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Abstract

The situation of time consuming computer experiments is considered, where the output is deterministic and the data generating
function is of high complexity. In such situations the underlying functions often are non additive but at the same time, not all
interactions are active. Hence neither a model consideringall interactions as well as an additive model is adequate. Asa solution
a modified Kriging model is proposed, which reflects the interaction structure inherent to the data generating mechanism. This
is achieved by exploring the interaction structure of the output based on FANOVA methods. For illustrating the interaction
structure, a graph is developed which summaries the structure of the output generating function in additive parts. Finally, modified
covariance kernels are defined, which allow for a more precise modeling of simulation output.

Keywords. Sensitivity Analysis, Computer Experiment, Functional Decomposition, Graph, Kriging

1 Introduction

For many phenomena there exist time consuming simulation models which are capable of predicting the output of real world
experiments very precisely and are thus used as a replacement for real experiments. These simulation models are often determin-
istic such that repetitions and randomization are not appropriate for designing simulation experiments. Working withsimulation
models one often has to deal with the constraint that due to computation time only very limited runs of the simulation are avail-
able. Hence conducting simulation experiments require careful planing which simulation runs should be realized. As normally
not all combinations of input variables of interest are available, fast models for predicting the simulation output at untried design
points are desirable. The standard model in this situation is Kriging, see e.g. [15] and [7], which is capable of modelinghighly
complex data and also can be used as interpolation method.

As a motivation for constructing a Kriging prediction modelconsider the so called Ishigami function, which is a popular
function for illustrating sensitivity analysis, see e.g. [13]:

f (x) = sin(x1)+ Asin2(x2)+ Bx4
3sin(x1) (1)

with x ∈ [−π ,π ]3 andA = 7,B = 0.1. The Ishigami function is often chosen as it has a high complexity including relevant
interaction terms. Assuming that the function is unknown and we have observed 100 runs of the function, the aim is to construct
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a prediction model for the unknown function. One popular choice is Kriging, also called Gaussian process modeling, which
assumes that the observations are drawn from a gaussian random field:

Y (x) = µ + Z(x), (2)

with Z(x) being a Gaussian process. The prediction function is than the conditional mean given the observation. A key part about
Kriging is the covariance ofZ(x). A standard approach is to assume a stationary, anisotropicstructure:

cov(Z(x(1)),Z(x(2))) = σ2
d

∏
k=1

gk(x
(1)
k − x(2)

k ;θk), (3)

whereθ is a correlation parameter (-vector). The functiongk(h;θk) is a one-dimensional correlation function only depending on
thek-th input variable. The parametersµ ,σ ,θ have to be estimated from the sample. Implicitly this covariance structure assumes
that all possible interactions are (at least at a very small scale) active. However, in case of the Ishigami function, we observe, that
there is a special structure of the function. It is neither a pure additive model nor it is a function, where all interactions are active.
Hence modifying the covariance structure up to this specialstructure might yield a better fit to the data. Therefore we assume
the following covariance structure:

cov(Z(x(1)),Z(x(2))) = σ2
1 ∏

k∈{1,3}
gk(x

(1)
k − x(2)

k ;θk)+ σ2
2g2(x

(1)
2 − x(2)

2 ;θ2). (4)

Assuming this covariance structure, again all parameters can be estimated and predictions can be made. Fitting both models

Figure 1: Prediction plots for the Ishigami function. On theleft hand plot the result for a standard Kriging model is given, on the
right hand side the result for Kriging model with modified covariance function.

(with ρθ (.) being a Matern 5/2 correlation function) to the same 100 observations, predictions are made for 1000 additional
observations. The predictions can be compared with the trueobservations. In figure 1 the prediction power of both modelsis
compared, with the result that the modified model greatly improves the fit. Hence it looks attractive to try to fit models to that
data, which are more sensitive to the data than for example standard Kriging models. Two major tools for doing so are used:The
functional decomposition introduced for example by [16] and [6] and considered in a stochastic framework for example by[9]
and mathematical graphs.

The article is structured as follows: First theory about functional decompositions, graphs and Kriging is revised. Then
estimation issues are addressed in section 3. The modified Kriging models are applied in section 4 and a discussion about
advantages, disadvantages and applications to areas otherthan prediction is done in section 5. An outline is concluding the
article.

2 Theory

The aim of this section is to introduce new Kriging models, built from a relevant combination of kernels (2.3). Such combinations
are based on the cliques of “FANOVA-graphs”, introduced in 2.2, in which vertices represent variables and edges correspond to
the presence of (any order) interactions. The first subsection is recalling the main concept of the FANOVA decomposition.
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2.1 Functional ANOVA

Consider a continuous functionf : ∆ → R, f ∈ L2(∆,R) with ∆ = ∆1× . . . ,×∆d . Let X be a random vector over the domain∆
with integration measuredν. We assume thatX1, . . . ,Xd are independent, i.e. thatdν = dν1 . . .dνd . Consider a function f such
that the random variablef (X) is square integrable. Then we have the so-called FunctionalANOVA (FANOVA) decomposition
(see [6] or [16]):

f (X) = µ0 +
d

∑
i=1

µi(Xi)+ ∑
j<k

µ jk(X j,Xk)+ ∑
j<k<l

µ jkl(X j,Xk,Xl)+ · · ·+ µ12...d(X1,X2, . . . ,Xd). (5)

where each term is centered and orthogonal:
E(µJ(XJ)) = 0 (6)

∀J′ 6= J : E(µJ(XJ)µJ′(XJ′)) = 0 (7)

In the equations above, we have used the usual index set notation. For instance withJ = {1,2}, XJ means(X1,X2), andµJ means
µ1,2.

The functions µ1(x1), . . . ,µd(xd) can be interpreted as main effects,
and the termsµ j,k(x j,xk), j < k as twofold interactions. This functional decomposition can be uniquely obtained by recursive
integration:

µ0 = E( f (X)), (8)

µk(xk) = E( f (X)|Xk = xk)− µ0, (9)

µ jk(x j,xk) = E( f (X)|X j = x j,Xk = xk)− µ j(x j)− µk(xk)− µ0 (10)

and more generally:
µJ(xJ) = E( f (X)|XJ = xJ)− ∑

J′(J

µJ′(xJ′ ). (11)

Based on the FANOVA decomposition, sensitivity indices canbe defined and are interpreted in an analogue manner as for
standard ANOVA [16]. The overall variance of the function isgiven by:

D = var( f (X)) = E( f (X)2)− µ2
0. (12)

Now for each termµJ a similar variance can be obtained:

DJ = var(µJ(XJ)). (13)

As for standard Least squares ANOVA a variance decomposition holds:

D =
d

∑
k=1

∑
|J|=k

DJ. (14)

Hence it makes sense to norm the sensitivity indices to

SJ =
DJ

D
. (15)

The sensitivity indicesSJ are an attractive tool for investigating a functionf as they do not require limiting assumptions. Although
they are difficult to calculate analytically, they can be calculated numerically [13].

2.2 FANOVA graphs

Graphs are used in a wide range of mathematical fields and are described for example in [3]. In statistics graphs are used in
different contexts, e.g. for variable selection [1] and formodeling dependence structure of random vectors [5]. A graphG =(V,E)
is a finite set of verticesV and a set of edges combining the vertices inV . The elements inV are indexed byV = {1, . . . ,d} and
E is a set of pairs of vertices fromV , which specify the edges of the graph. A concept regarding graphs which is used in the
following is the clique. A cliqueC is a subgraph ofG which is complete and which looses the completeness if another vertex is
added toC. This can be illustrated using figure 2. For the left hand example there are two cliquesC1 = {1,2,3},C2 = {4,5,6},
whereas for the right hand example there are three cliques:C1 = {1,2,3},C2 = {4,5,6},C3 = {3,4}. For example, for both
graphs, the subgraph defined by the set of vertices{5,6} is not a clique, since it is possible to obtain a larger complete subgraph
by adding vertex 4. As we only consider undirected graphs, wejust state( j,k), j < k in the set of edges instead of( j,k) and
(k, j).

The intention for the following analysis is, that in generalthere are 2d −1 terms in the functional decomposition. Even for
medium values ofd, e.g. d = 5, this is a huge amount of data. Therefore most articles on Sobol’ indices only consider main
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Figure 2: Example of two graphs withV = {1, . . . ,6}.

effects. Here a methodology is suggested, which reduces data but still gives good insight in the interaction structure of the
function f by using graphs.

The set of verticesV is set to be{1, . . . ,d}, such that each vertex represents one input variables. The basic idea is that two
vertices / input variablesj,k are connected in the graphG if there is any term index setJ which includesj,k with µJ(xJ) 6≡ 0.
More precisely:

Definition 1. (FANOVA graph)

( j,k) ∈ E ⇔∃µJ(xJ) 6≡ 0 with { j,k} ∈ J, j 6= k (16)

and vice versa
( j,k) 6∈ E ⇔∀J with { j,k} ∈ J it holds that µJ(xJ) ≡ 0. (17)

Definition 1 is equivalent to stating that an edge( j,k) is not part of the graph iff for all Sobol indicesSJ with ( j,k) ⊂ J it
holds:SJ = 0. Hence the graph illustrates the parts of the functionf which are purely additive. If a graph with cliquesC1, . . . ,CL

holds for functionf then the functionf is additive in the cliques.
Using the information of the graph the functional decomposition becomes

f (x) = µ0 +
L

∑
l=1

ψCl (xCl ), (18)

with
ψCl (xCl ) := ∑

I⊂Cl

µI(xI). (19)

This can be simplified when inserting directly the conditional expectations:

f (x) =
L

∑
l=1

E( f (X)|XCl = xCl ). (20)

Remark and assumption.In general, the equalities 18 and 20 hold onlyν-almost surely. Nevertheless, it is well known in
measure theory that for continuous functions, almost sure equalities are true equalities in the support ofν. Thus, 18 and 20 will
hold forall x in ∆ if f is a continuous function and the support of ν is equal to ∆ (since the continuity off implies the continuity
of theψCl ’s). Obviously, such an assumption is not restrictive for most practical applications, and we will consider it from now
on.
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Note that under this hypothesis, the FANOVA graph will not depend onν since 5 is also a true equality on the support ofν, and
thus on∆ (second part of our assumption). In particular the fact thatoneµJ is identically zero then depends entirely on the form
of the functionf and not on the integration measure.

2.3 Building Kriging models from FANOVA graphs

The information contained in the graph can be used to construct situation specific covariance functions for a Kriging model. In
the context of computer experiments, Kriging is a standard tool to predict expensive to evaluate functions at untried locations
(see e.g. [15], [7]). For Kriging, the assumed model is:

Y (x) =
p

∑
k=1

βk fk(x)+ Z(x) (21)

where∑p
k=1 βk fk(x) represents the trend value at locationx andZ(.) is a centered Gaussian process with covariance function, or

kernelK. We assume thatZ(.) is stationary, which implies thatK depends only on the difference between two locations, and thus
can be written asK(x1,x2) = k(x1−x2) with k(.) = σ2R(.;θ ), whereσ2 is the process variance,R the correlation function and
θ a vector of parameters.

A reason for the success of Kriging is that it interpolates the data, which is desired for deterministic simulators, and,due to
its probabilistic nature, also gives a measure of ignoranceat unknown points. In this paper, we will focus on the interpolator,
given by:

Ŷ (x) =
p

∑
k=1

βk fk(x)+k(x)′K−1(y−Fβ) (22)

wherex is a new point at which to predict,K is the covariance matrix at data,k(x) the covariance vector between data andx,
andF the design matrix containing the trend values at data points. In practice, the parametersβk, σ2 andθ are estimated and
plugged in equation (22).

The functionf considered above is understood as a realization of the Gaussian processY (.). As we see in (21), the departure
from the trend relies on the kernelk. Therefore, it is of primary importance to specify it properly. In computer experiments,
kernels are often obtained as tensor products of 1-dimensional kernels:

k(h) = σ2
d

∏
k=1

gk(hk;θk) (23)

Famous 1-dimensional covariance functions are the Gaussian one,g(h;θ ) = exp
(
− h2

2θ2

)
and the Matérn 5/2 one : g(h;θ ) =

(
1+

√
5|h|
θ + 5h2

3θ2

)
exp

(
−

√
5|h|
θ

)
. Their differentiability properties are directly linked to the smoothness of the sample functions

of Z (in mean square sense): existence of derivatives at any order with the Gaussian covariance, existence of second order
derivatives with Matérn 5/2. In practice, the Matérn 5/2 choice may correspond to more realistic assumptions onf , and is
sometimes recommended [17].

Now in our framework, we can specify kernels to take advantage of the additional knowledge given by the FANOVA decom-
position. Assume that a graphG f ,ν is given, with cliquesC1, . . . ,CL. Then, Equation (18) leads to consider the following model
for Z(.):

Z(x) =
L

∑
l=1

ZCl (xCl ) (24)

where theZC j (.) are independent centered Gaussian stationary processes.
Hence, equation 24 implies an additive clique decomposition for the kernel ofZ,

cov(Z(x1),Z(x2)) =
L

∑
l=1

cov(ZCl (x
1
Cl

),ZCl (x
2
Cl

)) (25)

which leads to consider kernels of the form

k(h) =
L

∑
l=1

kCl (hCl ) (26)

where eachkCl is a kernel defined on the subset of input variables given by the cliqueCl . Even if it can make sense in some
context, we will assume a common type for all these kernels (for instance Matérn 5/2).

3 Estimation methodology

We now give some insights how to achieve the data-driven construction of Kriging models based on FANOVA graphs in practice
(see 2.2 and 2.3). The two different estimation problems (estimating the graph and the new Kriging models) are first addressed
separately, for a general function (Sections 3.1 and 3.2). Finally the global estimation procedure is explained in the case of an
expensive-to-evaluate function (Section 3.3).
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3.1 Graph estimation

As it is seldom the case that the Sobol’ indices can be calculated analytically they have to be calculated numerically. However,
based on Monte Carlo methods it is very demanding to calculate all Sobol’ indices and is therefore not applicable for estimating
the graph of a functionf . Hence another method is applied here that basically checksadditivity of a two dimensional projection
of the function.

Recall from 2.2 thatf is assumed to be a continuous function on a domain∆ equal to the support of the integration measure
ν. This is to guarantee that the equalities below will hold everywhere on∆ and not only almost surely. Now, for anyx−( j,k), we
consider the function of the two variablesx j andxk,

fx−( j,k)
: (x j,xk) → f (x). (27)

It’s FANOVA decomposition can be written as (with analogousnotation as in 5):

fx−( j,k)
(x j,xk) = µ0;x−( j,k)

+ µ j;x−( j,k)
(x j)+ µk;x−( j,k)

(xk)+ µ jk;x−( j,k)
(x j,xk). (28)

This decomposition of course depends on the valuex−( j,k), but nevertheless a qualitative statement can be made aboutthe struc-
ture of the functional decomposition:

Proposition 1
For the functional decomposition of equation (28) it holds that the edge( j,k) is inactive if and only if for allx−( j,k), fx−( j,k)

is
additive, i.e.µ jk;x−( j,k)

(x j,xk) ≡ 0.

Proof. Without loss of generality, let us specifyj = 1 andk = 2. Remark that equation (28) can be rewritten under the form:

fx3,...,xd (x1,x2) = f0(x3, ...,xd)+ f1(x1,x3, ...,xd)+ f2(x2,x3, ...,xd)+ f1,2(x1,x2,x3, ...,xd)

where, by definition,fx3,...,xd (x1,x2) = f (x1, ...,xd). Thus fx3,...,xd is additive for allx3, ...,xd if and only if there is no term de-
pending both onx1 andx2 in f , which is equivalent to say that(1,2) is inactive in the graph�

Hence it makes sense to use the interaction term of the two-dimensional projections as an indicator wether or not to include an
edge into the graph. As a measure of importance, the un-normalized Sobol index of the interaction term of the two-dimensional
projection is used:

D jk(x−( j,k)) = var(µ jk;x−( j,k)
(X j,Xk)). (29)

This Sobol index is a function ofx−( j,k). In order to have a measure for assessing if an edge is active,integrateD jk(X−( j,k)) w.r.t
X−( j,k):

Definition 2

D j,k := E(D jk(X−( j,k))). (30)

ObviouslyD j,k ≥ 0. For the indexD j,k the following proposition holds:

Proposition 2
Given functionf with corresponding graphG f ,ν , it holds that

D j,k > 0⇔ ( j,k) ∈ E. (31)

Proof. This result is a direct consequence of Proposition 1�

Example 1 For the Ishigami function with independent integration measure, µ1,2;x3 = µ2,3;x1 ≡ 0, and µ1,3;x2(x1,x3) = B(x4
3−

E(X4
3 ))(sin(x1)−E(sin(X1))). Thus, D1,2 = D2,3 = 0, while D1,3 = B2var(X4

3 )var(sin(X1)). Remark that these indices are the
same as the usual (un-normalized) 2nd order Sobol indices. This is because the Ishigami function involves only 2nd order (non
linear) interactions.

Example 2 Now consider the function g(x1, . . . ,xd) = x1x2x3, again with independent integration measure and with d ≥ 3. It is
easy to see that D j,k = 0 if j > 3 or k > 3. Consider j = 1 and k = 2. We have µ1,2;x−(1,2)

(x1,x2) = (x1−E(X1))(x2−E(X2))x3.

Thus, D1,2;x−(1,2)
= var(X1)var(X2)x2

3, which depends on x3. Finally, D1,2 = var(X1)var(X2)E(X2
3 ). D1,3 and D2,3 are computed

in the same way. These results are different from the usual 2nd order Sobol indices D1,2,D1,3 and D2,3, that are all null.
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The idea of fixing variables in the FANOVA is close to the “cut-HDMR expansion” (see e.g. [13], chapter 9). Cut-HDMR is
equivalent to a FANOVA decomposition where the integrationmeasure is a product of one-dimensional Dirac-measures. Inthe
above methodology, equation (3.1) is actually the FANOVA decomposition obtained with integration measuredν jdνk ∏s/∈{ j,k} dδxs .
In a sense, it is thus intermediate between the usual FANOVA decomposition and cut-HDMR. With this approach, there are only(d

2

)
indicesD j,k in contrast to 2d −1 Sobol indices. If it would be possible to calculateD j,k analytically, the decision of includ-

ing the edge( j,k) in the graph could be based on checking whetherD j,k > 0. However, this is usually unrealistic. Therefore a
threshold need to be introduced and the decision rule is modified: Include the edge( j,k) into the graph, if

D̂ j,k/D̂ > δ , (32)

whereD̂ j,k andD̂ are Monte Carlo estimates forD andD j,k. The thresholdδ should be chosen small, e.g.δ = 0.01.
Estimating the measureD jk based on Monte Carlo methods is done in the following way:nMC uniform random numbers

of X−( jk) are drawn. For each of the resulting pointsx(1)
−( jk), . . . ,x

(n1)
−( jk), the functionf

x(i)
−( j,k)

(x j,xk) is decomposed according to

equation (28) and the Sobol indexD jk(x
(i)
−( j,k)) is calculated. As this is just a two-dimensional function, the interaction term

can be calculated from just knowing the Sobol main effect andthe total effect for one of the two parameters. Hence efficient
methods like the Extended Fourier Amplitude Sensitivity Test ([14], implemented in theR-packagesensitivity) can be used

for estimatingD jk(x
(i)
−( j,k)). Finally the estimate forD jk is

D̂ jk =
1
n1

n1

∑
i=1

D̂ jk(x
(i)
−( j,k)). (33)

Although applying Monte Carlo methods can be time-consuming, this approach only requires
(d

2

)
Monte Carlo estimates in

contrast to 2d −1 for a conventional, complete Sobol decomposition.
Finally, note that the indicesD j andD j,k can be used to provide a quantitative information to the graph. A weight is now

added to each edge, proportionally to the value ofD j,k, which indicates the strength of the interaction between the variablesx j

andxk. The same is done for the vertices (materialized by circles), indicating the strength of main effects. Examples are given in
the next section.

3.2 Kriging model estimation

The estimation of Gaussian processes defined by equation (21) has been intensively studied when the kernel is a tensor product
of 1-dimensional kernels (eq. 23), see e.g. [7], [15] or [11]. Our purpose is to give some insights about its adaptation tokernels
associated to cliques defined by eq. (26). First, even if not often encountered in practice, remark that estimation is notalways
possible with such kernels. Indeed, as remarked by [4] for additive kernels, some special design configurations result in non-
invertible covariance matrices. To face this problem, another kernel can be added to the additive decomposition, depending on
the whole vectorh:

k(h) =
L

∑
l=1

kCl (hCl )+ k0(h) (34)

In geostatistics (see e.g. [2]), a common choice fork0(h) is τ2δ0(h), whereτ2 is called a nugget effect, resulting in adding a
small positive number on the covariance matrix diagonal. Another choice, also common in geostatistics, is to choose an isotropic
kernel, e.g. a kernel defined by equation (eq. 23) with the constraint: θ1 = . . . = θd . In practice, such problems are not often
encountered, because design points are usually chosen at random, and in our experience a small nugget effect is usually enough
to overcome the difficulty. Concerning estimation, we have focused on the maximum likelihood estimation (MLE), since itis
known to be a good competitor among other existing techniques such as cross-validation. The likelihood expression is recalled
in appendix. Its optimization requires special care, due tothe problem dimensionality and the multimodalities observed with few
data. Three procedures have been implemented: a sequentialone as in [7], a direct optimization, and a constrained optimization
performed after a change of variables. We refer to the appendix for a precise description. The first one is more time consuming,
due to the sequentiality, and has not shown a clear superiority. On the examples presented below, the three algorithms have given
comparable results, where the fastest computation times have been achieved by the constrained optimization.

3.3 Global estimation procedure

In the setting of computer experiments there are normally not enough runs for performing Monte Carlo estimates directlyon
the objective function. As a way out, a first standard Krigingmodel is estimated. Then the FANOVA graph is estimated from
the Kriging interpolator, in replacement off , as described in 3.1. This may be efficient, provided that theinitial Kriging model
has enough predictive power. In the following, the clique decomposition of the graph is used to build a kernel structure,and the
corresponding model is estimated as shown in 3.2. The globalprocedure is illustrated in table 1.
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Step
1 For a data set with observationsy(1), . . . ,y(n), x(1), . . . ,x(n), fit a Kriging model

with anisotropic product kernel.
2 Use the standard Kriging model for estimating the indicesD jk.
3 Include the edge( j,k) into the set of edges,E, if D̂ jk is larger than a tolerance

δ .
4 Use the standard Kriging model for estimating the Sobol maineffects.
5 Plot the graph using the information from steps 3 and 4.
6 Set up the modified Kriging model with the covariance kernel specified accord-

ing to the clique structure of the graph.

Table 1: The estimation procedure.

Function name f (x) Design space
Ishigami sin(x1)+ Asin2(x2)+ Bx4

3sin(x1) [−π ,π ]3

a cos([1,x1,x2,x3]β )+ sin([1,x4,x5,x6]γ) [−1,1]6

b cos([1,x1,x2,x3]β )+ sin([1,x4,x5,x6]γ) [−1,1]6

+([1,x3,x4]δ )2

Table 2: Three analytical examples.

4 Applications to prediction

The design space for the following case studies was always scaled to be[−1,1]d. Furthermore the settings for the Kriging model
as described in section 2.3 and 3.2 are used with a uniform integration measure over the design space. Three analytical examples
and two real data sets are considered. The quality of the prediction is judged based on the root mean square error (RMSE).

4.1 Analytical examples

The three analytical examples are shown in table 2. In figure 3the true graphs for each function are plotted. The following
constants are chosen:A = 7,B = 0.1 for the Ishigami function as in the introductory section,β = [−0.8,−1.1,1.1,1]′,γ =
[−0.5,0.9,1,−1.1]′ andδ = [0.5,0.35,−0.6]′ for the second and third example.

Figure 3: True (unweighted) FANOVA graphs for the analytical examples of table 2.

4.1.1 Ishigami function

The Ishigami function is revised here in order to demonstrate that the process of estimating the graph works properly. Therefore
the same setting as in the introduction is used. The standardKriging model is used as a replacement for the true function and
hence all Monte Carlo estimatesD j,k,D j,D are based on the standard Kriging model. The resulting graphis shown in figure 4.
Hereδ = 0.1 was used as a threshold. Figure 4 shows that the graph is estimated correctly. As a comparison, a standard plot for
the main effects and total effects based on Sobol indices areplotted on the right hand side. Although in this special caseit would
be possible to derive the interaction structure from the right hand side plot, this is not the case in general.
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Figure 4: Estimated graph (left hand plot) and Sobol indices(Main effects and total effects, right hand plot) for the Ishigami
function

4.1.2 Functiona

The Functiona is chosen as an example as it has high interaction terms and aninteraction structure, which is not just visible
from the main/total effects plot. The graph is separable, i.e. the function can be split up into two parts, which are not related to
each other. Here (as well as for Functionb) 100 runs from a Maximin Latin Hypercube are used for modeling the output and
additional 1000 runs from a uniform distribution over the design space are used for comparing the different predictions. The
(estimated) graph in figure 5 shows, that the interactions ofthe clique{4,5,6} are weaker than that ones for the clique{1,2,3}.
The prediction plots in figure 6 show that a big increase of precision is achieved with the modified Kriging model.

4.1.3 Functionb

Functionb has a close relationship to functiona but is not separable. It is visible from the main/total effects plot in figure, that
there are differences between functiona and functionb but it is unclear, what are the core differences with the interactions of
functiona. In order to clarify the structure of functionb again the procedure for estimating the graph is applied, which results in
the left hand graph of figure 7. In figure 8, the corresponding prediction plots are drawn. The modified Kriging model delivers a
much better prediction than the conventional Kriging model.

Functionb can also be used for illustrating strategies for data with high dimensional input space. In such situations it often
occurs, that only some input variables have a high influence and many others are of negligible influence. Consider e.g. Functionb
as a function with 16 input variables, where the first six input variables are chosen as before, and the remaining ten inputvariables
have no influence. Just deleting these input variables is notan option, as these input variables still might have a small effect in
reality. The corresponding graph has the same three cliquesas before (C1 = {1,2,3},C2 = {4,5,6},C3 = {3,4}) but also ten
more cliques for the nonactive input variables (C4 = {7}, . . . ,C13 = {16}). Defining the Kriging model according to this clique
structure yields a model with very many covariance parameters, which dramatically increase computation times for estimating
the parameters as well as reduces prediction power. An alternative is to include all nonactive input variables into one clique
with isotropic structure resulting in the cliquesC1 = {1,2,3},C2 = {4,5,6},C3 = {3,4},C4 = {7, . . . ,16}, whereC4 is modeled
as the isotropic clique. This decreases the number of covariance parameters from 31 to 13. Comparing three different models
(standard Kriging approach, graph based and a graph based kernel with summarizing unimportant variables into an isotropic
clique) results figure 9. Here 160 observations according toa Maximin Latin Hypcercube have been used for modeling and 1000
additional runs for judging the prediction quality. Here the prediction plots for 1000 additional runs of all three models show, that
the modified Kriging model with one isotropic clique for all nonactive input variables performs best with a RMSE of 0.02642
compared to 0.0436(modified Kriging model without isotropic clique) and 0.2301 (standard Kriging model). At the same time it
had a much smaller computation time for estimating the covariance parameters than the modified Kriging model with 13 cliques
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Figure 5: Estimated graph (left hand plot) and Sobol indices(Main effects and total effects, right hand plot) for Functiona

Figure 6: Prediction plots for Functiona. On the left hand side for a standard Kriging model, on the right hand side for a modified
Kriging model with covariance structure according to figure5.
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Figure 7: The left hand graph is the estimated one for Function b. On the right hand side Sobol indices (Main effects and total
effects) for Functionb are plotted.

Figure 8: Prediction plots for Functionb. On the left hand side for a standard Kriging model and on the right hand side using the
modfied Kriging model.
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(290 seconds compared to 645 seconds.) Hence this can be a strategy for working with high dimensional data situations.

Figure 9: Prediction plots for Functionb including 10 inactive factors. On the left hand side for a standard Kriging model, in the
middle for a modified Kriging model without an isotropic clique and on the right hand a modified Kriging model including an
isotropic clique for inactive factors.

4.2 Case studies

4.2.1 Autoform

The first example is based on data from a case study for the springback analysis during sheet metal forming [8]. The output
reflects the amount of spring back after sheet metal forming.The process has been simulated by the engineering software
Autoform, which simulates sheet metal forming. The input space is 3-dimensional and there is a 33 full factorial design available
as learning data set and another 101 runs for validation purposes. Applying the methodology for estimating the graph results in a
graph with just on edge(1,3), which can be interpreted such that the second influence parameter just has additive influence. The
results for the RMSE and the graphical results show that there is an increase in precision of about 20%.

4.2.2 Piston slap data set

Piston slap is an unwanted noise of engines, which decreasesconsumer satisfaction. It can be simulated using finite element
methods and is analyzed in [7], p. 153 ff. The piston slap can be simulated in dependence of 6 input parameters describing
details of the piston. In [7] there are two data set considered. A smaller one with 12 runs and a larger one with 100 runs. [7]
use the smaller one for fitting a meta model and the larger one for judging the prediction precision. As the prediction result
based on the smaller data set is not satisfying we will for illustration purposes uses the larger data set for fitting a model and
the smaller one for validating the prediction results. The results of our analysis, which yield a complex interaction structure,
justifies this procedure as the function is too complex for modeling it just based on 12 observations. The resulting graphshows a
rather complex interaction structure. Input variablex6 has interactions with three other input variable whereas for example input
variablex1, which has the highest main effect, is only interacting withx6. Input parameterx5 shows interesting behavior as it only
is active via interactions. Input variablex3 seems to be completely inactive, as it has no interactions and a very small estimate
for the main effect. The resulting graph has 5 cliques:C1 = {1,6},C2 = {5,6},C3 = {4,6},C4 = {2,5},C6 = {3}. Constructing
a Kriging model with a correlation structure according thiscliques structure, the prediction error can be calculated based on the
data set of size 12. The prediction plots for the modified model as well for the standard Kriging model can be found as well
in figure 11. The RMSE for the standard Kriging model is 0.1925, whereas for the modified Kriging model a RMSE of 0.1105
is achieved, which represents a substantial improvement for prediction. As the validation data set is of rather smallersize, the
RMSE was also estimated by leave-one-out statistics, wherefor i = 1, . . . ,n, observationx(i),y(i) was deleted from the data set
and a prediction based on the remaining observations using the parameter estimates for the complete data set was conducted.
This yields a RMSE of 0.0864 for the standard Kriging model and a RMSE of 0.0371 for the modified data set, which confirms
the improvement of the modified Kriging model.
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Figure 10: Results for the Autoform data set
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Figure 11: Results for the piston slap data set
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5 Discussion

We expect the graph based Kriging prediction to be better than a standard one, if the unknown function has a relatively high
degree of complexity and if there are mainly lower dimensional interactions like twofold or threefold active. If the function has
a very low complexity (e.g. is mainly linear) than also a standard Kriging model will be able to give a very precise fit and hence
the graph based model will not necessarily improve, even eventually decrease prediction power as there are more parameters to
be estimated. On the other hand if the unknown functionf has thed-fold interaction highly active, the corresponding graph is a
complete graph and hence the graph based Kriging model and the standard one are the same.

One of the reasons why the prediction will be better if an adequate graph is chosen, which is not complete is that the resulting
prediction function is the sum over several prediction functions, with each prediction function has input dimension lower thand.
Hence some kind of dimension reduction is done via replacingad-dimensional function by a sum over several lower-dimensional
functions.

One drawback of the methodology presented here is that a firstKriging model is necessary for estimating the graph. This
works only if the first Kriging model has at least some prediction power. Here ways for estimating the graph without requiring
a first model are desirable. This can include constructing special designs, which allow for efficient estimation of the graph and
sequential methods, which reduce the influence of the initial Kriging model. The definition of the FANOVA graph yields a
unique graph, which is than used for defining appropriate covariance kernels. However, in situations with uncertainty adecision
between different graphs, which can be reasonable, has to bemade. A complex graph can produce overfitting and potentially has
very many parameters to be estimated. Hence choosing a good graph in terms of prediction and a simple but adequate model is
desirable.

Given the information of the graphG f ,ν for f , there are several aspects where the graph can be useful besides prediction.
One such topic are derivatives, and, subsequently, optimization methods using derivatives. Due to the additive structure of f (x)
described by its graph, there is structural information available for the gradient. If the gradient is not known analytically for
optimization methods, it normally is estimated. If there isknowledge about the structure of the gradient, this can be incorporated
in the algorithm in order to improve convergence.

For robust design problems, wherex1, . . . ,xd are divided into control factorsxK and noise factorsxN , K ∩N = ∅,K ∪N =
{1, . . . ,d} (Taguchi situation), the graph can help to illustrate whichcontrol factors can be used for controlling the mean of some
output and which control factors can be used for controllingthe variance of the output.

Other aspects where the graph can be of interest are sensitivity analysis based on Sobol indices and design of experiments.
The estimation of Sobol indices based on the modified Krigingprediction function has the potential to perform better than
estimates directly obtained from a standard Kriging model as the model already takes into account the interaction structure of the
unknown functionf . For design of experiments, if the graph belonging to a function f is known a priori, this information can be
used to construct space filling designs which are customizedto the functionf .

6 Conclusion

In this article a methodology has been presented in order to tailor Kriging models to the analysed data set by constructing
covariance kernels which take into account the interactionstructure of the data generating mechanism. The interaction structure
explored by FANOVA methods is presented in a graph which gives an easy to understand graphical illustration of the interaction
structure. The clique structure of the resulting graph is then used for defining the data-driven covariance kernels. As shown in
section 2.2, the clique structure represents additive parts of the data generating mechanism. Applying this methodology to a data
set can result in substantial prediction improvements, especially for modeling functions which have high interactions active but at
the same time there are not all input variables interacting with each other. One potential drawback of the method is that in order to
estimate the graph and hence the covariance kernel a first conventional (anisotropic) Kriging model has to be constructed. Thus
further research will address this issue by considering sequential strategies as well as strategies for defining appropriate graphs
and clique structures.
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Appendix: MLE for kernels defined by cliques

Suppose that the functionf was evaluated atn design pointsx(1), . . . ,x(n), and denote the vector of observationsy = (y(1), . . . ,y(n))′.
Assuming that the data are drawn from model (21),y is normal with meanFβ and covariance matrixK , where :

• F = (f(x(1))′, ..., f(x(n))′)′, is then× p experimental matrix

• K = (K(x(i),x( j)))1≤i, j≤n, is the covariance matrix at design points

The likelihood is given by:

L(y;Ψ) =
1

(2π)n/2 |K |1/2
exp

(
−1

2
(y−Fβ)′K−1(y−Fβ)

)
(35)

Its vector argumentΨ depends on the trend and kernel parameters. Assuming the additive clique decomposition (26), we have:

K = KC1 + · · ·+KCL

where eachKCl is the covariance matrix ofZCl at design points. Due to the stationarity assumption, we haveKCl = σ2
l RCl , where

the so-called correlation matrixRCl does not depends onσl . ThusΨ = (β ,v,Θ)′, wherev = (σ2
1 , . . . ,σ2

L )′ contains the variances
parameters andΘ = (ΘC1, . . . ,ΘCL)

′ the covariances parameters, where eachΘCl is the vector of the covariance parameters of the
kernelkCl (l = 1, . . . ,L).

Writing the first order condition results in an analytical expression forβ , as a function ofv andΘ:

β̂ = (F′K−1F)−1F′K−1y

Therefore maximizing the likelihood (35) is equivalent to maximizing overv andΘ the ”concentrated” log-likelihood ob-
tained by plugging in the expressions ofβ̂ :

−2logL(y; β̂ ,v,Θ) = n log(2π)+ log|K |+(y−Fβ̂)′K−1(y−K β̂) (36)

Direct optimization. A direct solution consists of optimizing directly (36), using a standard optimization procedure. Note that
the analytical gradient can be computed analytically (see e.g. [10] or [11]):

−2
∂ logL(y; β̂ ,v,Θ)

∂• = −(y−Fβ̂)′K−1 ∂K
∂• K−1(y−Fβ̂)+ tr

(
K−1 ∂K

∂•

)

with ∂K
∂θCl ,.

=
∂KCl
∂θCl ,.

and ∂K
∂σ2

l
= RCl . It can be given to the optimizer to improve efficiency.

Constrained optimization A drawback of the direct optimization is that it involves unbounded variances parameters, resulting
in a huge optimization domain. To overcome this difficulty, in a similar way as [12], the problem can be rewritten using the
proportion of variances explained by each clique. Namely, define:

• σ2 = ∑L
j=1 σ2

j , the total variance

• αl =
σ2

j

σ2 , the proportion of variance explained byZCl (.), l = 1, . . . ,L

Note that theαl belong to aL-dimensional simplex with finite volume. Then we haveK = σ2×K α , with K α = α1KC1 + · · ·+
αLKCL , and the negative log-likelihood becomes:

−2ln(L) = n ln(2π)+ n ln(σ2)+ ln |K α |+
1

σ2 (y−Fβ))′K−1
α (y−Fβ))

Now writing the first order conditions results in analyticalexpressions both forβ andσ2 (depending onα andΘ):

β̂ = (F′K−1
α F)−1F′K−1

α y σ̂2 =
1
n
(y−Fβ̂)′K−1

α (y−Fβ̂)

Finally, the problem reduces to optimizing the concentrated log-likelihood

−2lnL(y; β̂ , σ̂ ,α ,Θ) = n ln(2π)+ n ln(σ̂2)+ ln |K α |+ n

overα ∈ [0,1]k andΘ, constrained byα1 + · · ·+ αL = 1. TheR-commandconstrOptim() can be used for it.
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