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SPECTRAL TRIPLES FOR FINITELY PRESENTED

GROUPS, INDEX 1

SÉBASTIEN PALCOUX

Abstract. Using a Cayley complex (generalizing the Cayley graph)
and Clifford algebras, we are able to give, for a large class of finitely
presented groups, a uniform construction of spectral triples with D+ of
index 1.
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Warning 0.1. This paper is just a first draft, it contains very few proofs.
It is possible that some propositions are false, or that some proofs are in-
complete or trivially false.

1. Introduction

In this paper, we define even θ-summable spectral triples for a large class
of finitely presented groups such that D+ is index 1. We just generalize the
unbounded version of the construction of the Fredholm module for the free
group given by Connes [1] and M. Pimsner-Voiculescu [5]. For so, we use
the Clifford algebra in the same spirit that Julg-Valette do in [4]. We also
use topics in geometric group theory as a Cayley complex (generalizing the
Cayley graph).
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2. Basic definitions

Definition 2.1. A spectral triple (A, H,D) is given by a unital ⋆-algebra A
representated on the Hilbert space H, and an unbounded operator D, called
the Dirac operator, such that:

(1) D is self-adjoint.
(2) (D2 + I)−1 is compact.
(3) {a ∈ A | [D, a] ∈ B(H)} is dense in A.

See the article [6] of G. Skandalis, dedicated to A. Connes and spectral triple.

Definition 2.2. A group Γ is finitely presented if it exists a finite gen-
erating set S and a finite set of relations R such that Γ = 〈S | R〉. We
always take S equals to S−1 and the identity element e 6∈ S (see [3] for
more details).

3. Geometric construction

Definition 3.1. Let Γn be the set of irreducible n-blocks, defined by induc-
tion:

• Γ0 = Γ.
• Γ1 := {{g, gs} | g ∈ Γ, s ∈ S}

An (n + 2)-block is a finite set a of (n+ 1)-blocks such that:

∀b ∈ a, ∀c ∈ b, ∃!b′ ∈ a such that b ∩ b′ = {c}.

Let a, a′ be n-blocks then the commutative and associative composition:

a.a′ := a△a′ = (a ∪ a′)\a ∩ a′

gives also an n-block if it’s non empty (we take n 6= 0).
Let n > 1, an n-block a′′ is called irreducible if ∀a, a′ n-blocks:

(1) a′′ = a.a′ ⇒ card(a) or card(a′) ≥ card(a′′)

(2) ∀b ∈ a′′, b is an irreducible (n− 1)-block.

• Γn+2 is the set of irreducible (n + 2)-blocks.

Note that if b ∈ Γn, we call n the dimension of b.

Definition 3.2. An n-block is called admissible if it decomposes into
irreducibles.

Example 3.3. Let Z = 〈s±1 | 〉 then a = {e, s10} is an admissible 1-block
because a = {e, s}.{s, s2}...{s9, s10}; but, b = {{e, s}, {e, s−1}, {s−1, s}} is a
non-admissible 2-block, because there is no irreducible 2-block in this case.

Remark 3.4. The graph with vertices Γ0 and edges Γ1 is the Cayley graph
G.

Remark 3.5. Let a be an n-block then a.a = ∅ and if a = {b1, .., br} then
bi = b1.b2...bi−1.bi+1...br and b1.b2...br = ∅.

Remark 3.6. Γn+1 6= ∅ iff ∃r > 1; a1, ..., ar ∈ Γn all distincts with a1...ar =
∅.
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Remark 3.7. Let Γ = 〈S | R〉 be a finitely presented group,
then ∃N such that ΓN 6= ∅ and ∀n > N , Γn = ∅. In fact N ≤ card(S)

Examples 3.8. For Fr = 〈s±1
1 , ..., s±1

r | 〉, we have N = 1.
For Zr = 〈s±1

1 , ..., s±1
r | sisjs

−1
i s−1

j , i, j = 1, ..., r〉, we have N = r.
Here an n-block (n ≤ r) is just an n-dimensional hypercube.

Definition 3.9. We define the action of Γ on Γn recursively:

• Γ acts on Γ0 = Γ as: ug : h → g.h with g, h ∈ Γ.
• Action on Γn+1: ug : a → g.a = {g.b | b ∈ a} with g ∈ Γ,
a ∈ Γn+1.

Note that the action is well-defined: g.Γn = Γn, ∀g ∈ Γ.

Definition 3.10. Let a and b be blocks, then we say that b e a if b = a or
if b ∈ a or if ∃c ∈ a such that b e c (recursive definition).

Definition 3.11. Let n > 1 then an n-block c is connected if ∀b ⊂ c:
‘b is an n-block’ ⇒ b = c.

Definition 3.12. An n-block b is called maximal if there is no (n + 1)-
block c with b ∈ c. We note Γmax the set of maximal irreducible blocks.

Example 3.13. Let Γ = Z
2 ⋆ Z = 〈s±1

1 , s±1
2 , s±1

3 | s1s2s
−1
1 s−1

2 〉, then {e, s3}
is a maximal 1-block, {{e, s1}, {s1, s1s2}, {s1s2, s2}, {s2, e}} is a maximal
2-block.

Definition 3.14. We define the block lenght ℓ(.) as follows: let b be a
block, then ℓ(b) is the minimal number of irreducible blocks decomposing a
connected admissible block c with e e c and, b e c or b ∩ c 6= ∅.

Definition 3.15. Let b be a block, then a sequence (c1, ..., cℓ(b)) with b e c1,
e e cℓ(b), ci irreducible and ci ∩ ci+1 6= ∅ is called a geodesic block-path,
from b to e beginning with c1.

Definition 3.16. Let Υb be the set of irreducible blocks of minimal dimen-
sion beginning a geodesic block-path from b to e.

Remark 3.17. In general, Υb is not of cardinal one. It is for CAT(0)
groups, but not for the Baumslag-Solitar group BS(1, 2) = 〈a±1, b±1 | bab−1 =
a2〉.

Remark 3.18. Consider the group Γ and its finite presentation 〈S | R〉,
then we can complete the presentation as follows: let T be a finite subset
of Γ with T ∩ S = ∅, T = T−1 and e 6∈ T , let S ′ = T ∪ S an amplified
generating set and R′ = R ∪ {t = t̄ | t ∈ T} where t̄ is t considered as a
generator.
Then Γ = 〈S ′ | R′〉.

Lemma 3.19. We can choose T such that if we build the blocks with the
completed presentation 〈S ′ | R′〉, then every irreducible blocks are triangu-
lar, i.e. ∀b ∈ Γn, card(b) = n + 1. We call 〈S ′ | R′〉 a triangularized

presentation.
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Example 3.20. The complete triangularization: let Γ = 〈S | R〉 be a
finitely presented group, then Γ acts on Γmax (def. 3.9, 3.12); there are only
finitely many orbits O1, ..., Or; choose bi ∈ Oi; let Ei = {g ∈ Γ | g e bi};
let Ti = {gh−1 | g, h ∈ Ei, gh

−1 6∈ S ∪ {e}}. Then amplifying the gener-
ating set with T =

⋃
Ti, we obtain obviously a triangularization called the

complete triangularization. Note that this process increases the maximal
dimension of the blocks. Note that card(T ) is finite because the group is
finitely presented.

4. Clifford algebra

We first quickly recall here the notion of Clifford algebra, for a more
detailed exposition, see the course of A. Wassermann [7].

Definition 4.1. For V a n-dimensional Hilbert space, define the exterior
algebra Λ(V ) equals to ⊕n

k=0Λ
k(V ) with Λ0(V ) = CΩ. We called Ω the

vacuum vector. Recall that v1 ∧ v2 = −v2 ∧ v1 so that v ∧ v = 0.
Note that dim(Λk(V )) = Ck

n and dim(Λ(V )) = 2n.

Definition 4.2. Let αv be the creation operator on Λ(V ) defined by:

αv(v1 ∧ ... ∧ vr) = v ∧ v1 ∧ ... ∧ vr and αv(Ω) = v

Reminder 4.3. The dual α⋆
v is called the annihilation operator, then:

α⋆
v(v1 ∧ ... ∧ vr) =

∑r

i=0(−1)i+1(v, vi)v1 ∧ ...vi−1 ∧ vi+1 ∧ ... ∧ vr and
α⋆
v(Ω) = 0

Reminder 4.4. Let γv = αv+α⋆
v, then γv = γ⋆

v and γvγw+γwγv = 2(v, w)I.

Definition 4.5. The operators γv generate the Clifford algebra Cliff(V ).
Note that the operators γv are bounded and that Cliff(V ).Ω = Λ(V ).

Remark 4.6. V admits the orthonormal basis (va)a∈I .
We will write γa instead of γva, so that [γa, γa′ ]+ = 2δa,a′I.

Let Γ be a finitely presented group, with a triangularized presentation
〈S | R〉.

Definition 4.7. For any irreducible block c, let ∆c = {b ∈
⋃
Γn | c ∈ Υb},

with Υb defined on definition 3.16.

Remark 4.8. If ∆c 6= ∅ then c ∈ ∆c⋃
Γn =

⋃
∆c (it’s not a partition in general)

If ∆c ∩∆c′ 6= ∅ with c 6= c′ then dim(c) = dim(c′) and c.c′ is connected.

Definition 4.9. Let
⊔

α∈J Pα be the minimal partition generated by⋃
∆c, ie

⊔
α∈J Pα =

⋃
Γn, ∀α ∈ J , Pα 6= ∅ and ∃n > 0, ∃c1, ..., cn

irreducibles such that Pα = ∆c1 ∩ ... ∩∆c1.
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Lemma 4.10. For any α ∈ J , Pα admits a unique element cα (resp. c′α)
of minimal dimension m (resp. of maximal dimension M). Denote by
Iα the set of blocks of dimension m + 1 in Pα, then Pα is in one-to-one
correspondence with the power set P(Iα); in particular, the cardinality of
Pα is 2M−m.

Definition 4.11. We naturally identify ℓ2(Pα) with the exterior algebra
Λ(ℓ2(Iα)) on which operates the Clifford algebra Cliff(ℓ2(Iα)) generated by
γa, a ∈ Iα.

5. Dirac operator

Definition 5.1. We define the n-block lenght ℓn(.) as follows: let b be a
block, then ℓn(b) is the minimal number of irreducible blocks decomposing a
connected admissible n-dimensional block c with e e c and, b e c or b∩c 6= ∅.

Definition 5.2. Let b be a block, then a sequence (c1, ..., cℓn(b)) with b e c1,
e e cℓ(b), ci ∈ Γn and ci∩ ci+1 6= ∅ is called a geodesic n-block-path, from
b to e beginning with c1.

Definition 5.3. For any α ∈ J , let n = dim(cα)+1; for any a ∈ Iα define
pa(α) the number of geodesic n-block path from cα to e beginning with a; let

p(α) =
∑

a∈Iα
pa(α); let λa =

pa(α)
p(α)

ℓn(cα).

Definition 5.4. On ℓ2(Pα) = Λ(ℓ2(Iα)), define the Dirac operator Dα by:

Dα =
∑

a∈Iα

λa.γa

Remark 5.5. Pe := ∆e = {e}, ℓ2(Pe) = Ce1, Ie = ∅ and De = 0.

Definition 5.6. Consider then the Hilbert space:

H =
⊕

n

ℓ2(Γn) =
∑

c

ℓ2(∆c) =
⊕

α∈J

ℓ2(∆α) =
⊕

α∈J

Λ(ℓ2(Iα))

Z2-graded by the decomposition into even and odd dimensional blocks:

H = H+ ⊕H−

Define the unbounded selfadjoint operator D =
∑

α∈J Dα.

Lemma 5.7. D2 =
∑

α λ
2
α.pα,

with λ2
α =

∑
a∈Iα

λ2
a and pα the projection on ℓ2(∆α).

Proof. We use the orthonormal decomposition and the Clifford relations.
�

Proposition 5.8. D+ : H+ → H− is a Fredholm operator of index 1.

Proposition 5.9. (D2 + I)−1 is compact.
For t > 0, the operator e−tD2

is trass-class.
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Definition 5.10. For any g ∈ Γ and for any s ∈ S define ps(g) the
number of geodesic 1-block path from g to e beginning with {g, gs}; let
p(g) =

∑
s∈S ps(g).

Definition 5.11. Let C be the class of finitely presented groups Γ = 〈S | R〉
such that ∀g ∈ Γ, ∃Kg ∈ R+ such that ∀s ∈ S and ∀h ∈ Γ (with h, gh 6= e):

|
ps(gh)

p(gh)
−

ps(h)

p(h)
| ≤

Kg

ℓ1(h)

Examples 5.12. The class C is stable by direct or free product, it contains
Zn, Fn, the finite groups, and probably every amenable or automatic groups
(containing the hyperbolic groups, see [2]).

Proposition 5.13. Let Γ of class C, A = C⋆
r (Γ) and D as previously then:

{a ∈ A | [D, a] ∈ B(H)} is dense in A.

Theorem 5.14. (A,H,D) is an even θ-summable spectral triple and D+

is index 1. It then gives a non-trivial element for the K-homology of A.
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