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SPECTRAL TRIPLES FOR FINITELY PRESENTED
GROUPS
INDEX 1

SEBASTIEN PALCOUX

ABSTRACT. Using generalized Cayley graphs and Clifford algebras, we
are able to give, for a large class of finitely presented groups, a uniform
construction of spectral triples with an index 1 Dirac operator.
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1. INTRODUCTION

In this paper, we define even #-summable spectral triples for a large
class of finitely presented groups such that the Dirac operator index 1. We
just generalize the unbounded version of the construction of the Fredholm
module for the free group given by Connes [l] and M. Pimsner-Voiculescu
[H]. For so, we use the Clifford algebra in the same spirit that Julg-Valette
do in [ff]. We also use topics in geometric group theory as a generalized
Cayley graph.
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2 S. PALCOUX

2. BASIC DEFINITIONS

Definition 2.1. A spectral triple (A, H, D) is given by a unital x-algebra A
representated on the Hilbert space H, and an unbounded operator D, called
the Dirac operator, such that:

(1) D is self-adjoint.

(2) (D*+1I)~! is compact.

(3) {a € A | [D,a] € B(H)} is dense in A.
See the article [{] of G. Skandalis, dedicated to A. Connes and spectral triple.
Definition 2.2. A group I' is finitely presented if it ewists a finite gen-
erating set S and a finite set of relations R such that I' = (S| R). We

always take S equals to S~ and the identity element e ¢ S (see [ for
more details).

3. GEOMETRIC CONSTRUCTION

Definition 3.1. Let '), be the set of irreducible n-blocks, defined by induc-
tion:
o[y =1T.
o' :={{g,98}|geTl,seS}
An (n + 2)-block is a finite set a of (n + 1)-blocks such that:
Vb € a,Vc € b, € a such that bNb = {c}.
Let a,a’ be n-blocks then the commutative and associative composition:
a.a' :=ald = (aUd)\anNd
gives also an n-block if it’s non empty (we take n # 0).
Let n > 1, an n-block a" is called irreducible if Va,a' n-blocks:
(1) " = a.a’ = card(a) or card(a’) > card(a”)
(2)¥b e a”, b is a irreducible (n — 1)-block.
o [',.o is the set of irreducible (n + 2)-blocks.
Note that if b € T',,, we call n the dimension of b.

Definition 3.2. An n-block is called admaissible if it decomposes into
irreducibles.

Example 3.3. Let Z = (s |) then a = {e, s'°} is an admissible 1-block
because a = {e, s}.{s,s?}..{s%, s}, but, b = {{e, s}, {e, s}, {s7},s}} isa

non-admissible 2-block, because there is no irreducible 2-block in this case.

Remark 3.4. The graph with vertices Iy and edges I'y is the Cayley graph
g.

Remark 3.5. Let a be an n-block then a.a = 0 and if a = {by,..,b.} then
bi = bl.bQ.-.bifl.biJrl...br and bl.bQ...br = (Z)

Remark 3.6. ',y # 0 iff Ir > 1; a4, ..., a, € T, all distincts with ay...a, =
0.
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Remark 3.7. Let I' = (S| R) be a finitely presented group,
then 3N such that Ty # 0 and ¥Yn > N, T, = 0. In fact N < card(S)

Examples 3.8. For F, = (s{ ..., s |), we have N = 1.

cey Op

For Zr = (st!, .. s | sisjs; s i, j =1,...,7), we have N =r.

cey Op

Here an n-block (n < r) is just an n-dimensional hypercube.

Definition 3.9. We define the action of I' on '), recursively:
o [ actson 'y =T as: Ug:h — g.h withg,h €.
e Action on I',yq: ug :a — ga = {g.b|b € a} with g € T,
a€ .
Note that the action is well-defined: g.I', =1, Vg € I.

Definition 3.10. Let a and b be blocks, then we say that b€a if b =a or
if b € a or if Ic € a such that b € c (recursive definition).

Definition 3.11. Let n > 1 then an n-block c is connected if Vb C c:
‘b is an n-block’ = b = c.

Definition 3.12. An n-block b is called maximal if there is no (n + 1)-
block ¢ with b € c. We note I'max the set of mazimal irreducible blocks.

Example 3.13. Let I' = 7%« Z = (57, 55", 53" | 515057 's5 "), then {e,s3}
is a mazimal 1-block, {{e,s1},{s1, 5152}, {s12, $2}, {s2,€}} is a maximal
2-block.

Definition 3.14. We define the block lenght ((.) as follows: let b be a
block, then £(b) is the minimal number of irreducible blocks decomposing a
connected admissible block ¢ with e €c and, b€c orbNc # .

Definition 3.15. Let b be a block, then a sequence (c1, ..., cyp)) with b€ ¢y,
e € ey, ¢ wrreducible and c; N ¢ # D is called a geodesic block-path,
from b to e beginning with c;.

Lemma 3.16. There is a unique irreducible block 5(b) of minimal dimen-
sion, beginning a geodesic block-path from b to e.

Proof. We prove by contradiction: let 5(b) and 8'(b) be two differents such
blocks, then they are the same dimension n. But then there is an ad-
missible connected block d of dimension n + 1, with §(b), 5'(b) € d and
e € d, such that d decomposes into strictly less than ¢(b) irreducible blocks,
contradiction. 0

Remark 3.17. Consider the group I' and its finite presentation (S| R),
then we can complete the presentation as follows: let T be a finite subset
of T withTNS =0, T=T"'ande & T, let S’ =TUS an amplified
generating set and R' = RU{t =t | } wheret ist considered as a generator.
Then T = (S"| R').
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Lemma 3.18. We can choose T such that if we build the blocks with the
completed presentation (S"| R'), then every irreducible blocks are triangu-
lar, i.e. ¥b € Ty, card(b) = n+ 1. We call (S"| R') a triangularized
presentation.

Example 3.19. The complete triangularization: let T' = (S| R) be a
finitely presented group, then T acts on Uya, (def. B-9, [3-13); there are only
finitely many orbits Oy, ...,O,; choose b; € O;; let E; = {g € I'| g €b;};
let T, = {gh™ | g,h € E;;gh™" & SU{e}}. Then amplifying the gener-
ating set with T = JT;, we obtain obviously a triangularization called the
complete triangularization. Note that this process increases the maximal
dimension of the blocks. Note that card(T) is finite because the group is
finitely presented.

4. CLIFFORD ALGEBRA

We first quickly recall here the notion of Clifford algebra, for a more
detailed exposition, see the course of A. Wassermann [f].

Definition 4.1. For V a n-dimensional Hilbert space, define the exterior

algebra A(V) equals to @F_oA*(V) with A°(V) = CQ. We called Q the

vacuum vector. Recall that vy A v9 = —v9 A vy S0 that v Av = 0.

Note that dim(A*(V)) = C* and dim(A(V)) = 2".

Definition 4.2. Let «, be the creation operator on A(V') defined by:
(VI A AV) =0 AU A LAY and a, () = v

Reminder 4.3. The dual o is called the annihilation operator, then:
as(vi Ao Av) =300 (=1 (v, v)v1 A cvimg Avig A Ay and
ax(Q)=0

v

Reminder 4.4. Let v, = a,+a2, then vy, = v and vy Yw+Yw Yo = 2(v, w)1.

Definition 4.5. The operators =y, generate the Clifford algebra CLff(V).
Note that the operators vy, are bounded and that ClUff(V).QQ = A(V).

Remark 4.6. V' admits the orthonormal basis (vg)acr-
We will write 7y, instead of vy,, so that [Ya, Yo'+ = 204,01

Let I' be a finitely presented group, with a triangularized presentation
(S| R).

Definition 4.7. For any irreducible block ¢, let A, = {b € JT' | B(b) = c},
with B(b) defined on lemma [3.14.

Definition 4.8. Let b, ¢ be blocks such that b € c € B(b) then we write b o c.
In this case, we see that B(b) = (c), so that o< is an order relation.
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Lemma 4.9. For any irreducible block ¢ with A, # 0, A, admits a unique
minimal element i, with respect to oc. Let m be the dimension of Coin;
denote by I.. the set of blocks of dimension m+1 in A.; then A. is in one-to-
one correspondence with the power set P(1.); in particular, the cardinality
of A, is 24me)=m (see section 3 of Julg-Valette paper [l]).

Definition 4.10. We naturally identify (?(A.) with the exterior algebra

A((*(1.)) on which operates the Clifford algebra CULff(¢*(1.)) generated by
Ya, @ € 1.

5. DIRAC OPERATOR

Definition 5.1. We define the n-block lenght (,(.) as follows: let b be a
block, then £,(b) is the minimal number of irreducible blocks decomposing a
connected admissible n-dimensional block ¢ with e € ¢ and, b € ¢ or bNec # (.

Definition 5.2. Let b be a block, then a sequence (cy, ..., ce, 1)) with b€ cy,
e€cypy, ¢; €1y and c;Neipr # () is called a geodesic n-block-path, from
b to e beginning with c;.

Definition 5.3. For any irreducible block ¢ with A. # 0, let n = dim(Cpmin )+
1; for any a € I. define p,(c) the number of geodesic n-block path from ¢y,

to e beginning with a; let p(c) = 3 ,c; Pa(c); let Ay = ’;j((cc)) Lo (Conin) -

Definition 5.4. On (?(A.) = A(¢*(1,)), define the Dirac operator D, by:

De=> Aaa

acl.
Remark 5.5. A, = {e}, I. =0 and D, = 0.
Definition 5.6. Consider then the Hilbert space:
H=EPrr,) =P rKa) =Pari)
Zo-graded by the decomposition into even and odd dimensional blocks.
Define the unbounded selfadjoint operator D = @, D..

Lemma 5.7. D? = @, D? = > .3
(A).

wcr. Aa)-De with p., projection on

Proposition 5.8. D is a Fredholm operator of index 1.

Proposition 5.9. (D? 4+ I)~! is compact.

Fort > 0, the operator e *P* is trass-class.

Definition 5.10. For any g € T and for any s € S define ps(g) the
number of geodesic 1-block path from g to e beginning with {g,gs}; let

p(g) = ZseSPS(g)-
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Definition 5.11. Let C be the class of finitely presented groups I' admitting
a triangularized finite presentation (S| R) such that Vg € I, 3K, € Ry
such that Vs € S and Yh € I' (with h, gh # e):

|p5(gh) B ps(h) < K,
p(gh) — p(h) — i(h)
Examples 5.12. The class C is stable by direct or free product, it contains

7", F,, the finite groups, and probably every amenable or automatic groups
(containing the hyperbolic groups, see [B]).

Proposition 5.13. Let I' of class C, A = Cx(I') and D as previously then:
{a € A|[D,a] € B(H)} is dense in A.

Theorem 5.14. (A, H,D) is an even 0-summable spectral triple and D is
index 1. It then gives a non-trivial element for the K-homology of A.
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