be rewritten using the
proportion of variances explained by each clique. Namedfine:

o 02— ZJL:1 o?, the total variance

2
e Q) = % the proportion of variance explained By (.),| =1,...,L

Note that theoy belong to a-dimensional simplex with finite volume. Then we hd¢e= 02 x K4, With Kq = a1K¢, + -+
aLK¢, , and the negative log-likelihood becomes:

—2In(L) = nIn(2m) +nin(0?) +In|K 4| + %(y— FB))Kt(y—FB))
Now writing the first order conditions results in analytieapressions both fg8 ando? (depending ol and®):
B=(FIGIF) Kl 6=y By~ Fp)
Finally, the problem reduces to optimizing the concenttég-likelihood

—2InL(y; 8,6, a,0) = nIn(2m) +nIn(62) + In|K 4| +n

overa ¢ [0,1]¢ and®, constrained byr; + - -- 4 a. = 1. TheR-commanc:onstrOptim() can be used for it.
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