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Some inverse problems around the tokamak Tore Supra

Yannick Fischer∗ Benjamin Marteau† Yannick Privat‡

Abstract

We consider two inverse problems related to the tokamak Tore Supra. The first
one deals with the Cauchy issue of recovering in a two dimensional annular domain
boundary magnetic values on the inner boundary, namely the limiter, from available
overdetermined data on the outer boundary, for solutions to the Grad-Shafranov equa-
tion. Using tools from complex analysis and properties of genereralized Hardy spaces,
we establish stability and existence properties. Secondly the inverse problem of recov-
ering the shape of the plasma is addressed thank tools of shape optimization. Here
too, results about existence and optimality are provided. They give rise to a fast al-
gorithm of identification which is applied to several numerical simulations computing
good results either for the classical harmonic case or for the data coming from Tore

Supra .

Keywords: Hardy Spaces, Bounded Extremal Problem, Conjugate Harmonic Function,
Inverse Problems, Shape Optimization, Least Square Problems.

AMS classification: Primary: 30H10, 49J20, 65N21; Secondary: 30H05, 42A50, 35N05.

1 Introduction

A very challenging potential application of inverse boundary problems for elliptic equations
in doubly connected domains is related to plasma confinement for thermonuclear fusion
in a tokamak [11].

First of all the tokamak is a concept invented in the Soviet Union and introduced in the
1950s. The meaning of the word is, after translation from the Russian words, “toroidal
chamber with magnetic coils” [39] and simply refers to a magnetic confinement device
with toroidal geometry (see Figure 1). Today, tokamaks are the most used devices for
the fusion experiments and needless to say represent the most suitable approach for their
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control. In the present paper we focus on the case of the tokamak Tore Supra built at the
CEA/IRFM Cadarache (France).

In order to control the plasma position by applying feedback control, it is necessary to
know its position in a very short time, or in other words in a time which has to be smaller
than the sampling frequency of the plasma shape controller (some microseconds). As a
consequence, the poloidal flux function has to be fast identified and computed in a very
effective way since its knowledge in the domain included between the exterior wall of the
tokamak and the boundary of the plasma is sufficient to determine completely the plasma
boundary. In so far as the only data available are the ones obtained by measurements
uniformly distributed on the entire exterior wall of the tokamak, namely the poloidal
flux function and its normal derivative, the identification of the plasma boundary may be
viewed as the solution of a free boundary problem.

The computation of the poloidal flux function in the vacuum and the recovery of the
plasma shape have already been extensively studied (see for example [11]). Consequently,
several numerical codes have been developed and we mention here the code Apollo actually
used for the tokamak Tore Supra [36] based on an expansion of Taylor and Fourier types
for the flux. Others expansions may be found in the literature such as the one making use
of toroidal harmonics involving Legendre functions [3]. Naturally, those series expansions
are truncated for computations and the coefficients are determined so that they fit to the
measurements.

The purpose of this paper is to formulate an alternative and original approach of the
resolution of the free boundary problem consisting in combining tools of both Complex
Analysis and Shape Optimization. Up to the knowledge of the authors, such an approach
has never been carried out before.

Firstly, we are interested in the following inverse problem : assume that the domain
under study, denoted by Ωl, is the vacuum located between the outer boundary Γe of
the tokamak and the limiter Γl (see Section 2.2) in such a way that it refers to a fixed
annular domain, or more precisely, to a conformally equivalent doubly-connected domain.
The poloidal flux and its normal derivative being given on Γe, we want to recover those
magnetic data on Γl inside the device. This amounts to solve a Cauchy problem from
overdetermined data on part of the boundary. This problem is known to be ill-posed
since the work of Hadamard. However sufficient conditions on the available data on Γe,
together with a priori hypotheses on the missing data, may be provided for continuity and
stability properties to hold. In order to deal with these constraints, a link is established
between the equation satisfied by the flux, namely the Grad-Shafranov equation [37], and
the conjugate Beltrami equation [8]. As a result of this part, we will be able to provide the
flux and its normal derivative everywhere in the domain Ωl then more particularly on the
limiter Γl itself. Lastly, the knowledge of the maximum value of the flux on this boundary
may be helpful for the initialization of the following part treating with the shape of the
plasma.

In a second time, we investigate the inverse problem consisting in recovering the shape
of the plasma inside the tokamak, from the knowledge of Cauchy data on the external
boundary Γe (or on Γl if the resolution of the inverse problem of last paragraph has been
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performed first). Indeed, if the plasma domain were known, the poloidal flux u inside the
tokamak would be determined until the boundary of the plasma Γp by an elliptic partial
differential equation, namely the homogeneous Grad-Shafranov equation, with Cauchy
data on Γe. The question of the global existence of a solution for such a system is open
and probably quite difficult. The point of view developed in this paper does not need
such a result. Indeed, given that the shape of the plasma is a level set of the poloidal
flux u, the question of the determination of the shape of the plasma inside the tokamak
comes down intrinsically to solve an overdetermined partial differential equation. Noticing
that, in general, an overdetermined condition can be interpreted as the first necessary
optimality conditions of a Shape Optimization problem (see for instance [2, 27]), we chose
to see the shape of the plasma as a minimizer of a shape functional in a given class of
admissible domains. Furthermore, we use a standard shape gradient algorithm to compute
numerically the boundary Γp.

The overview of the article is as follows. Section 2 is devoted to general notations and a
description of a model of plasma equilibrium. The equations governing this latter allow to
characterize the boundary Γp of the plasma as a level line of the flux in the domain bounded
by the limiter. A breve description of the geometry of Tore Supra is provided too. Our
main existence and stability results for the Cauchy problem explained above are stated in
Section 3. We introduce some generalized harmonic functions associated with the problem,
which in fact belong to generalized Hardy spaces of an annulus. A useful density result in
such classes is given which enables the resolution of the Cauchy problem formulated as a
bounded extremal one. Finally, in Section 4, we introduce a Shape Optimization problem
whose solution is supposed to be the shape of the plasma. We first prove the existence
of minimizers for such a problem and state the associated necessary first order optimality
conditions. In particular, it is shown that, under a regularity assumption for the optimum,
the solution of this problem verifies the system characterizing the shape of the plasma.
Some numerical simulations, based on an optimization algorithm and the use of the shape
derivative, are included at the end of the paper and permit to recover in a satisfying way
the boundary Γp of the domain occupied by the plasma.

2 A model of plasma equilibrium

2.1 The Grad-Shafranov equation

We denote by (r, ϕ, z) the three-dimensional cylindrical coordinates system where r is the
radial coordinate, ϕ is the toroidal angle and z is the height; ~er, ~eϕ and ~ez will denote the

axis unit vectors. Thus, given a generic vector ~A, its component along the unit vectors
will be denoted by Ar, Aϕ and Az, respectively, so as to have

~A = Ar ~er +Aϕ ~eϕ +Az ~ez.

Since the tokamak is an axisymmetric toroidal device, it is possible to assume that all
magnetic quantities do not depend on the toroidal angle ϕ. That involves that a plasma
equilibrium may be studied in any cross section (r, z), named poloidal section (see Figure
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Figure 1: Toroidal geometry of the tokamak Tore Supra.

1). Now writing ~B for the magnetic induction field and u for the poloidal magnetic flux,
and denoting by ∇· ~B = ∂Br

∂r + ∂Bz
∂z and ∇u = (∂u

∂r ,
∂u
∂z ), it is easy to derive from Maxwell’s

equations [11], especially from Gauss’s law ∇ · ~B = 0, the following equations

Br = −1

r

∂u

∂z
and Bz =

1

r

∂u

∂r
. (1)

The equilibrium of the plasma is also governed by its own equation

∇p = ~j × ~B (2)

resulting from the balance between the force of the kinetic pressure p and the one of the
magnetic pressure, where ~j stands for the current density field. Then it is a straightforward
consequence of (1) and (2) that u satisfies the Grad-Shafranov equation in the whole space
[37], so a fortiori inside the tokamak,

∇ · (1
r
∇u) = jT (3)

for jT the toroidal component of ~j. Remark that jT = 0 in the vacuum and that in
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Figure 2: Schematic representation of a poloidal section of Tore Supra.

this case (3) leads to a homogeneous second order elliptic equation in divergence form in
two dimensions.

2.2 The geometry of Tore Supra

We present here the main features of the tokamak Tore Supra built at CEA/IRFM
Cadarache in France in a poloidal cross section (r, z). All numeric quantities for the
distances are given in meters.

Here Γe stands for the outer boundary of the tokamak. It corresponds to a circle with
center (R, 0) = (2.42, 0) and radius ρe = 0.92. Inside the tokamak, the first material piece
encountered is the limiter Γl. It corresponds to a closed curve and its goal is to prevent any
interaction between the plasma and Γe. In a nutshell, the plasma cannot pass through
Γl. Inside the limiter stands the plasma, referring to the domain Ωp with a boundary
∂Ωp = Γp.

Furthermore we add two notations. In the following we will denote by Ωv the domain
occupied by the vacuum, i.e the one included between Γp and Γe. Moreover Ωl will denote
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the domain included between Γl and Γe. Then refering to (3), the equation satisfied by
the poloidal magnetic flux u in Ωv, whence a fortiori in Ωl, is ∇ · (1

r∇u) = 0.
It should be noticed that in Tore Supra, the domain Ωl is not exactly an annulus as it

can be observed on Figure 6. But as explained in [8, Section 6], all properties of functions
solutions to (5) below are preserved by composition with conformal maps. Accordingly,
the results of the next section will always refer to a annular domain like in Figure 2.

2.3 Definition of the plasma boundary Γp

In Section 2.1, a basic condition for the plasma equilibrium was given through (2). This
latter implies both following equations

~B · ∇p = 0 and ~j · ∇p = 0.

Those equations show that the field lines of the magnetic induction and of the current
density lie on isobaric surfaces also called magnetic surfaces. But from (1) we still get

~B · ∇u = 0,

so that the magnetic surfaces correspond to constant poloidal surfaces too. Then the
plasma boundary Γp is defined as the outermost closed magnetic surface when starting
from the center of Γe. For the tokamak Tore Supra, Γp is inside the limiter Γl. In fact,
two situations can happen for the plasma equilibrium in tokamak devices:

• Γp and Γl have one common point. In this case, the contact point is unique and
the equipotential of u corresponding to Γp is tangent to Γl. This is the limiter
configuration.

• Γp and Γl have no point in common. In this case, the plasma is strictly included
inside the delimiter and qualified as divertor.

Section 3 makes no distinction between both cases unlike Section 4 which focuses only
on the limiter case for numerical simulations involving the identification of the plasma
boundary in Tore Supra. We shall make use of this observation without further notice.

3 How to recover magnetic data in the tokamak Tore Supra

?

Let Ωl be the bounded open domain in R
2 with C1 boundary mentioned in Section 2.2

and

σ(r, z) =
1

r
∈W 1,∞(Ωl; R) such that 0 < C1 6 σ(r, z) 6 C2 a.e in Ωl (4)

for two constants 0 < C1 < C2 < +∞. The elliptic equation we look at is (3) in the
vacuum, i.e

∇ · (1
r
∇u) = 0 a.e. in Ωl. (5)
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Here the differential operator ∇· and ∇ are understood in the sense of distributions (with
respect to the real variables r, z in R

2). In this section we are dealing with the Cauchy
problem described in the introduction. This problem is, as defined by Hadamard, ill-posed
for magnetic data u and ∂nu prescribed on I not only in Sobolev spaces W 1−1/p,p(Γe), 1 <
p < +∞ but also in Lp(Γe), where they still make sense [8]. However, well-posedness may
be ensured if L2-norm constraints is added on Γl. It follows that the extrapolation issue
from boundary data turned out as a best approximation one on Γe, still named bounded
extremal problem (BEP).

Note that from now on we restrict ourselves to the particular Hilbertian framework,
i.e for p = 2, in order to deal with any possible boundary data on Γe having finite energy.

Remark 1. When σ is constant, this problem reduces to solving a Cauchy problem for
the Laplace operator, that is to say to recover the values of a holomorphic function in a
domain of analyticity from part of its boundary values. It is well worth noting that this
problem has been extensively studied in Hardy spaces on simply and doubly connected
domains (see [6, 7, 23]).

3.1 From Grad-Shafranov equation to conjugate Beltrami equation

To study the Cauchy problem for (5), our approach proceeds via a complex elliptic equation
of the first order, namely the conjugate Beltrami equation:

∂f = ν∂f a.e in Ωl, (6)

where ν ∈W 1,∞(Ωl; R) satisfies

‖ν‖L∞(Ω) 6 κ for some κ ∈ (0, 1) (7)

and where we use the standard notations

∂f =
1

2
(
∂

∂r
− i

∂

∂z
)f and ∂f =

1

2
(
∂

∂r
+ i

∂

∂z
)f.

From this point, it is easy to verify that (6) decomposes into a system of two real elliptic
equations of the second order in divergence form. Indeed, assume first that f = u+ iv is
a solution to (6) with real valued u and v. Putting this in (6) yields that u satisfies (5)
while v satisfies

∇ · ( 1

σ
∇v) = 0 a.e. in Ωl (8)

with σ = 1−ν
1+ν . Moreover, from that definition of σ, we obtain that (7) implies (4).

Conversely, assume that u is real valued and satisfies (5). By putting ν = 1−σ
1+σ , a simple

computation shows that (6) is equivalent to the system





∂v

∂r
= −σ∂u

∂z
a.e. in Ωl.

∂v

∂z
= σ

∂u

∂r

(9)
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This system admits a solution when Ω is simply connected. Indeed the differential form
defined by W = (W1,W2) = (σ ∂u

∂r
,−σ ∂u

∂z
) satisfies ∂W1

∂r
= ∂W2

∂z
. Consequently it is closed

and applying Poincaré’s Lemma yields the existence of a real valued function v, unique
up to an additive constant, such that f = u+ iv satisfies (6) with the definition of ν given
above. Again, conditions (4) implies (7).

Note that when Ωl is doubly connected, such like in the situation of Tore Supra, the
existence of v as a real single-valued function may only be local. Indeed, from Green’s
formula applied to u and to any constant function in Ωl, we get

0 =

∫

Ωl

∇ · (σ∇u) =

∫

∂Ωl

σ
∂u

∂n
=

∫

Γe

σ
∂u

∂n
+

∫

Γl

σ
∂u

∂n
.

But, since (9) may be rewritten on ∂Ωl as ∂v
∂t

= σ ∂u
∂n

where ∂
∂t

stands for the tangential
partial derivative on ∂Ωl, it holds that

−
∫

Γe

σ
∂u

∂n
=

∫

Γl

∂v

∂t
.

Hence v is clearly multiplied-valued if
∫
Γe
σ ∂u

∂n
6= 0 and f = u+ iv a fortiori too. However

it is always possible to define u as the real part of a single valued function f in Ωl. See
for example [23] where the holomorphic case is processed by the aid of the logarithmic
function (well-known to be multiplied-valued in the unit disk). We only mention, without
giving more details, that our situation may be similarly solved by making use of toroidal
harmonics [4].

3.2 Generalized Hardy spaces

Assume that ν ∈W 1,∞(Ωl; R) verifies (7). When handling boundary data in the fractional
Sobolev space W 1/2,2(∂Ωl), it is a result from [13] that the Dirichlet problem for (6) admits
a unique solution in W 1,2(Ωl). But as mentioned before, the assumptions on the boundary
data are relaxed in a manner that they now belong to the Lebesgue space L2(∂Ωl). In this
case, it is obvious that the solution of the Dirichlet problem for (6) has no more reason to
belong to W 1,2(Ωl) in general. On the other hand the Dirichlet problem will rather have
a solution in some generalized Hardy spaces whose definition will follow.

This focuses the attention on the fact that those generalized Hardy spaces are the
natural spaces when trying to solve inverse problem linked to (6) for L2 boundary data
(see [20] for the simply connected case). That we only dispose of Dirichlet conditions on
Γe is an additional motivation to formulate the Cauchy problem as a bounded extremal
problem which admits a unique solution in the appropriate Hardy classes (see Section 3.3).

Let us denote by DR,ρ and TR,ρ the disk and the circle centered at (R, 0) of radius ρ.
Remember that from now Ωl stands for the annular domain shown in Figure 2. Thus we
have TR,ρe = Γe.

Definition 3.1. If ν ∈ W 1,∞(Ωl; R), we denote by H2
ν (Ωl) the generalized Hardy space

which consists in Lebesgue measurable functions f on Ωl, solving (6) in the sense of
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distributions in Ωl and satisfying

‖f‖H2
ν (Ωl) := ess sup

ρl<ρ<ρe

‖f‖L2(TR,ρ) < +∞ (10)

where

‖f‖L2(TR,ρ) :=

(
1

2π

∫ 2π

0
|f(R+ ρeiθ)|2 dθ

)1/2

Equipped with the norm defined by (10), H2
ν (Ωl) is a Hilbert space. Moreover (10)

implies f ∈ L2(Ωl).
We remark immediately that when ν = 0 and Ω = D = D0,1, H

2
ν (Ωl) is nothing but

the classical H2(Ωl) space of holomorphic functions on the unit disk bounded in norm L2

on T = T0,1 (see [19, 24]). Recall just that it consists in the functions f ∈ L2(T) which
Fourier coefficients of negative order vanish. Most of the properties of generalized Hardy
spaces on simply connected domains derive from those of the classical H2 spaces and still
hold for multiply connected domains. Basically, the main idea relies on the connection
between functions f ∈ H2

ν (Ωl) and functions ω satisfying in the distributional sense, for
α ∈ L∞(Ωl),

∂ω = αω on Ωl (11)

and such that the condition (10) still holds. That connection has been introduced in [10]
and leads to

Proposition 1. Let ν ∈W 1,∞(Ωl; R) satisfy (7) and define α ∈ L∞(Ωl) by

α = − ∂ν

1 − ν2
= ∂ log

[
1 − ν

1 + ν

]1/2

= ∂ log σ1/2

then f = u+ iv ∈ H2
ν (Ωl) if and only if ω =

f − νf√
1 − ν2

= σ1/2u+ iσ−1/2v solves (11) with

condition (10).

Proof. The proof is a straightforward computation. Indeed assume f ∈ H2
ν (Ωl). Then

from ω = f−νf√
1−ν2

we get

∂ω =
ν∂ν

(1 − ν2)3/2
(f − νf) +

1

(1 − ν2)1/2
(∂f − ν∂f − f ∂ν).

Insofar as f ∈ H2
ν (Ωl), it is true that ∂f − ν∂f = 0. Hence

∂ω =
ν∂ν

(1 − ν2)3/2
(f − νf) − 1

(1 − ν2)1/2
f ∂ν

= − ∂ν

(1 − ν2)3/2
(f − νf) = − ∂ν

1 − ν2
ω,

in other words ∂ω = αω. From the definition of ω, it is obvious that (10) still holds for

this latter. By the same way, and noticing that f =
ω + ν ω√

1 − ν2
, the converse is valid.
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Furthermore solutions of type ω, which satisfy condition (10), can be represented as
ω = esg where s is continuous on Ωl and g ∈ H2(Ωl) [8, 10]. This remark allows to establish
that on simply connected domains, classical and generalized Hardy spaces share similar
properties and those latter are naturally exportable to multiply connected domains. We
recall in the following result most of them

Proposition 2. If ν ∈W 1,∞(Ωl; R) satisfies (7),

1. any function f ∈ H2
ν (Ωl) has a non-tangential limit almost everywhere on ∂Ωl =

Γe ∪ Γl, called the trace of f and denoted by trf , which belongs to L2(∂Ωl);

2. ‖trf‖L2(∂Ωl) defines an equivalent norm on H2
ν (Ωl);

3. trH2
ν (Ωl) is closed in L2(∂Ωl);

4. if f ∈ H2
ν (Ωl), trf cannot vanish on a subset of ∂Ωl with positive measure unless

f ≡ 0;

5. each f ∈ H2
ν (Ωl) satisfies the maximum principle, i.e |f | cannot assume a relative

maximum in Ωl unless it is constant.

We refer to [8] for the proofs in simply connected domains.

These properties are necessary to prove the results of next section, i.e. the density
of traces of function in H2

ν (Ωl) in L2(I) whenever I is a subset of non-full measure of
the boundary ∂Ωl = Γe ∪ Γl, which are the key point to solve extremal problems with
incomplete boundary data.

3.3 Density results and bounded extremal problem

This section is devoted to the resolution of the Cauchy problem formulated in the intro-
duction.The first step which needs to be established is a density result of fundamental
importance which asserts that if I ⊂ ∂Ωl has positive measure as well as J = ∂Ωl \ I, then
every L2-complex function on I can be approximated by the trace of a function in H2

ν (Ωl).
Remember that in the situation under study in this paper, the subset I of the boundary
∂Ωl corresponds a priori to the whole boundary Γe. But in order to ensure density results
as well as better algorithm’s convergence (see the end of Section 3.3), we restrict from
now on the set of available magnetic data to a strict subset, still named I of the outer
boundary Γe. We mention that the case where I is effectively the whole boundary Γe is
already under study.

Thus the following result is a natural extension of [8, Theorem 4.5.2.1] for an annular
domain.

Theorem 3.2. Let I ⊂ ∂Ωl = Γe ∪ Γl be a measurable subset such that J = ∂Ωl \ I has
positive Lebesgue measure. The restrictions to I of traces of H2

ν -functions are dense in
L2(I).
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From the magnetic data on I, one can compose the function Fd = u + iv where
v =

∫
Γe
σ ∂u

∂n
according to the formulation of (9) on ∂Ωl. As a consequence of Theorem

3.2, it exists a sequence of functions (fn)n>0 ∈ H2
ν (Ωl) which trace on I converges to Fd

in L2(I). Suppose now that lim
n→+∞

‖trfn‖L2(J) 6= +∞. Up to extracting a subsequence,

we may assume that (trfn)n>0 is bounded in L2(J). But (trfn)n>0 is already bounded in
L2(I) by assumption. Consequently it remains bounded in L2(∂Ωl) and then in H2

ν (Ωl)
by point 2 of Proposition 2. As H2

ν (Ωl) is a Hilbert space, there exists a subsequence
(trfnp)p>0 converging weakly toward some f ∈ H2

ν (Ωl). Now, by restriction, it is obvious
that (trfnp |I)p>0 converges weakly to f|I in L2(I). Since Fd is the strong limit of (trfn)n>0

in L2(I), we conclude that Fd = f a.e on I. For this reason Fd can either already be the
trace on I of a H2

ν -function, or ‖trfn‖L2(J) → +∞ as n → +∞. This behaviour of the
approximant on J shows that the Cauchy solution is unstable, which in fact explains that
the inverse problem is ill-posed. Note that in general the function Fd does not coincide
with the trace of a function belonging to H2

ν (Ωl) insofar as magnetic data proceeds from
sensor subject, like for all mechanical engineering, to roundoff errors.

Therefore, in order to prevent such an unstable behaviour, an upper bound for the L2

norm of the approximation on J will be add. Thus the Cauchy problem may be expressed
as bounded extremal problem corresponding to a problem of approximation of incomplete
data in generalized Hardy spaces. In practical terms, define, for M > 0 and φ ∈ L2(J),

BΩl
=

{
g ∈ trH2

ν (Ωl); ‖Re g − φ‖L2(J) 6 M
}
|I ⊂ L2(I).

In light of this definition, it is now possible to find a unique solution for the minimization
problem formulated on the class BΩl

.

Theorem 3.3. Fix M > 0, φ ∈ L2(J). For every function Fd ∈ L2(I), there exists a
unique solution g∗ ∈ BΩl

such that

‖Fd − g∗‖L2(I) = min
g∈BΩl

‖Fd − g‖L2(I).

Moreover, if Fd /∈ BΩl
, the constraint is saturated, i.e ‖Re g∗ − φ‖L2(J) = M .

Proof. Since BΩl
is clearly convex and the norm ‖.‖L2(∂Ωl) lower semi-continuous, it is

enough to show that BΩl
is closed in L2(I) to ensure the existence and the uniqueness

of g∗. Indeed, there is a best approximation on any closed convex subset of a uniformly
convex Banach space which is in this case L2(I) [9, Part 3, Chapter II, 1, Propositions 5
and 8].

Let (ϕk|I )k>0 ∈ BΩl
, ϕk|I → ϕI in L2(I) as k → ∞. Put uk = Reϕk. By assumption,

(uk)k>0 is bounded in L2(∂Ωl). Then the application of norm’s inequalities contained in
[8, Theorem 4.4.2.1] shows that ‖ϕk‖H2

ν (Ωl) 6 cν‖uk‖L2(∂Ωl). Hence (ϕk)k>0 is bounded in
L2(∂Ωl) and, up to extracting a subsequence, weakly converges to ψ ∈ L2(Ωl); necessarily
ψ|I = ϕI .

Next, ϕk ∈ trH2
ν (Ωl), which is weakly closed in L2(∂Ωl) (see discussion after Theorem

3.2); this implies that ψ ∈ trH2
ν (Ωl). Because Re ϕk = uk satisfies the constraint on J , so

does Reψ, whence ϕI ∈ BΩl
.

11



Let us now prove that, if Fd /∈ BΩl
, then ‖Re g∗ − φ‖L2(J) = M . Assume for a contra-

diction that ‖Re g∗ − φ‖L2(J) < M . Since ‖Fd − g∗‖L2(I) > 0, by Theorem 3.2, there is a

function h ∈ trH2
ν (Ωl) such that

‖Fd − g∗ − h‖L2(I) < ‖Fd − g∗‖L2(I).

By making use of the triangle inequality,

‖Fd − g∗ − λh‖L2(I) =‖λ(Fd − g∗ − h) + (1 − λ)(Fd − g∗)‖L2(I)

6|λ|‖Fd − g∗ − h‖L2(I) + |1 − λ|‖Fd − g∗‖L2(I)

<‖Fd − g∗‖L2(I)

for all λ such that 0 < λ < 1. Now, taking advantage of the assumption, we have that
for λ > 0 sufficiently small ‖Re (g∗ + λh) − φ‖L2(J) ≤ M . To recap, g∗ + λh ∈ BΩl

and
‖Fd − (g∗ + λh)‖L2(I1) < ‖Fd − g∗‖L2(I1). This contradicts the optimality of g∗.

An explicit formulation of g∗ has been established in [1] in the case ν = 0 which is
still valid in the present situation. Indeed, denote by Pν the orthogonal projection from
L2(∂Ωl) onto trH2

ν (Ωl) (the operator Pν is the natural extension of the classical Riesz
projection from L2(T) onto trH2(D) [19]). The unique solution of the bounded extremal
problem, when Fd /∈ BΩl

, is given by

Pν(χI1g
∗) + λPν(χJRe g

∗) = Pν(χI1Fd) + λPν(χJφ) (12)

where λ > 0 is the unique (Lagrange-type) parameter such that the constraint on J is
saturated, in other words ‖Re g∗−φ‖L2(J) = M and χJ is the characteristic function of J .
Otherwise, the case where Fd ∈ BΩl

corresponds to λ = −1. The behaviour with respect
to λ of the error e(λ) = ‖Fd − g∗‖2

L2(I1) and the constraint M is discussed in [1].

Observe that g∗ may be computed constructively if a complete family of trH2
ν (Ωl) is

known. Indeed, the operator Pν can be expressed thank a conjugation operator which, for
every function in H2

ν (Ωl), associates the trace of Re f to the trace of Imf . A formula for
this latter may be found in [5]. Thus it is sufficient to expand any function in L2(∂Ωl) on
a basis for which the conjugation operator is easily computed. This method is described
in [20] for simply connected domains.

Finally we briefly describe a algorithm for solving numerically the bounded extremal
problem. It has been developed in [14] and consists in taking advantage of the fact that
initially the magnetic data are available on the entire outer boundary Γe. As a first step
compute the function Fd thank the magnetic data on Γe (as it is explained just after
Theorem 3.2) and split the measurement set into two disjoint parts Γe = I1∪I2. Secondly,
solve the bounded extremal problem with respect to χI1Fd and a constraint M1 > 0. One
obtain a solution g∗1 which depends of M1. From this latter compute the real number
M2 = Argmin

M1>0
‖g∗1 − Fd‖L2(I2). And lastly solve the bounded extremal problem with

respect to χI1Fd and the constraint M2 > 0. This cross validation procedure provides
good results in the harmonic case, i.e. for the Laplace’s equation.
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We conclude this section by claiming that the solution g∗ of the bounded extremal
problem could be a starting point of the next section which focuses on the recovery of
the plasma boundary by technics of Shape Optimization. Indeed g∗ provides magnetic
data, i.e. u and ∂nu, at every point of Ωl. It is then possible to initiate the free boundary
problem with an outer boundary ΓE located in Ωl, which is then closer to the potential
boundary Γp of the plasma. Moreover this new boundary ΓE can still be Γl itself.

An other feature, under the assumption that the point of contact M0 between the
plasma and the limiter is known in advance, is to provide the constant c = g∗(M0) corre-
sponding to the value of the flux at this point.

4 Recovering the shape of the plasma inside the tokamak

Tore Supra

4.1 A Shape Optimization frame

We will use in this section the same notations as those summed up on Figure 2. In par-
ticular, Γe denotes the external boundary of a disk with given radius R > 0, representing
the external wall of the tokamak Tore Supra. We are interested in the determination of
the shape of the plasma inside the tokamak. In the following analysis, we will assume that
the plasma is composed of one simply connected component, whose boundary is denoted
Γp. Let us introduce Ω, the domain located between the two closed curves Γe and Γp.
Physically, as it is underlined in Section 2.3, the only interesting case for our study is the
limiter one. It means that it is reasonable to consider that one point of the boundary
denoted by M0, where the plasma meets the toroidal belt limiter Γp, is known.

We have seen in Section 2.3 that the boundary Γp may be seen as a level set of the
solution. In other words, we look for a domain Ω and its boundary Γp = ∂Ω\Γe such that





∇ · (σ∇u) = 0, x ∈ Ω
u = u0, x ∈ Γe
∂u
∂n = u1, x ∈ Γe

Γp = {u = u(M0)}.

(13)

where u still denotes the poloidal magnetic flux inside the tokamak, ∇ denotes the nabla

operator with respect to the variables (r, z), and σ is a given analytic function such that
0 < C1 < σ < C2 in Ω. Indeed, let us recall that in the case of the tokamak Tore Supra,
one has (see Section 3.2)

σ(r, z) =
1

r
and Ω ⊂ DR,ρ.

Although a refined study has been led in Section 3 to obtain explicit weak solutions to
(6), whence to (5), with boundary data u0 and u1 belonging to a larger space as usually
(the trace of a generalised Hardy space), and since we want to use standard technics of
Shape Optimization, we make the classical assumptions on the boundary data, that is
u0 ∈W 1/2,2(Γe) and u1 ∈W−1/2,2(Γe).
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In other words, Ω can be seen as the solution, if it exists, of the “free boundary
problem” 




∇ · (σ∇u) = 0, x ∈ Ω
u = u0, x ∈ Γe
∂u
∂n = u1, x ∈ Γe

u = c x ∈ Γp,

(14)

where c > 0 is a constant chosen so that M0 ∈ Γp. Written under this form, this problem
looks like a free boundary problem and we could have a temptation to apply Holmgren’s
uniqueness or a Cauchy-Kowalewski’s type theorem. Nevertheless and to our knowledge
(see for instance [32]), until yet, that is only possible to deduce from these theorems, the
existence of a neighborhood of the external boundary Γe where is defined a local solution
of the three first equations of (14), but the existence of a closed level set Γp inside the
domain delimited by Γe seems to be a difficult question.

Notice that a close family of “free boundary problems” have been studied in the past,
referring to overdetermined like problems with additional Bernoulli type boundary condi-
tion. However, in these problems, the Bernoulli condition applies to the free boundary and
permits in general to ensure some kind of regularity of this latter and its uniqueness. The
case presented in this section is quite unusual since the overdetermined condition applies
on the fixed boundary Γe. About the literature on free boundary problem with a Bernoulli
condition, we refer to [21, 25, 26, 28, 29, 30, 31, 33].

Furthermore and with respect to the physical experiments, we will make the following
assumptions:

u1 < 0 and u0 < c a.e. on Γe, (15)

coming from the physical frame. Let us notice that, thanks to these additional informa-
tions, the application of Hopf’s maximum principle yields

min
Ω
u = min

Γe

u0 and
∂u

∂n
(argmin u) = u1(argmin u) < 0.

In the same way, one has also

max
Ω

u = max
Γp

u = c, and
∂u

∂n |Γp

> 0.

For the reasons mentioned before, we decided to see this “free boundary problem” as
a Shape Optimization one. Indeed, let us introduce, Ω and c > 0 being fixed, the solution
uΩ of the following mixed Dirichlet-Neumann elliptic problem





∇ · (σ∇u) = 0, x ∈ Ω
∂u
∂n = u1, x ∈ Γe

u = c x ∈ Γp,

(16)

Let us denote by D the closure of DR,ρ, i.e. the compact set which boundary is Γe. If the
capacity of the compact set D\Ω is strictly positive and u1 belongs to W−1/2,2(Γe), then
this problem has obviously a unique solution, by virtue of Lax-Milgram’s Theorem.
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Now, a natural idea to solve the overdetermined system (16) consists in introducing a
least square type shape functional J through the Shape Optimization problem

{
minJ(Ω) =

∫
Γe

(u− u0)
2 ds

Ω ∈ Oad,
(17)

where Oad denotes the set of admissible shapes that has to be clarified. The natural
questions arising here are:

• How to choose Oad to ensure the existence of solutions for Problem (17)?

• In the case where Problem (17) has a solution Ω⋆, can we guarantee that J(Ω⋆) = 0?

In the following section, we will bring some partial answers to these questions.

4.2 An existence result

This section is devoted first to the statement of an existence result for the Shape Opti-
mization problem (17) and secondly to the writing of the first order necessary optimality
conditions of this problem. We need to define some convergence notions for the elements
of Oad, providing a topology within this class.

Definition 4.1. A sequence of domains (Ωn)n>0 is said

• converging to Ω for the Hausdorff convergence if

lim
n→+∞

dH(D\Ωn, D\Ω) = 0,

where dH(K1,K2) = max(ρ(K1,K2), ρ(K2,K1)), for any (i, j) ∈ {1, 2}2, ρ(Ki,Kj) =
supx∈Ki

d(x,Kj), and ∀x ∈ D, d(x,Ki) = infy∈Ki d(x, y).

• converging to Ω in the sense of characteristic functions if for all p ∈ [1,+∞),

χΩn −−−→
n→∞

χΩ in Lp
loc(R

2).

• converging to Ω in the sense of compacts if

1. ∀K compact subset of D,K ⊂ Ω ⇒ ∃n0 ∈ N
∗, ∀n > n0, K ⊂ Ωn.

2. ∀K compact subset of D,K ⊂ D\Ω ⇒ ∃n0 ∈ N
∗, ∀n > n0, K ⊂ D\Ωn.

It is in general a hard task to get existence results in Shape Optimization. Not only,
many such problems are often ill-posed (see for instance [2, 27]), but if the class of ad-
missible domains is too large, a minimizing sequence of domains may converge to a very
irregular domain, for which the solution of the partial differential equation may exist in
a very weak sense. For these reasons, a partial solution consists in restricting the class of
admissible domains, by assuming some kind of regularity. For that purpose, let us define
the notion of ε-cone property, introduced in [15].
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Definition 4.2. Let y be a point of R
2, ξ a normalized vector and ε > 0. We denote by

C(y, ξ, ε), the unpointed cone

C(y, ξ, ε) = {z ∈ R
2, 〈z − y, ξ〉 > cos ε‖z − y‖ and 0 < ‖z − y‖ < ε}.

We say that an open set Ω verifies the ε-cone property if

∀x ∈ ∂Ω,∃ξx ∈ S
1,∀y ∈ Ω ∩B(x, ε), C(y, ξx, ε) ⊂ Ω.

Let us make precise the class of admissible domains. For a given η > 0, we call Dη,
the annular compact set D\B(0, η). For η and ε, two fixed strictly positive numbers, we
define

Oε,η
ad = {Ω open subset of Dη verifying the ε cone property,Γe ⊂ ∂Ω, #(Dη\Ω) 6 1},

where #(Dη\Ω) denotes the numbers of connected components of the complementary set
of Ω in Dη, and we replace the class Oad by Oε,η

ad in Problem (17). One has the following
existence result.

Proposition 3. Let η and ε be two fixed strictly positive numbers. Then, Problem (17)
admits at least one solution.

Proof. Let (Ωn)n>0 be a minimizing sequence for Problem (17) and let Γp,n be the part
of the boundary contained in Ωn, that is ∂Ωn\Γe. Since for any n ∈ N, Ωn is included in
the compact set Dη, there exists Ω⋆ such that (Ωn)n>0 converges to Ω⋆ for the Hausdorff
metric and in the sense of characteristic functions (see [27, Chapter 2]). Let us denote by
Γ⋆

p its internal boundary. Furthermore, since any Ωn satisfies an uniform ε cone property,
the sequence (Ωn)n>0 converges to Ω⋆ in the sense of compacts and necessarily, Ω⋆ satisfies
the uniform ε-cone property [27, Theorem 2.4.10].

To prove the existence result, we need to prove at least the lower semi-continuity of
the criterion J in the class Oε,η

ad .
Let us first prove that the sequence (uΩn)n>0 is bounded in W 1,2(Dη). Notice that

due to the homogeneous Dirichlet boundary condition on the lateral boundary Γp,n, we
can extend uΩn by c outside Γp,n. So we can consider that the functions are all defined on
the box Dη (or D) and the integrals over Γp,n and over Dη (or D) will be the same. For
that purpose, let us multiply Equation (16) by uΩn − c and then integrate by part. From
Green’s formula, we get

C1

∫

Ωn

|∇uΩn |2 6

∫

Ωn

σ|∇uΩn |2 =

∫

Γe

σu1(uΩn − c),

and the right hand side is uniformly bounded with respect to n, due to the fact that the
sequence (J(Ωn))n>0 is convergent and hence bounded. Now, it remains to prove that the
sequence (uΩn) is bounded in L2(Ωn). This is actually a consequence of the non positivity
of u1. Indeed, the use of Hopf’s Theorem yields immediately that uΩn attains its maximum

value at xm ∈ Γe ∪Γp,n and that
∂uΩn
∂n (xm) > 0 and hence, maxΩn

uΩn = uΩn |Γp,n
= c. Let

us introduce uη/2, the solution of (16) set in the interior of Dη/2. A comparison between
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uΩn and uη/2, using Hopf’s maximum principle ensures that for any n ∈ N, uη/2 6 uΩn 6 c
a.e. in D. Thus, β = max(‖uη/2‖L2(D), πρ

2c) is an uniform bound of the L2(D) norm of
uΩn , which proves the W 1,2(D) boundedness of uΩn , and shows at the same time that
(uΩn)n>0 is bounded in W 1,2(Dη).

As a result, using Banach Alaoglu’s and Rellich-Kondrachov’s Theorems, there exists
a function u⋆ ∈W 1,2(Dη) such that

uΩn

W 1,2(Dη/2)
⇀ u⋆ and uΩn

L2(Dη/2)
→ u⋆ as n→ +∞.

It remains to prove that u⋆ is the solution of Equation (16) on Ω⋆. Let us notice that, once
this assertion will be proved, the continuity of the shape functional J will immediately
follow, because of the above convergence result. Let us write the variational formulation
of (16). For any function ϕ satisfying ϕ ∈W 1,2(Dη/2), ϕ = 0 on Γe∪Γ⋆

p, and for all n ∈ N,
the function uΩn verifies ∫

D
σ∇uΩn · ∇ϕ =

∫

Γe

σu1ϕ. (18)

It suffices to use the weak H1-convergence of uΩn to u⋆ to show that u⋆ satisfies also (18).
To conclude, it remains to prove that u⋆ = 0 on Γ⋆

p. This is actually a consequence of
the convergence of (Ωn)n>0 into Ω⋆ and the fact that Ω⋆ has a Lipschitz boundary. We
refer to Theorem 2.4.10 and Theorem 3.4.7 in [27]. Finally, let us notice that the inclusion
Γe ⊂ ∂Ω⋆ is verified. Indeed, it follows from the stability of the inclusion for the Hausdorff
convergence. To be convinced, one way consist in considering that Γe is the boundary of
an open set Σ that does not contain D, and to replace the constraint Γe ⊂ ∂Ω by Σ ⊂ Ω̃,
where Ω̃ = Ω∪ Γe ∪Σ. Hence, the stability of the inclusion of open sets for the Hausdorff
convergence applies and the conclusion follows.

Notice that the existence result do not guarantee that the solution uΩ⋆ of (16) set in
the optimal domain Ω⋆ satisfies the Cauchy conditions on Γe, that is the nonhomogeneous
Dirichlet and Neumann boundary conditions on Γe.

4.3 First order optimality conditions

Let us now write the first order optimality conditions for Problem (17). For that purpose,
we will first compute the shape derivative of the criterion J . The major difficulty in
dealing with sets of shapes is that they do not have a vector space structure. In order
to be able to define shape derivatives and study the sensitivity of shape functionals, we
need to construct such a structure for the shape spaces. In the literature, this is done by
considering perturbations of an initial domain; see [2, 27, 34, 38].

Practically speaking, it is preferable to enlarge the class of admissible domains to write
the first order optimality conditions, even if there is a risk of loosing the existence result.
Indeed, it would be else strongly difficult for instance to take into account the fact that
any admissible domain must satisfy an ε-cone property. For this reason, let us define

Oad = {Ω open subset of D,#(Dη\Ω) 6 1}. (19)
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Let Ω ∈ Oad given. Let us consider a regular vector field V : R
2 → R

2 with compact
support, which does not meet the fixed boundary Γe. For small t > 0, we define Ωt =
(I + tV )Ω, the image of Ω by a perturbation of Identity and f(t) := J(Ωt). We recall that
the shape derivative of J at Ω with respect to V is

f ′(0) = lim
tց0

J(Ωt) − J(Ω)

t
.

We will denote it by dJ(Ω;V ). Let us now compute this shape derivative. The classical
formulae yield

dJ(Ω;V ) = 2

∫

Γe

(uΩ − u0)u̇ds,

where u̇ denotes the shape derivative of u, and is solution of the system





∇ · (σ∇u̇) = 0, x ∈ Ω
∂u̇
∂n = 0, x ∈ Γe

u̇ = −∂uΩ

∂n (V · n) x ∈ Γp.

(20)

The proof of such an assertion may be found for instance in [22, Section 3.1]. It is more
convenient to work with another expression of the shape derivative and to write it as a
distribution with support Γp. For that purpose, let us introduce the adjoint state p defined
formally as the solution of the system





∇ · (σ∇p) = 0, x ∈ Ω

σ ∂p
∂n = 2(uΩ − u0), x ∈ Γe

p = 0 x ∈ Γp.

(21)

Proposition 4. Assume that ∂Ω is Lipschitz (in other words, Γp is Lipschitz). Then, the
criterion J is differentiable with respect to the shape at Ω and one has for all admissible
perturbation V ∈W 1,∞(R2,R2),

dJ(Ω;V ) =

∫

Γp

σ
∂p

∂n

∂uΩ

∂n
(V · n)ds.

As a consequence, if Problem (17) has a solution Ω⋆ having a internal boundary Γ⋆
i which

is a Lipschitz closed curve, then Ω⋆ solves the overdetermined problem (14).

Proof. The shape differentiability is standard (see [17, 27]) under the assumption that the
boundary of Ω is regular enough. Let us now prove the expression of the shape derivative.
First multiply equation (20) by p and integrate on Ω. The use of the Green formula yields

−
∫

Ω
σ∇p · ∇u̇ = −

∫

Γe

σ
∂u̇

∂n
p = 0.

Multiplying equation (21) by u̇ and integrating by parts yields

−
∫

Ω
σ∇p · ∇u̇ = −

∫

Γe∪Γp

σ
∂p

∂n
u̇.
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The conclusion follows easily. Now, let us investigate the first order optimality conditions.
Since Γi,⋆ is Lipschitz and surrounds a domain whose interior is nonempty, we deduce that
if V belongs to the cone of admissible perturbations, then so does −V . Hence,

∂p

∂n

∂uΩ

∂n
= 0 on Γ⋆

p,

and it follows that there exists a subset of Γ⋆
p of nonzero surface measure on which uΩ⋆ = c

and ∂p
∂n

∂uΩ⋆

∂n = 0. Furthermore, by virtue of Holmgren’s theorem, necessarily ∂uΩ⋆

∂n 6= 0 on

such a subset. Hence ∂p
∂n = 0 on this subset, and since one has also p = 0 on Γ⋆

p, a second

application of Holmgren’s theorem yields p ≡ 0. In other words, ∂uΩ⋆

∂n |Γe
= u1, which is

the desired result.

4.4 Numerical computations

The method presented here is a gradient method, based on the use of the shape derivative
dJ(Ω;V ) computed in Proposition 4. It consists basically in finding a deformation of a
given domain Ω guaranteeing the decrease of the criterion J(Ω). To sum up, the algorithm
writes:

• Initial guess Ω0 ∈ Oad is given;

• Iteration k: Ωk+1 = (Id+ tkVk)Ωk where Vk is a vector field shrewdly chosen and tk
the time step;

Practically speaking, we are looking for a vector field Vk such that

dJ(Ωk, Vk) =

∫

Γp

∇J(Ωk) · Vkds < 0,

where

∇J(Ωk) = −σ∂uΩk

∂n

∂pk

∂n
n,

and pk is the adjoint state, solution of Problem (21) set on the domain Ωk. One possible
choice for Vk is ∫

Γp

∇J(Ωk) · Vk = −‖Vk‖2
H1(Ωk). (22)

For a precise description of this method or others like the level set method and examples of
applications in the domain of Shape Optimization, we refer for instance to [2, 12, 18, 16, 35].
To ensure (22), let us write Vk as the solution of the problem written under variational
form

Find Vk ∈
(
H1(Ωk)

)2
such that

∫

Ωk

(∇Vk : ∇ϕ+ Vk · ϕ)ds = −
∫

Γp

∇J(Ωk) · ϕds, (23)
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where the test functions ϕ describe the space of functions H1(Ωk)
2 verifying ϕ = 0 on Γe,

and the symbol “:” denotes the tensorial notation used to represent the doubly contracted
tensorial product, i.e. for A and B, two smooth vector fields of R

2,

A : B =

2∑

i,j=1

AijBij = tr(A⊗B⊤).

Notice that (23) is equivalent to the partial differential equation





−∆Vk + Vk = 0 x ∈ Ωk

Vk = 0, x ∈ Γe
∂Vk
∂n = −∇J(Ωk), x ∈ Γk

p.

(24)

Written under this form, it is easy to see that this partial differential equation is decoupled.
Let us summarize the gradient algorithm:

1. Initialization: Choice of an initial domain Ω0 and of a real number ε > 0;

2. Iteration k:

(a) computation of the solutions uk and pk of Problems (16) and (21);

(b) evaluation of ∇J(Ωk) on Γk
p;

(c) computation of the solution Vk of Problem (24);

(d) determination of Ωk+1 = (Id+ tkVk)Ωk;

3. stopping criterion: The algorithm stops when |J(Ωk+1) − J(Ωk)| < ε

An alternative approach, inverting the role of Dirichlet and Neumann conditions in (16),
has also been tested. More precisely, the criterion to minimize has been changed to

J(Ω) =

∫

Γe

(
∂uΩ

∂n
− u1

)2

dx,

where uΩ solves 



∇ · (σ∇u) = 0, x ∈ Ω
u = u0, x ∈ Γe

u = c x ∈ Γp.
(25)

We observed that both approach gave similar results. Before presenting our numerical
results on the tokamak Tore Supra, let us begin with some numerical tests, in order to
verify the efficiency of our method.

A first test case has been done, taking σ = 1, and using the fact that the solution
of the Laplacian operator is know on an annular domain. Indeed, let us assume that
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Ω = D2\D1 where D1 (respectively D2) denotes the disk centered at the origin of radius
R1 > 0 (respectively R2 > 0). Then, the solution of





∆u = 0, x ∈ Ω
u = 0, x ∈ ∂D1

u = c0 x ∈ ∂D2

(26)

is given by

u = c0
ln

√
x2 + y2 − lnR1

lnR2 − lnR1
.

Note that the normal derivative of u on ∂D2 is clearly

∂u

∂n
=

c0
R2(lnR2 − lnR1)

.

A first test can then be made, looking for the internal radius R1, assuming that the normal
derivative of u on ∂D2 is constant equal to c1 > 0 and the expected solution is obviously

R1 = R2 exp

(
− c0
R2c1

)
.

The results for this case are plotted on Figure 3.

A second test case has been built, by choosing an arbitrary domain Ωc and a function
u0, computing the solution u of (16), and choosing for u1, the quantity ∂u

∂n . Running the
program with these definitions of u0 and u1 permits to compare the computed domain
with the theoretical domain Ωc. The results for this case are plotted on Figure 4.

Let us now present the simulations of the plasma shape in the tokamak Tore Supra.
Measures of u0 and u1 on the external boundary of the tokamak, made by Physicists
from CEA/IRFM, are the starting point of our algorithm. We interpolated these datas
thanks to cubic splines to have a complete definition of these functions (see Figure 5).
All the simulations presented here are been realized using the software Matlab. With
these functions, the algorithm provided the following results plotted on Figure 6. Notice
that we did not impose in our algorithm for the plasma to stay inside the limiter, but
we fortunately observed it. The point marked by a cross is a control point and the free
boundary has to contain this point (it is on the limiter). These conditions being fulfilled,
validate our method.

A linked interesting inverse problem consists in finding the value of the constant c
introduced in Problem (14) from our knowledge of the point M0 belonging to the shape
of the plasma. Our algorithm can easily perform the value of such a constant. Indeed,
solving Problem (14) with an arbitrary constant c1 ≫ c yields a solution u and the
associated optimal domain is Ω1 = {u0 6 u 6 c1}. In fact, the true solution is provided
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Figure 3: Up: optimum computed (left) and criterion (right) for the test case c0 = 2
and c1 = 1. Hence, the expected value of R1 is 0.10 which is the case. Down: optimum
computed (left) and criterion (right) for the test case c0 = 1 and c4 = 1. Hence, the
expected value of R1 is 0.70 which is the case
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Figure 4: Domain Ωc expected (left), Domain Ω computed (right) and criterion (down) in
the case u0 = −0.2x2 − 0.5y2
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Figure 5: θ 7→ u0(θ) (left) and θ 7→ u1(θ)(right)
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Figure 6: External boundary in blue, toroidal belt limiter in black, computed shape of the
plasma in blue (left) and criterion (right)

by Ω⋆ = {u0 6 u 6 u(M0)}. Indeed, it is very easy to show that, as a consequence of the
maximum principle, Ω⋆ satisfies (13). On Figure 7 is an example of the solution obtained
by running the program with c1 = 0.2, the expected constant being closed to 0.153.
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Figure 7: Ωc1 in blue and Ω⋆ in purple. The constant c evaluated is 0.1569 whereas the
constant c measured by Physicists is 0.1531
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