
HAL Id: hal-00537693
https://hal.science/hal-00537693

Submitted on 20 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A new worm propagation threat in BitTorrent:
modeling and analysis

Sinan Hatahet, Abdelmadjid Bouabdallah, Yacine Challal

To cite this version:
Sinan Hatahet, Abdelmadjid Bouabdallah, Yacine Challal. A new worm propagation threat in
BitTorrent: modeling and analysis. Telecommunication Systems, 2010, 2010 (45), pp.95-109.
�10.1007/s11235-009-9241-2�. �hal-00537693�

https://hal.science/hal-00537693
https://hal.archives-ouvertes.fr

 1

A New Worm Propagation Threat in BitTorrent :

Modeling and Analysis

Sinan Hatahet
1
, Abdelmadjid Bouabdallah

2
 and Yacine Challal

3

1 Heudiasyc UMR 6599, Université de Technologie de Compiègne

BP 20529 60205 Compiègne cedex France

sinan.hatahet@utc.fr

2 Heudiasyc UMR 6599, Université de Technologie de Compiègne

BP 20529 60205 Compiègne cedex France

boubdallah@utc.fr

3 Heudiasyc UMR 6599, Université de Technologie de Compiègne

BP 20529 60205 Compiègne cedex France

yacine.challal@utc.fr

Abstract: Peer-to-peer (p2p) networking technology has gained

popularity as an efficient mechanism for users to obtain free

services without the need for centralized servers. Protecting these

networks from intruders and attackers is a real challenge. One of the

constant threats on P2P networks is the propagation of active

worms. Recent events show that active worms can spread

automatically and flood the Internet in a very short period of time.

Therefore, P2P systems can be a potential vehicle for active worms

to achieve fast worm propagation in the Internet. Nowadays,

BitTorrent is becoming more and more popular, mainly due its fair

load distribution mechanism. Unfortunately, BitTorrent is

particularly vulnerable to topology aware active worms. In this

paper we analyze the impact of a new worm propagation threat on

BitTorrent. We identify the BitTorrent vulnerabilities it exploits, the

characteristics that accelerate and decelerate its propagation, and

develop a mathematical model of their propagation. We also

provide numerical analysis results. This will help the design of

efficient detection and containment systems.

Keywords: P2P, Security, BitTorrent, Worms, Modeling.

1. Introduction

Peer-to-peer systems, like eMule, BitTorrent, Skype, and

several other similar systems, have became immensely

popular since the past few years, primarily because they

offered a way for people to get a free service. According to

Androutsellis et al. [1] “Peer-to-peer systems are distributed

systems consisting of interconnected nodes able to self

organize into network topologies with the purpose of sharing

resources such as content, CPU cycles, storage and

bandwidth, capable of adapting to failures and

accommodating transient populations of nodes while

maintaining acceptable connectivity and performance,

without requiring the intermediation or support of a global

centralized server or authority”. Under the hood, these

systems represent a paradigm shift from the usual web of

client and servers, to a network where every system acts as

an equal peer. Moreover, due to the huge number of peers,

objects can be widely replicated, therefore increasing the

availability of the provided services, despite the lack of

centralized infrastructure. This leads to the proliferation of a

variety of applications, examples include multicast systems,

anonymous communications systems, and web caches. P2P

systems consume up to 70 % of the Internet overall traffic

[4].

Among all available peer-to-peer Internet applications,

BitTorrent [3] has become the most popular for file sharing.

Recent reports have indicated that near 75 % of all the

current P2P Internet traffic is due to BitTorrent (see figure 1)

[4]. One of the reasons of BitTorrent’s popularity is that it

provides very efficient file sharing; allowing downloads to

scale well with the size of the downloading population. This

efficiency is obtained by breaking up each large file into

hundreds or thousands of segments, or pieces, which, once

downloaded by a peer, can be shared with others while the

downloading continues [5]. BitTorrent is a P2P content

distribution system designed to quickly, efficiently and fairly

replicate data. Fairness is a key concept in BitTorrent; this is

clearly demonstrated in its data exchange algorithm. All

these features have made BitTorrent a leading P2P system in

the Internet.

Figure 1: P2P Protocol Distribution by Volume

The ease of use, provided services and finally the low

price; all contribute in the increasing number of P2P users.

However this fact also inspired attackers to attack P2P

networks. Making these systems "secure" is a significant

challenge. Indeed, a malicious node might give erroneous

responses to a request, both at the application level (returning

false data to a query, perhaps in an attempt to censor the

 2

data) or at the network level (returning false routes, perhaps

in an attempt to partition the network). BitTorrent, on the

other hand, supplies means of checking the integrity of the

data received upon its reception, thus protecting the users

from file poisoning and similar attacks. However, BitTorrent

fails to prevent attacks that are designed to induce an impact

on the network’s infrastructure. These attacks may cause

damages of great consequences on the quality of service and

the reliability of ISPs. Such attacks are similar to distributed

denial of service (DDoS) attacks.

There are several other attacks that can be conducted

against P2P networks more successfully owing to the nature

of P2P networks. Such attacks are like Sybil attacks where

an attacker attacks the reputation system of a P2P network.

The attacker creates a large number of pseudonymous

entities, and uses them to gain a disproportionately large

influence [6]. Another example of attacks specific to P2P is

the Eclipse attack. In Eclipse, a set of malicious peers trick

other peers into connecting only with them. If Eclipse is

successfully conducted, the attacker can mediate all

communication to and from the victim, and when the attack

is applied on a larger scale, it may split the P2P network [7].

Active worms may also create damages on P2P networks.

Active worms are programs that self-propagate across the

Internet by exploiting security flaws in widely-used services

[8].

After analyzing the attacks that could be conducted

against P2P networks, and studying the causes and the

consequences of each attack, we believe that active worms

are very dangerous due to the following reasons:

 Because of the recent surge of many popular P2P systems

with a large number of users, P2P systems can be a

potential vehicle for the active worm attacker to achieve

fast propagation [9].

 Taking advantage of the nature of P2P networks, active

worms could easily escape the current worm detection

systems. Besides, they could blend into the P2P networks

traffic which makes them even harder to detect [10].

 Since the victims of active worms exploiting P2P

networks are end-users unlike the traditional Internet

worms (web servers and services), implementing an

efficient containment system is a real challenge.

 The fast propagation of active worms enables the attacker

to have control over thousands of peers which it can use

in its advantage as zombies to conduct DDoS, Sybil or

Eclipse attacks.

 Upon the propagation of active worms, the attacker would

have access to sensitive information and data.

In this paper we analyze the impact of a new worm

propagation model on BitTorrent. BitTorrent is particularly

vulnerable to topology aware active worms. Topology aware

worms use the topologic information found on their victims

to find new victims. Such worms are capable of quickly

flooding the Internet while escaping current deployed

intrusion detection systems. Moreover, in order to boost its

initial propagation the worm uses a trackers’ hitlist

consisting of the most crowded swarms (i.e. groups of

BitTorrent users interested in the same content). This

mechanism allows the worm to find newer victims even

faster than traditional scanning worms. This combination of

both scanning strategies (i.e. the strategy a worm uses to

discover new machines to infect) is fatal, because it provides

the worm with certainty, discretion and speed. This

combination allows the worm to only attack existing targets,

thus saving scanning time and more importantly escaping the

current implemented detection systems, since such systems

are normally installed on non-attributed addresses.

The possible damages that such worm can causes are

huge, our analysis of its propagation shows that it can

achieve a 300% increase in its propagation speed in

comparison with traditional scanning worms. The purpose of

our research is to further investigate this new worm, identify

the characteristics that accelerate and decelerate its

propagation in BitTorrent, and to develop a mathematical

model of their propagation. Such model would be used to

compare the worm behavior in different scenarios and thus,

better identify its weaknesses and strengths. We believe that

our work can provide important guidelines for P2P system

design and control to address the concerns of active worms

and to develop efficient containment and intrusion detection

systems. The rest of the paper is organized as follows. In

section 2, we first discuss how the BitTorrent works in

practice and then discuss “Tit-for-Tat” algorithm in general.

In section 3, we present related and previous research done

on P2P worms. In section 4, we explicate the strategy of our

developed topology aware worm (the BitTorrent worm). In

section 5, we present our model, and provide numerical

analysis results. We end up this paper with conclusion and

future work in section 6.

2. BitTorrent

BitTorrent is a P2P protocol for content distribution and

replication designed to quickly, efficiently and fairly

replicate data [3]. In contrast to other P2P protocols, the

BitTorrent protocol does not provide any resource query or

lookup functionality, but rather focuses in fair and effective

replication and distribution of data. BitTorrent works by

groups of users, called swarms, with the interest of

downloading a single specific file, coordinating and

cooperating to speed-up the process.

A swarm can be partitioned into two network entities: a

tracker, and peers [8]:

1. A tracker is a centralized software which keeps track of

all peers interested in a specific file. Each swarm is

managed by a tracker.

2. The second entity is the set of active peers, which can be

further divided into seeds and leeches. A seed is defined

as a peer that has already retrieved the entire shared file.

Where a leech is a downloading peer.

A server, usually a web server is also important for the

smooth conduct of BitTorrent. The purpose of this server is

to provide a torrent file for interested clients. The torrent file

is a file that contains the necessary information for the clients

to prepare the download and join the swarms. The main

information in this file is a set of (SHA-1, [9]) hash values,

which allows the user to verify the integrity of the received

file content. The file stores the address of the tracker as well.

In this paper, we give enough relevant details to allow us to

facilitate the description of the attack.

 3

Figure 2: How BitTorrent work

In figure 2, we illustrate how a client downloads a file

from a BitTorrent swarm. Leeches are represented in a red

color, while seeds are represented in green. The tracker is

installed on a machine which is located in a swarm

represented by a cloud. Let’s imagine a scenario, where a

client shows an interest in downloading a certain file. The

client first searches for the desired file by consulting a

known website (see figure 2 step 1). The client would then

downloads a torrent file which its metadata matches the

desired file (see figure 2 step 2). Next, the client will read the

content of the torrent file, and get the tracker address (see

figure 2 step 3). Once, the client obtains the tracker address,

he gets connected to it, announces its will to download the

shared file and asks the tracker about other peers (see figure

2 step 4). When asked for peers, a tracker will return a

random list of other peers currently in the swarm. As the

number of peers in a single swarm may become very large

for popular files, the size of the returned list is usually

bound; a maximum of 50 peers is typical (see figure 2 step 5)

[8]. Once a client has obtained a list of other peers, it will

contact them to try to fetch the data it is looking for.

The bandwidth being a limited resource, a single client

cannot serve every peer interested in pieces it holds at the

same time. The maximum number of peers served

concurrently (i.e. the number of available slots) is

configurable by the user and depends on the available

bandwidth. All other peers connected to a client (whether

they are interested or not) which are not being served are

said to be choked. In consequence, each client implements an

algorithm to choose which peers to choke and un-choke

among those connected to him over time. The strategy

proposed by BitTorrent is named “tit-for-tat”, meaning that a

client will preferably cooperate with the peers cooperating

with him. Practically, this means that each client measures

how fast it can download from each peer and, in turn, will

serve those from whom it has the better download rates.

When a client has finished downloading a file, it no longer

has to download from other Peers but it can still share

(upload) pieces of the file. In this case the choking algorithm

is applied by considering upload rate instead. Peers are

selected based on how fast they can receive the upload. This

spreads the file faster. Such “seeder” peers that store the

whole file are very important to the functioning of a swarm.

If a swarm contains no seeders it may lead to a situation in

which pieces of the file are missing from the swarm as a

whole. In this sense, the system requires some level of

altruistic behavior from “seeders”. This behavior is

encouraged by the matra often repeated on BitTorrent

websites: leave your download running for a little while after

you have got the entire file [8].

Figure 3: Worms damages

3. P2P Worms

A computer worm is a program that propagates itself over

a network, reproducing itself as it goes [19]. Due to its

 4

recursive nature, the spread rate of a worm is very huge and

poses a big threat on the Internet infrastructure as a whole.

The purpose of a worm is to achieve a high infection rate

within the targeted hosts (i.e. infects the largest number

possible of vulnerable machines). Modern worms may

control a substantial portion of the Internet within few

minutes. No human mediated response is possible to stop an

attack that is so fast. The possible devastating effects on the

Internet operation are hard to underestimate. It was reported

in the FBI/CSI survey, that in 2007 52% of the detected

network attacks were viruses’ attacks (worms/spyware).

Moreover, they caused damages worth the amount of

8,391,800 USD in the United States alone (see figure 3) [21].

Besides the traffic generated by the worm propagation is so

huge that it can be considered as a DDoS attack on the whole

Internet and could be used to bring down the Internet

infrastructure of whole countries. Therefore a huge number

of researches were carried out in order to conceive proper

detection and containment systems. However, there is a new

trend of worms that is emerging and which have a huge

destruction potential, such worms are called Peer-to-Peer

worms. A P2P worm is a worm that exploits the

vulnerabilities of a P2P network in order to propagate itself

over the network and accelerate its propagation throughout

the Internet. P2P worms could be much faster than the old-

fashion worms. Furthermore they are expected to be one of

the best facilitators of Internet worm propagation due the

following reasons: [20] [6] [12] [13] [14]

i) P2P systems have a large number of registered active

hosts which easily accelerate Internet worm

propagation, as hosts in P2P systems are real and active;

ii) some hosts in P2P systems may have vulnerable

network and system environments, e.g., home networks;

iii) Hosts in P2P systems maintain a certain number of

neighbors for routing purposes. Thus, infected hosts in

the P2P system can easily propagate the worm to their

neighbors, which continue the worm propagation to

other hosts and so on.

iv) they are often used to transfer large files,

v) the programs often execute on user’s desktops rather

than servers, and hence are more likely to have access to

sensitive files such as passwords, credit card numbers,

address books…etc

vi) The use of the P2P network often entails the transfer of

“grey” content (e.g., pornography, pirated music and

videos), arguably making the P2P users less inclined to

draw attention to any unusual behavior of the system

that they perceive.

In order to identify the characteristics of worms, we need

to understand how it propagates itself over a network. A

typical worm works as follows: it first scans the Internet to

find potential victims (i.e. information collection). Once it

locates a machine the worm tries to probe it by exploiting a

common vulnerability, if successful it transfers a copy of its

malicious code to the new victim and so on. The key of a

successful worm is its propagation speed rather that the

vulnerability it exploits. Since current deployed detection

and containment systems are capable of blocking the spread

of relatively slow worms, a worm should propagate quickly,

regardless the vulnerability it is exploiting, in order to

achieve a high infection rate. Choosing an efficient scanning

strategy enables the worm to reach a large population in a

record time.

Based on the scanning strategies of P2P worms, they

could be classified into two broad categories: passive worms

and active worms (see figure 4). Passive worms are identical

to viruses in the sense that they do not search for new

victims, they however await them. On the other hand, active

worms search for vulnerable targets. Indeed, active worms

are more dangerous and propagate faster than passive

worms.

Figure 4: P2P worms classification

3.A Passive worms:

A passive worm does not spread in an automated fashion.

However, it stays dormant on infected machines, waiting for

other vulnerable machines to reach it. Once a connection is

established between a vulnerable machine and the infected

one, the worm duplicates itself on the other end and infects

it. This kind of worms can be developed to exploit the

vulnerabilities of any Internet application.

3.B Active worms:

Active worms propagate by infecting computer systems and

by using infected computers to spread the worms in an

automated fashion [15]. In [8], Staniford et al. show that

active worms can potentially spread across the Internet

within few seconds. Unlike the passive worm, an active

worm does not need human interaction to spread. We can

classify P2P active worms into two categories: Hitlist worms

which attack a network using a pre-constructed list of

potential vulnerable machines; and the topologic worms

which attack a network based on the topologic information

found on their victims. In the next section we explain the two

propagation mechanisms.

3.B.1 Hitlist worms:

One of the biggest problems a worm faces in achieving a

very rapid infection rate is "getting off the ground."

Although a worm spreads exponentially during the early

stages of infection, the time needed to infect the first 10,000

hosts dominates the infection time. There is a simple way to

overcome this obstacle, which we term hit-list scanning.

Before the worm is released, the worm author collects a list

of 10,000 to 50,000 potentially vulnerable machines, ideally

ones with good network connections [8]. The worm, when

released onto an initial machine on this hit-list, begins

scanning down the list. When it infects a machine, it divides

the hit-list in half, it communicates a half to the recipient

worm, and keeps the other half. This quick division ensures

that even if only 10–20% of the machines on the hit-list are

actually vulnerable, an active worm will quickly go through

the hit-list and establish itself on all vulnerable machines in

only a few seconds. Although the hit-list may start at 200

 5

kilobytes, it quickly shrinks to nothing during the

partitioning [8]. This provides a great benefit in constructing

a fast worm by speeding the initial infection.

Owing to the high turnover of peers, an IP address-based-

Hitlist worm can only achieve a low infection rate within

P2P systems. Peers tend to leave and join P2P networks quite

often, and since each time they access Internet they’re given

a different IP address, it is quite useless to collect their IP in

order to build a Hitlist. In order to override this difficulty and

hence achieve a higher infection rate, an attacker can employ

a peerID-based-Hitlist in his worm. A peerID is a unique and

permanent identification for each peer in a P2P network.

PeerIDs, however, are permanent only in certain P2P

systems like eMule [18], and they are not in BitTorrent. A

PeerID in BitTorrent is a unique identification for a client,

but generated at startup, and hence not permanent [19].

Therefore, an attacker would eventually fail to build a Hitlist

capable of achieving a high infection rate within BitTorrent.

3.B.2 Topologic worms:

An alternative to hit-list scanning is topologically aware

scanning, which uses information hold at the victim machine

in order to select new targets. The propagation of the

Topologic worm has two phases too: a P2P phase through

which the worm attacks the P2P network, and an Internet

phase through which the worm attacks the rest of the

Internet. However in the P2P phase unlike the Hitlist worm,

the Topologic worm chooses its next victim in real-time. It

employs the topological information found on the infected

machine in the form of routing tables, friend lists (eMule), IP

addresses of connected nodes, etc… in order to identify new

targets, and directly attacks them [13]. Based on its behavior,

the topologic worm is more accurate and therefore harder to

detect [10]; however it is relatively slower than the Hitlist

worm, due to the time wasted in looking for new targets.

Unlike Hitlist worms, Topologic worms can achieve a

much higher infection rate in BitTorrent even higher than in

eMule, especially in crowded swarms where a single peer

could be connected to 50 other peers. The purpose of our

work is to foresee a mutation of the BitTorrent exploitable

Topologic worm, hence anticipating future worms’ threats.

4. The BitTorrent Worm

In this section we will explain a novel propagation strategy

of a BitTorrent worm and compare it with previous work.

4.A Background:

In a previous study [6], Yu et al. presented a propagation

scheme for the Topologic P2P worm. In this strategy, after

joining the P2P system at the system’s initial time, the

infected host immediately initiates an attack against its P2P

neighbors with its full attack capacity. If extra attack

capacity is available, the infected hosts would randomly

attack the Internet. This propagation strategy is unfortunately

not realistic, since the worm attacks only its neighbors at the

initial instant of its infection, and does not seek future

neighbors that will connect to it later. Hence, the worm

achieves a low infection rate within the P2P system’s peers.

Furthermore the authors avoided creating cooperation

between infected hosts for simplicity. Therefore, victims

could be attacked by different infected hosts, and at multiple

times during the attack.

4.B Overview:

The main idea of our novel propagation model is to increase

continuously the number of overlay neighbors of infected

peers in order to speed up the topologic worm propagation.

Our model uses the concept of “honey pot”, where an

infected peer advertises itself as a seed in a popular swarm.

Hence, infected hosts will rapidly attract new victims in the

popular swarms. A hit-list of popular swarms is shared

among infected peers to increase the number of “honey

pots”, and thus accelerate the propagation.

4.C. Propagation Algorithm:

The BitTorrent Worm (BTW) is a Topology aware worm.

Accordingly, like the topologic worms, as soon as a new host

is infected by the BTW, it starts attacking its overlay

neighbors. If extra attack capacity is available, BTW does

not just sit around and waits for new peers to fall in its trap,

but goes as far as advertising himself in order to attract new

peers. BTW is capable of doing so, by joining new crowded

swarms and announcing itself as a seed. This is possible

since the Tracker does not check the integrity if new comers.

Once it joined the swarms, new leeches will automatically

try to connect to it. Furthermore, unlike the Topologic worm,

BTW does not ignore attacking peers whom will later

connect to it. Hence, BTW tends to reach a larger population

inside in the BitTorrent network.

Another major limitation of the Traditional Topologic

worm was the lack of cooperation between its instances,

BTW overrides this constraint by enforcing two levels of

cooperation on the infected hosts. The first one is on the

swarm level and the other one is on the BitTorrent network

level. The cooperation on the swarm level is achieved upon

the time of infection. Once an infected host succeeds in

infecting a new victim, it passes a list of the peers it scanned

to the victim, so the newly infected host does not waste its

attack capacity in re-attacking them. As for the cooperation

on BitTorrent level, it is achieved as follows: the attacker

builds a Hitlist of trackers responsible for the most crowded

swarms and then provided it to the initial worm instance. The

worm-infected hosts will continuously join the swarms on

the list and start attacking their members. Upon the time of

infection, the infected host will communicate half of its list

to its victim and so on. Once the Trackers Hitlist exhausted

the infected hosts would randomly attack the Internet. The

Hitlist should be sorted with regards to the population of

swarms to boost the initial propagation of the worm. The

detailed algorithm is as follows:

Algorithm:

1. P = 0 // list of peers to infect

 C : attack capacity

 Cr = C // remaining attack capacity

 Cu = 0 //used attack capacity

 i = 0 // last index retrieved in tracker Hitlist

 N = 0 //list of neighbors

2. While (true)

 N = new neighbors

 if (not empty(N))

 Cu = min (Cr , capacity to attack(N))

 P = peers to attack (Cu)

 startAttack(P)

 6

Figure 5: BTW attack

Cr = C – Cu

 if (i < HT.length AND Cr > 0)

 join swarm at HT(i)

 i = i +1

 if (Cr > 0)

 randomAttack(1)

startAttack(N)

 for each n in N

 if (n is vulnerable and non-infected)

 I passes HT/2 to n

 I passes the list of the nodes it scanned to n

 // so n does not waste its C scanning them again

Cr = Cr +1

 end

end startAttack(N)

randomAttack (hosts)

 j = 0

 while (j < hosts.length)

 randomly choose n

 if (n is vulnerable and non-infected)

 I passes the list of the nodes it scanned to n

 Cr = Cr +1

j = j+1

 End while

end randomAttack (hosts)

In figures 5, 6, 7, we illustrate how BTW propagates

through BitTorrent. Leeches are represented in a red color,

while seeds are represented in green and infected hosts in

black. For the sake of simplicity we consider that the attack

capacity of the worm is 5. The attack starts as follows: once

the malicious code is installed on initial infected machine I, I

starts attacking its neighbors {1, 2, 3, 4} (figure 6). (We

assume in this example that I infects its neighbors orderly).

At the time of infection, I would pass half of its tracker

Hitlist to its victim 1, in order to share its workload with 1.

Furthermore I would also pass its list of scanned hosts to 1,

in order to coordinate their efforts (figure 7). I would repeat

the procedure upon the infection of its neighbors 4 and 3. In

the other hand, since 2 is not vulnerable, I cannot infect it.

However, since I has already scanned it, I would still pass its

address to its victims so they do not scan it once more (figure

7). Since I has 4 neighbors only, it uses the remaining of its

attack capacity in exploiting its Trackers Hitlist (i.e.

announces itself as a seed to the tracker of the swarm #2 on

its Hitlist) (figure 7).

Figure 6: BTW attack…cont

 7

Figure 7: BTW attack…cont

5. The BitTorrent Worm Propagation Model

Modeling worm propagation is very important because it

allows us understanding how they evolve; whom they would

reach and how long they take to contaminate the network.

Moreover, modeling allows us to identify which parameters

play a role in their propagation and therefore develop proper

and efficient detection and containment mechanisms.

5.A Parameters

In order to formally build a model that describes the BTW

propagation, we need to identify the different factors play a

role in its propagation. After a thorough examination and

analysis we identified that the following parameters, which

will have an impact on the worm propagation.

1) Attacker parameters: The attack capacity of the worm and

the system’s initial infected worm instances are the most

important parameters from the worm attacker perspective.

Intuitively, the larger these values are, the faster the

propagation is.

2) P2P system parameters: For P2P-based systems, the

following parameters need to be considered:

i) The topology degree of P2P systems: the average

number of neighbors connected to each peer.

ii) The size of P2P system: defines the number of hosts in

a P2P system.

iii) The number of peers within a swarm.

iv) The vulnerability of P2P systems: measures the

vulnerability of P2P hosts. As mentioned before, a host

in a P2P system could be used in less protected

environments, such as a home environment.

v) The join and leave rate of BitTorrent peers: defines the

number of peers that respectively join and leave

BitTorrent.

3) The Internet parameters: these parameters are imposed by

the nature of the Internet as well as the presence of detection

systems.

i) The join and leave rate of Internet hosts: defines the

number of hosts that respectively join and leave the

Internet.

ii) The average of Internet connection speed.

iii) The patch rate, the rate at which an infected or

vulnerable machine becomes invulnerable.

iv) The death rate, the rate at which an infection is detected

on a machine and eliminated without patching.

5.B Assumptions

We assume that the IP system address space is the IP address

space of IPv4, thus 322 . In the IPv4 address space, some valid

IP addresses are not actively utilized, are non-routable, or are

even not applicable to the host (based on previous statistical

result [6], only 24% of available addresses are used by active

hosts). We assume that there are two logical systems: a

“P2P” system, which represents BitTorrent in the Internet.

The other is called “nonP2P” system; it represents the rest of

Internet. In both “P2P” system and “nonP2P” system, we

assume that a number of hosts are vulnerable. As our

analysis considers the average case, we assume that each

host in “P2P” or “nonP2P’ system has a certain probability to

be vulnerable. In this paper, we do not consider the time

taken for the infected host to find the vulnerability of victims

and assume that the worm infects one victim within one unit

time. At the system’s initial time, we assume that there are a

certain number of infected hosts and infected hosts are

already in the “P2P” system. We assume that the join and

leave rates are uniform. Furthermore, we assume that the

average speed of connection of each peer is 240 kBps [16],

that the size of a BitTorrent packet is 64 kB [15], and that the

number of addresses returned by a tracker upon a request is

50 peers [8].

In table 1, we summarize the different notation used in the

description of our model:

Parameters Notations

T Total IP addresses in the system

 Size of “P2P” system at instant i

 Proportion of vulnerable hosts in the

Internet

C Attack capacity of worm infection host

(number of victims being able to be

scanned simultaneously)

 The rate at which a peer joins BitTorrent

 The rate at which a peer leaves BitTorrent

 The number of downloading request

received by peer per second.

 8

 The rate at which a peer downloads a

BitTorrent packet. (i.e. = average

connection speed 240 KBps / size of a

BitTorrent packet 64KB)

 The rate at which a hosts joins the Internet

 The rate at which a hosts leaves the

Internet

 The rate at which an infected or vulnerable

machine becomes invulnerable

 The rate at which an infection is detected

on a machine and eliminated without

patching

V(i,P2P) The number of vulnerable hosts in P2P at

the time i (V(0, P2P) is the number of

vulnerable hosts which can be infected at

the system initial time = *)

V(i,I) The number of vulnerable hosts in nonP2P

at the time i (V(0, I) is the number of

vulnerable hosts which can be infected at

the system initial time = T * 0.24 *)

I(i,P2P) The number of infected peers in P2P at the

time i (I(0, P2P) is the number of initial

infected hosts in the system.)

I(i,I) The number of infected peers in nonP2P at

the time i (I(0, I) is the number of initial

infected hosts in the system.)

I(i,ALL) The total number of infected hosts at the

time i

newI(i,P2P) The number of newly infected hosts in P2P

added at step i (newI (0,P2P) = 0)

newI(i,I) The number of newly infected hosts in

nonP2P added at step i (newI (0,I) = 0)

CacheSize The number of peers a peer can

simultaneously upload to.

 The number of neighbors, j can attack at

instant i

 The probability of the address of a peer in

BitTorrent is returned by a tracker upon

request of resources.

 The average number of peers in a swarm

 The average number of leeches in a swarm

(= *0.83) [16]

Num The number of peers in a swarm

Table 1: Notations in this paper

5.C Model

To better understand the characteristics of the BTW spread,

we adopt the epidemic dynamic model for disease

propagation. In order to make it flexible for analyzing BTW,

we use discrete time to conduct recursive analysis and

approximate the worm propagation [6] [17]. In what follows,

we will calculate the number of infected peers by BTW at

instant i : I(i,ALL).

Lemma 1: The size of BitTorrent evolves as follows:

)1(221)1(* PlPPaPii SS

Proof: The size of BitTorrent (1) increments by the number of

infected peers which joined BitTorrent at the instant i, and

decremented by the number of infected peers which left

BitTorrent at the instant i.

Lemma 2: For each infected peer in BitTorrent the number

of neighbors to scan evolves as follows:

foreach I(i+1, P2P

péérs

leeches
avgSi

PPiIPPiV
avg

/

)2,()2,(

péérs

add
avg

P
50

)]*([* 2 BTTleechesPaPaddconn avgP

 if (C <)

 else

(2)

Proof: The number of neighbors (i + 1) (2) increases by the

number of exchanging request received, and decreases by the

number of peers the worm scanned at instant i. The number

of neighbors a peer can have in BitTorrent is represented by

the size of its uploading\downloading cache (i.e. the number

of simultaneously maintained connections). The number of

downloading request received per second , is the

number of peers which has been redirected by a tracker at

instant i. In BitTorrent, a leech is redirected to another peer

upon its request for resources. A leech usually asks for

resources, when it first joins the swarm, and when it finishes

downloading a BitTorrent packet. Hence, is the sum of

and multiplied by the probability of

being redirected by a tracker upon a request of resources

.

Proposition 1: In BitTorrent given the number of vulnerable

nodes in BitTorrent V(i,P2P), the number of vulnerable

nodes in “nonP2P” systems V(i,I), the number of infected

machines in BitTorrent I(i,P2P), the number of infected

machines in BitTorrent I(i,I), the size of the BitTorrent

system (lemma 1) and the number of neighbors to scan for

each infected peer (i) (lemma 2) at instant i, the number of

newly infected peers in BitTorrent (3), and The number of

infected peers in “nonP2P” systems (4) in the next tick will

be:

(3)

(4)

Proof: The number of newly infected peers in BitTorrent (3):

is the number of vulnerable but not infected peers (i.e.

) multiplied by the probability of

being scanned by infected machines (i.e.

). Whereas The

number of newly infected hosts over the Internet and outside

BitTorrent (5): is the number of vulnerable but not infected

hosts (i.e.) multiplied by the probability of

being scanned by infected machines (i.e.

).

 9

Corollary: In all the Internet, given the number of newly

infected machines within BitTorrent newI(i,P2P) and the

number of newly infected machines in “nonP2P” systems

newI(i,I) (proposition 1) at instant i, the number of infected

hosts all over the Internet at time i (5) the next tick will be:

(5)

Where,

 (6)

and,

 (7)

Proof: The number of infected hosts all over the Internet

is (5): the sum of the number of infected peers in BitTorrent

(6), and the number of infected hosts outside BitTorrent (7).

The number of infected peers in BitTorrent (6) is incremented

by the number of newly infected machine in BitTorrent

newI(i,P2P), and decremented by the number of patched and

detected infected peers, and the number of infected peers

which left BitTorrent at the instant i. Whereas, The number

of infected hosts in the Internet and outside BitTorrent (7): is

incremented by the number of newly infected machine in

“nonP2P” systems newI(i,I), and decremented by the number

of patched and detected infected peers and the number of

infected peers which left BitTorrent at the instant i.

6. Numerical Results

In this section, we evaluate the numerical performance by

using models with different parameters for different

scenarios. We report the performance results along with

observations.

6.A Simulation Model:

 Metrics: For each of the scenarios, the system attack

performance is defined as follows: the time taken t (X

axis) to infected host number (Y axis). The higher the

performance value, the worse is the attack effect.

 Parameters: The general system is defined by the tuple:

<A, T, C, , , , , , , , I(0,P2P),

CacheSize, num>, representing the system configuration

parameters. A determines the attack strategy and can be

one of <BTW, Topologic, Random scanning>. Other

parameters are explained in Table 1. As we are only

focusing on selected important parameters that are

sensitive to BTW, the following parameters are set with

constant values (T= , C=6, I(0,P2P) = 5, =

3.75) in all our simulations.

6.B Performance Results:

In this section, we report the performance results along with

observations.

6.b.1 Impact of the attack strategy

Fig. 8 illustrates the sensitivity of attack performance

depending on different attack strategies. The general system

is configured as <*, , 6, 1* , 0.2, 0.01, 0.01, 3.75,

0.00002, 0.00002, 5, 30, 2000>. We notice that the BTW

attack strategy outperforms the traditional Topologic attack

strategy as well as the random scanning attack strategy. For

example, in the worm fast propagation phase (linear increase

– from simulation time 40 to 85), the BTW approach can

achieve 300% performance increase over the Topologic

attack strategy. The result matches our expectation:

achieving a higher infection rate in the P2P system

significantly improves the attack performance. From the

defense perspective, the BTW attack will be a very

challenging issue.

Figure 8: Performance Comparison of All Attack Strategies

6.b.2 The impact of P2P System Size

Fig. 9 illustrates the sensitivity of BTW performance under

different sizes of BitTorrent network. The general system is

configured as <BTW, , 6, *, 0.2, 0.01, 0.01, 3.75,

0.00002, 0.00002, 5, 30, 2000>. In this figure, the size of

BitTorrent varies in {2* , 4* , 1* }. We notice

that increase of BitTorrent network size enhances the attack

performance. The result matches previous observations [9]

[22]: the larger is the size of the P2P system, the higher is the

achieved scan hit probability.

Figure 9: The Sensitivity of BTW to BitTorrent Size

6.b.3 The impact of P2P Topology Degree

Fig. 10 illustrates the sensitivity of BTW performance within

the P2P system for different BitTorrent topology degrees.

This is represented by the limit of topologic neighbors a peer

can have (i.e. cache size).The general system is configured as

<BTW, , 6, 1* , 0.2, 0.01, 0.01, 3.75, 0.00002,

0.00002, 5, *, 2000>. In this figure, the Y axis represents the

number of infected peers in BitTorrent. We notice that an

increase in topology degree achieves better attack

performance. This matches our expectation; a larger

topology degree makes more P2P hosts open to BTW and

speeds up the worm propagation.

 10

Figure 10: The Sensitivity of BTW to the Topology degree

of BitTorrent nodes

6.b.4 The impact of P2P peers vulnerability

Fig. 11 illustrates the sensitivity of BW for different peers

vulnerabilities. The general system is configured as <BTW,

, 6, 1* , *, 0.01, 0.01, 3.75, 0.00002, 0.00002, 5, 30,

2000>. In this figure, the vulnerability of BitTorrent hosts

varies in {0.2, 0.4, 0.6}. We notice that the increase in

BitTorrent hosts vulnerability enhances the attack

performance of BTW. The result matches our expectation: a

larger vulnerable value causes more vulnerable hosts to be

infected in a given time. More infected hosts added during

the attack run-time makes the worm propagation faster.

Figure 11: The Sensitivity of BTW to the Vulnerability of

BitTorrent

Figure 12: The Sensitivity of BTW to the patching rate

6.b.5 The impact of patching rate

Fig. 12 illustrates the sensitivity of BTW performance for

different patching rates in the Internet. The general system is

configured as <BTW, , 6, 1* , 0.2, 0.01, 0.01, 3.75, *,

0.00002, 5, 30, 2000>. In this figure, the patching rate varies

in {0.000002, 0.0005, 0.001}. We notice that as the

patching rate grows, the spread of BTW slows down more

quickly in the Internet as well as in BitTorrent network.

Figure 13: The Sensitivity of BTW to the number of peers in

a single swarm

6) The impact of swarms’ population

Fig. 13 illustrates the sensitivity of BTW performance in the

P2P system for different number of swarms in BitTorrent

swarms. The general system is configured as <BTW, , 6,

1* , 0.2, 0.01, 0.01, 3.75, 0. 00002, 0.00002, 5, 30, *>. In

this figure, the number of peers in a single swam varies in

num {5, 20, 2000}. We notice that the increase in the

number of peers in a BitTorrent swarm enhances the

performance attack of BTW. The results match our

expectation: a larger swarm population makes more P2P

hosts open to BTW and speeds up the worm propagation.

7. Conclusion

Set In this paper we analyzed the impact of a novel worm

propagation model on BitTorrent. BitTorrent is particularly

vulnerable to topology aware active worms. Topology aware

worms use the topologic information hold by their victims to

find new victims. Such worms are capable of quickly

flooding the Internet while escaping current deployed

intrusion detection systems. Moreover, in order to boost its

initial propagation the worm uses a trackers’ hitlist

consisting of the most crowded swarms. This mechanism

allows the worm to find newer victims even faster than

traditional scanning worms. This combination of both

scanning strategies is fatal, because it provides the worm

with certainty discretion and speed. Our analysis of this

propagation scheme shows that it can achieve a 300%

increase in its propagation speed in comparison with

traditional scanning worms. We developed a mathematical

model to describe this new propagation strategy, and

provided numerical analysis results. We believe that our

work provides important guidelines for P2P system design

and control that address the concerns of active worms and to

develop efficient containment and intrusion detection

systems.

References

[1] A Survey of Peer-to-Peer Content Distribution

Technologies. Androutsellis-Theotokis, S. and Spinellis,

D. s.l. : ACM Computing Surveys, 2004., 2004.

 11

[2] A Survey of Peer-to-Peer Security Issues. Wallach, D.S.

Tokyo, Japan : Springer, November 8-10, 2002.

[3] Incentives build robustness in BitTorrent. Cohen, B.

May 2003.

[4] P2P survey 2007. Ipoque.

[5] A measurement study of piece population in BitTorrent.

C, Dale et J, Liu. Washington DC : GlobeCom,

November 26–30 2007.

[6] W. Yu, C. Boyer, S. Chellappan, D. Xuan. Peer-to-peer

system-based active worm attacks: Modeling and

analysis. IEEE International Conference on

Communications (ICC). May 2005.

[7] C. Göldi, R. Hiestand. Scan Detection Based

Identification of Worm Infected Hosts. Zurich : Swiss

Federal Institute of Technology, , 18 April 2005. ETHZ.

[8] Hales, D and Patarin, S. How to cheat bittorrent and

why nobody does. s.l. : Department of Computer

Science University of Bologna, May 2005. TR UBLCS-

2005-12.

[9] Measurement and Analysis of BitTorrent Signaling

Traffic. Erman, David, et al. Oslo : NTS17, 2004.

[10] Joukov, N. and Chiueh, T. Internet worms as internet-

wide threat. Experimental Computer Systems Lab, Tech.

Rep. TR-143, September. 2003.

[11] Richardson, Robert. 2007 CSI Computer Crime and

Security Survey. s.l. : Computer Security Institute, 2007.

[12] Abhishek, Sharma et Vijay, Erramilli. Worms: attacks,

defense and models. s.l. : Computer Science

Department, University of Southern California.

[13] http://www.us-cert.gov/cas/tips/ST04-015.html. CERT.

[14] Nassima Khiat, Yannick Carlinet, Nazim Agoulmine.

The Emerging Threat of Peer-to-Peer Worms. MonAM

2006 Workshop. 2006.

[15] Bittorrent Protocol Specification v1.0. Theory.org.

http://wiki.theory.org/BitTorrentSpecification.

[16] Pouwelse, J.A., et al. The bittorrent p2p file-sharing

system: Measurements and analysis. International

Workshop on Peer-to-Peer Systems (IPTPS). 2005.

[17] Chen, Z. S., Gao, L.X. et Kwiat, K. Modeling the

Spread of. In Proceedings of IEEE INFOCOM, San

Francisco. March 2003.

[18] Tao, Li, Zhihong, Guan and Wu, Xianyong. Modeling

and analyzing the spread of active worms based on P2P

systems. Computers & Security . Issue 3, May 2007,

Vol. Volume 26, Pages 213-218.

[19] Joukov, N. and Chiueh, T. Internet worms as internet-

wide threat. Experimental Computer Systems Lab, Tech.

Rep. TR-143, September. 2003. Staniford, Stuart,

Paxson, Vern and Weaver, Nicholas.

[20] How to 0wn the Internet in Your Spare Time. In

Proceedings of the 8th USENIX Security Symposium.

August 2002.

[21] Richardson, Robert. 2007 CSI Computer Crime and

Security Survey. s.l. : Computer Security Institute, 2007.

Author Biographies

Sinan Hatahet was born in Marseille, France the 24th of April 1983. He

graduated from the College of Computer Science and Engineering at King
Fahed University of Petroleum and Minerals, Dhahran, Kingdom of Saudi

Arabia, in 2006. He earned a Master of Science in Computer Science from

the University of Technology of Compiegne, France and currently preparing
a PhD degree in Heudiasyc laboratory, Compiegne, France. His research

interests are P2P networks security, mainly BitTorrent, and wireless sensor

networks.

Prof. Abdelmadjid Bouabdallah received the Master (DEA) degree and

Ph.D. from university of Paris-sud Orsay (France) respectively in 1988 and
1991. From 1992 to 1996, he was Assistant Professor at university of Evry-

Val-d'Essonne, France. Since 1996, he is Professor in the department of

Computer Engineering at University of Technology of Compiegne (UTC)
where he is leader of Networking and Optimization research group. His

research Interest includes Internet QoS and security, unicast/multicast

communication, and fault tolerance in wired/wireless networks. He

conducted several important research projects founded by Motorola, France

telecoms, RNRT, etc.

Dr. Yacine Challal is assistant professor at Compiegne University of

Technology (France). He is member of the “Networking and optimization”

research team at the UMR-CNRS 6599 Heudiasyc Lab. He got his PhD and
Master degrees respectively in 2005, and 2002 from Compiegne University

of Technology. He got his engineering degree from National Institute of

Informatics (Algiers) in 2001. His research interests include security in
group communication, security in wireless mobile networks and wireless

sensor networks, and fault tolerance in distributed systems.

