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Abstract—An original topology of superconducting rotating 

machine propose to use the diamagnetism of high temperature 

superconducting (HTS) bulk. Here, YBCO bulks allow to shield 

the magnetic field created by two solenoids supplied by dc 

currents in contra-directions. The obtained airgap field is 

multipolar as in conventional ac machines. A quick analytical 

method is developed here to compute the magnetic field 

distribution. It is based on the determination of the modulating 

function associated with the radial flux density distribution 

resulting from the introduction of the superconducting bulks. A 

first step allows the calculation of the modulating function by a 

2D analytical method (using the resolution of Laplace’s and 

Poisson’s equations by the separation of variables technique). 

The later is used in a second step together with the field produced 

by the two solenoids to calculate the radial flux density 

distribution in the airgap of the considered inductor. 

Comparisons to experiments and to 3D FE results show the 

validity of the proposed approach with the benefit of low 

computation time. 

 
Index Terms—Analytical solution, superconducting rotating 

machines, superconducting materials, magnetic shield. 

I. INTRODUCTION 

UPERCONDUCTING MATERIALS are used in different 

electrical devices like motors and generators which 

represent an important part of the superconducting 

applications [1] such as marine propulsion, offshore wind 

generators. Moreover, the shielding properties of these 

materials gave rise to a variety of electrical machine 

topologies.  

 Actually in some types of electrical machines (claw pole, 

Lyndell machines…) ferromagnetic materials are used to 

modulate and concentrate the magnetic field to obtain a 

multipolar wave in the air-gap from a constant excitation. In 

superconducting (SC) applications, ferromagnetic materials 

are heavily saturated since they are subjected to high magnetic 

fields. Hence, they can not be used for modulation purposes. 

Therefore the SC shields can be used as flux barriers in 

variable reluctance motors [2] to increase the saliency ratio or 

to allow flux concentration. From this last idea, an original 

topology of inductor, Fig.1, has been proposed [3] and a SC 

synchronous motor has been designed, built and successfully 

tested [4]. 

Several methods like Monte Carlo methods [5,6] or 3D 

finite elements can be used to compute the magnetic field 

distribution in this 3D structure but this leads to a very large 

computation time. 

  
Fig. 1. Schematic of the flux concentration SC inductor. 

 

Another approach presented in this paper is based on the 

determination of the modulating function associated with the 

radial flux density distribution resulting from the introduction 

of the SC bulks. Comparisons to experiments and to 3D FE 

results show the validity of the proposed approach with the 

benefit of huge savings in computation time. 

II. PROBLEM DESCRIPTION AND ASSUMPTIONS 

Figure 1 shows the studied SC inductor. It uses SC bulks, 

which present the specificity to have a diamagnetic behavior 

under zero-field cooling, to shield the magnetic field created 

by two solenoids supplied by dc currents in contra-directions. 

The obtained airgap field is multipolar as in conventional ac 

machines. This flux density is minimal above a SC bulk and 

maximal above the bulks interspaces.  

In the present work, a 2D domain corresponding to the 

median cross section of the SC inductor (taken at z=0) is 

considered. The aim being the determination of the radial flux 

density distribution in the air gap.  The following assumptions 

are made: 

 HTS bulks are modeled with radial sides. 

 Perfect diamagnetic behavior of the HTS bulks 

under zero-field cooling.  

The last assumption is equivalent as to impose a Dirichlet 

condition on the surfaces of the superconducting bulks for the 

magnetic vector potential 

 0A             (1) 

This is justified by the fact that superconductors in normal 

operation perfectly shield the magnetic field. However, it is 

obvious that the study of the real behavior of a superconductor 

in term of current density distribution under applied external 

magnetic field is of great importance. Indeed, this allows the 

determination of the needed geometrical parameters of the SC 

bulk to “do the job” i.e. to shield the external field. 
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Now, this paper considers that the SC bulk is effectively 

behaving like a screen against the external magnetic field.  

In the following, a method for computing the radial flux 

density created by the inductor of Fig.1 is presented. 

III. PRINCIPLE OF THE METHOD 

At a given axial position in the air above the inductor, the 

radial flux density distribution at a radial distance r produced 

by the two solenoids can be written as: 

),().(),( 0  rrBrB rrr         (2) 

where   is the angular position, Br0 is the radial flux density 

created by the solenoids without the SC bulks and Λr is the 

modulating function.  

 

The model of the SC inductor is split into two steps. Firstly, 

Br0 is computed analytically using the Biot-Savart law [7]. 

Secondly, the modulating function which only depends on the 

geometry and on the material properties of the system is 

written as follows: 





...3,2,1

0 )cos()()(),(
k

rkrr kQrrr      (3) 

where Λrk are the Fourier coefficients for the modulating 

function and Q is the number of superconducting bulks. 

From (2) and (3): 





...3,2,1

000 )cos()()()()(),(
k

rkrrrr kQrrBrrBrB    (4) 

From (4), one can see that the radial flux density exhibits a 

dc component which doesn’t create any "emf". The number of 

pole-pairs of the device is p=Q since the highest space 

harmonic is obtained for k=1. Br0 being known, we have to 

determine the modulating function Λr at a given axial position 

to get the radial flux density distribution using (4). 

A. Determination of the modulating function  

To calculate Λr, let us consider a 2D domain corresponding 

to the median cross section of Fig.1 (taken at z=0).  
 

Firstly, the SC bulks are removed. At a radius R1, Fig. 2a, 

we impose a tangential magnetic field of the form 

  )cos(),( 01  pHRhs          (5) 

H0 can take any value and the magnetic field distribution is 

easily calculated by an analytical approach. From this 

computation, the obtained radial flux density at a radius Re is 

called Bra(Re,). 
 

In a second step, the SC bulks are introduced, Fig. 2b. The 

same condition on R1 as in (5) is used. The radial flux density 

resulting from the introduction of the SC bulks (details in the 

next sub-section) is called Brb(Re,) 
 

Finally, the modulating function is simply obtained by  

  
 
 




,

,
,

era

erb
er

RB

RB
R           (6) 

B. Analytical formulation to determine Brb 

The studied geometry is show in Fig.3. A magnetic vector 

 
Fig. 2. Studied domains for the determination of the modulating function (a): 

without SC bulks and (b): including SC bulks 

 

 
 

Fig. 3.  Studied  geometry to determine the modulating function (Q = 4) 

 

potential formulation has been chosen in 2D polar coordinates 

to describe the problem. According to the adopted 

assumptions, the magnetic vector potential has only one 

component along the z-direction and only depends on the r 

and  coordinates. 

Laplace’s equation is solved in the holes (inter bulk space) 

and in the different air sub-domains. The separation of 

variables technique is employed to get the solution. 

 

1) General Solution in the i-th hole sub-domain (regions 

i=1 to i= Q) 

In the i-th hole sub-domain, the Laplace equation in polar 

coordinates is written as  

  0
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 (7) 

Considering a perfect diamagnetic behavior for the HTS 

bulks, the normal component of the magnetic field at the sides 

of the HTS bulk is null. The boundary conditions for the i-th 

hole domain are 

 0
 i

iA


 and 0
  i

iA       (8) 

The continuity of the tangential component of the magnetic 

field between the i-th hole and its neighboring air sub-domains 

(regions II and III) leads to 
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The general solution of (7) is found by the method of the 

separation of variables [8] (described by a Sturm-Liouville 

problem). Using (8), it is written as 

  R1 R2 R3

 R4   

 

 

 

 

 

 

Superconducting 
Bulk 

II 

III 

I 

i = Q - 1      

iθ

β

  A = 0 

  i = Q 

i = 1 

Re )cos(0 pH

raB rbB

1R1R

e R
eR

 pcosH0 a  b



> 10-A-439-ASC < 

 

3 

















)(sin)..(),(

1

i

n

n

i
n

n

i
ni

n
rDrCrA 




 







  (10) 

where i
nC  and i

nD  are constants to be determined using the 

interface conditions (9).  

 

2) General solution in sub-domain I 

The problem to solve is 
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The boundary condition at 1Rr   is 

   ,θRA,θRA III 11           (12) 

The general solution of (11) is well known [8] (periodic 

Sturm-Liouville problem in a disc). Taking into account the 

boundary condition (12) and the fact that the magnetic vector 

potential must be finite at r = 0, the general solution of (11) is  
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where h is a positive integer. The coefficients IA0 , I
hA  and 

I
hC  are determined using a Fourier series expansion of  

),( 1 RAII  over the interval [0, 2]  

3) General solution in sub-domain II and III 

In the sub-domains II and III, the problem to solve is 
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where X  corresponds to sub-domain (II or III) and 
Xi

R and 

XeR are respectively the inner and the outer radii of each sub-

domain. 

In sub-domain II, the boundary condition at 1Rr   is  

 s

Rr

II

Rr

I h
r

A

r

A
.0

11













      (15) 

The continuity of the magnetic vector potential at the interface 

between the holes and sub-domain II ( 2Rr  ) leads to  

 )(),( 2  FRAII          (16) 

And considering that the magnetic vector potential is equal to 

zero elsewhere (diamagnetic proprieties of the 

superconducting bulks), one can write 
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where ),( rAi  is the magnetic vector potential in the i-th 

hole given by (10). 

In the sub-domain III, the boundary condition at 4Rr   is  

 0),( 4 RAIII          (18) 

The radius R4 is chosen far enough to not affect the results. 

The same method as the one presented for sub-domain II is 

used to determine the boundary condition at 3Rr  .  

Introducing the function G(θ), the boundary condition can 

be written as  

 )(),( 3  GRAIII           (19) 

with 
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where ),( rAi  is the magnetic vector potential in the i-th 

hole given by (10). 

Finally, the general solution of (14) is well known [8] 

(periodic Sturm-Liouville problem in an annulus). By taking 

into account the boundary conditions (15), (16) in II and (18), 

(19) in III the general solution of the magnetic vector potential 

in the air-gaps can be written as 
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where k is a positive integer. The coefficients XA0 , XB0 , 

X
kA , X

kB , X
kC and X

kD are determined using Fourier series 

expansions of the boundary conditions over the interval [0, 

2]. 

The radial flux density at r=Re is 

 
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III
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1
,         (22) 

IV. SIMULATION STUDIES 

An inductor (IND1) is considered with characteristics given 

in Table I. This inductor is a part of a synchronous machine 

which has been constructed and successfully tested in our 

laboratory [4]. This inductor was designed to create a 4 pole-

pairs airgap flux density so it consists of 4 YBCO bulks, each 

of them being made from assembling 2 rectangular SC tapes. 

A. Modulating function 

Figure 4 shows the obtained modulating function and its 

harmonic spectrum at r=124 mm. As expected from (2), the 

presence of the SC bulks results in a number of harmonics, the 

largest of which is the dc component followed by the 4
th

 

harmonic. 

TABLE I 

PARAMETERS OF SC INDUCTOR (IND1) 

Solenoid SC material (wires) NbTi  

Number of solenoids 2 

Inner radius of solenoid, mm 75 

Outer radius of solenoid, mm 105 

Axial length of solenoid, mm 50 

Axial distance between solenoids, mm 50 

Bulk SC material YBCO 

Number of bulks (Q ) 4 

Inner radius of bulk, mm 100 

Bulk thickness, mm 5 

Bulk axial length, mm 50 

Bulk angular opening, deg 45 
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Fig. 4. Modulating function and its harmonic spectrum (r = 124 mm) 
 

Notice that in conventional smooth airgap ac machines, the 

inductor field (created by windings or permanent magnets) is 

multipolar with a nil mean value (no dc component). 

B. Flux density waveforms 

The variation of the radial flux density at r=124mm is 

shown in Fig. 5 together with its harmonic spectrum.  

The NbTi solenoids have been supplied by direct current of 

about 15A which leads to a current density J=70A/mm². The 

radial flux density created by the solenoids when the SC bulks 

are removed is about Br0=0.38T. The resulting radial flux 

density Br(r,) is calculated using (2). Clearly, the presence of 

the SC screens results in a number of space harmonics, the 

largest of which corresponds to 4 pole-pairs. Hence, the 

number of pole-pairs of the armature windings must be equal 

to 4 to create the highest possible torque.  

To validate the proposed method, 3D FE analyses have 

been carried out using commercial software (COMSOL
 

MULTIPHYSICS
®
). To obtain acceptable results, we used a 

mesh of about 250000 tetrahedral elements with a vector 

potential formulation.  

A good agreement is noticed between the FE results and 

those issued from the proposed method, Fig.6a. The 

computation time is about 3 hours with the 3D FE analysis 

whereas it takes only few seconds with the proposed approach. 

It is clear that in the first design stage of the inductor where 

multiple computations are needed, the proposed model can be 

advantageously used. 

The study of the axial dependence of the radial flux density 

assumes that the modulating function doesn’t depend on the 

axial coordinate z. Hence, the same modulating function of 

Fig.4 has been used for the computations. The radial flux 

density is computed using (3) with the difference that Br0 

computed with the Biot-Savart law depends now on z. Again, 

the agreement is good between the different methods in use, 

Fig. 6b. 
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Fig. 5. Radial flux density waveform and its harmonic spectrum (r=124mm, 
J=70A/mm²) 
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 (a) (b) 

Fig. 6. Comparison of radial flux densities (r = 124 mm, J=70A/mm²) 

(a) along -direction, (b) axial dependence taken between the bulks 

interspaces 

V. COMPARISONS TO EXPERIMENTS 

To corroborate the simulation studies, the obtained results 

have been compared to some experimental data. 

Another inductor has been built in our laboratory [3]. Its 

characteristics are given in Table II. The flux density versus 

the angular position has been measured with ten Hall probes 

numbered from S1 to S10, Fig.7. 

Figure 8 presents a comparison between the measured flux 

densities and the calculated ones. It can be seen that the results 

issued from our method are in good accordance with the 

measurements and with the 3D FE results as well. 

VI. CONCLUSION 

A simple and quick method to compute the radial flux 

density created by an original topology of a superconducting 

inductor has been presented. Comparisons to 3D finite element 

analyses and to experimental results show the validity of the 

proposed approach with the benefit of huge savings in 

computation time. 

TABLE II 
PARAMETERS OF SC INDUCTOR (IND2) 

Solenoid SC material (wires) NbTi  

Number of solenoids 2 

Inner radius of solenoid, mm 20 

Outer radius of solenoid, mm 32 

Axial length of solenoid, mm 45 

Axial distance between solenoids, mm 30 

Bulk SC material YBCO 

Number of bulks (Q ) 4 

Inner radius of bulk, mm 23 

Bulk thickness, mm 5 

Bulk axial length, mm 25 

Bulk angular opening, deg 57 
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Fig. 7. Comparison of calculated and measured flux densities (r=32 mm, 
I=260A) 
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