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HOPF BIFURCATION IN A HIV MODEL WITH A QUADRATIC
LOGISTIC GROWTH TERM ∗

XINYUE FAN † AND CLAUDE-MICHEL BRAUNER ‡

Abstract. We consider a model of disease dynamics in the modeling of Human Immunodefi-
ciency Virus (HIV). This model consists of three ODEs for the concentrations of the target T cells,
the infected cells and the virus particles. There are two bifurcation parameters, N , the total number
of virions produced by one infected cell, and r, the logistic parameter which controls the growth
rate. This paper focuses on the stability of the uninfected and infected steady state. We identify
two domains, U and I , where the uninfected equilibrium is respectively asymptotically stable and
unstable. The infected equilibrium is asymptotically stable in I , except in a region P where we
prove its instability. Hopf bifurcations occur at the interface. Numerical results are presented.

Key words. Stability, Hopf bifurcation, HIV modeling

subject classifications. 34D20, 92C37

1. Introduction
The major target of Human Immunodeficiency Virus (HIV) infection is a class

of lymphocytes, or white blood cells, known as CD4+ T cells. As a consequence, the
immune response of the host to opportunistic infections is progressively compromised,
leading to Acquired Immunodeficiency Syndrome (AIDS). T cells, like other lympho-
cytes, are produced in the bone marrow. Immature cells migrate to the thymus, where
they undergo further differentiation and maturation into immunocompetent T cells
(see [9]).

The reason for the fall in the T cell count is unknown, as are the processes by
which infection may affect the source of new T cells, or the homeostatic processes
which control the number of T cells in the human body. Over the past decade, a
number of models, both stochastic and deterministic, have been developed to describe
the immune system and its interaction with HIV. A substantial number of nonlinear
systems have been suggested by Perelson et al. (see the survey [10]) to model the
complex dynamics of HIV-host interaction.

In this article we consider the following model of viral dynamics with a logistic
term. It focuses on CD4+ T cells and includes three variables. Let T and I denote the
respective concentrations of uninfected and infected CD4+ T cells. The concentration
of free virus particles, or virions, is V . For the sake of simplicity, we call V the virus
in the paper. The model reads see ([10, p. 10]):

dT

dt
=α−µT T +rT

(
1− T

Tmax

)
−γV T, (1.1)

dI

dt
=γV T −µII, (1.2)

dV

dt
=NµII−µV V, (1.3)
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2 Hopf bifurcation in a HIV model with a quadratic logistic growth term

where α is the rate of supply of immunocompetent T cells from precursors in the
thymus. T cells, like all cells in the body, have a finite lifetime. Here µT is the
natural death rate of CD4+ T cells, the term γV T models the rate at which free virus
infects a CD4+ T cell. The infected cells die at a rate µI and produce free virus
during their life-time at a rate N . In addition, µV is the death rate of the virus.

We assume that the growth of T cells is governed by a quadratic logistic equation
(see [9]). In (1.1), r is the average specific T-cell growth rate obtained in the absence
of population limitation. It depends on the average degree of antigen or idiotypic
network stimulation of T-cell proliferation. The term 1−T/Tmax shuts off T-cell
growth as the population level Tmax is approached from below.

In the absence of virus, the T cells population has a steady state value:

T0 =
(r−µT )+

√
(µT −r)2 + 4rα

Tmax

2r
Tmax.

Note that the quantity r−µT , the net T-cell proliferation rate, needs not to be posi-
tive, see [9, p. 86].

We set X(t)=(T (t),I(t),V (t)) and write System (1.1)-(1.3) as the Cauchy prob-
lem:

dX

dt
(t)=F (X(t)), X(0)=X0, (1.4)

where X0 corresponds to non-negative initial conditions.
It is easily seen that System (1.4) has two possible nonnegative equilibria:

(i) the uninfected steady state Xu =(Tu,Iu,Vu):

Tu =T0 =
(r−µT )+

√
(µT −r)2 + 4rα

Tmax

2r
Tmax, Iu =0, Vu =0, (1.5)

which corresponds to a positive equilibrium in case of no infection;
(ii) the infected steady state Xi =(Ti,Ii,Vi):

Ti =
µV

γN
, Ii =

α

µI
− µT µV

NγµI
+

rµV

NγµI

(
1− µV

NγTmax

)
,

Vi =
αN

µV
− µT

γ
+

r

γ

(
1− µV

NγTmax

)
. (1.6)

The infected steady state or “seropositivity steady state” corresponds to a positive
equilibrium in case of infection.

De Leenheer and Smith (see [2]) considered a general system of three ODEs
which generalizes System (1.1)-(1.3), as well as a model by Nowak and May [8]. Their
bifurcation parameter is the basic reproduction ratio for the model, which reads with
our notations:

R0 =
γNT0

µV
. (1.7)

However, the basic reproduction number R0 defined by (1.7) depends on the
logistic parameter r, whereas its critical value is equal to unity for all r. Therefore, it
is appropriate to take another quantity as bifurcation parameter, such as N (see [9]).
In this paper, we consider N >0 and r≥0 as independent bifurcation parameters.
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Fig. 1.1. Typical profiles of virus vs. target cells in the phase plane (front), virus (left) and
target cells (right) in the case of infection, corresponding to domain I where the infected equilibrium
is stable. Here N =1000, r =0.2. The other quantities have the values: Tmax =1500, α=1.5, γ =
0.001, µT =0.1, µI =0.5, µV =10, as in the figures hereafter except Fig. 2.3.

Another important quantity is Tmax, which mathematically plays the role of a large
perturbation parameter. The quantities µT ,µI ,µV ,α and γ will be fixed numbers.

We first determine two domains, U and I , in the first quarter plane. It is easy
to see that the uninfected equilibrium is asymptotically stable in U and unstable in
I . The positive infected equilibrium exists in I only. We prove in Section 2 that it
is asymptotically stable, except in a subdomain P of I . The region P is explicitly
delimited by two curves r1(N) and r2(N) which meet at N =N2. We use the Routh-
Hurwitz criterion which ensures that the eigenvalues of the Jacobian matrix have
negative real part if and only if the corresponding Hurwitz determinants are positive.

In Section 3, we prove that the infected equilibrium Xi is unstable in the interior
of the region P. Furthermore, Hopf bifurcations occur at the boundary of P at fixed
N . We use a criterion of Liu (see [5]) and Orlando’s formula which establishes a simple
relation between the Hurwitz determinant D2 and the sums of pairs of eigenvalues.

Numerical computations show oscillations in the region P. However, the
biological meaning of these oscillations remains unclear, see [9, p. 108]). We refer to
[2] for the existence of an orbitally asymptotically stable periodic orbit.

Remark 1.1. It is possible to replace (1.1) by

Ṫ =α−µT T +rT

(
1− T +I

Tmax

)
−γV T, (1.8)
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see [10, 1]. However, the proportion of infected cells is very small, on the order of
10−4 to 10−5 of T cells, therefore this correction in the logistic proliferation term
may be ignored (see [10, p. 10]). Wang and Li (see [11]) studied the global dynamics
of System (1.8)(1.2)(1.3).

2. Stability

2.1. Equilibria
The notations are those of Section 1. More precisely, we state:

(i) N >0 and r≥0 are bifurcation parameters;
(ii) the quantities µT ,µI ,µV ,α and γ, which are positive numbers, are fixed throughout
the paper;
(iii) Tmax is a large perturbation parameter. Hereafter “Tmax large enough” means
with respect to any combination of µT ,µI ,µV ,α and γ. It was already assumed in [9,
p. 85] that

Tmax >
α

µT
. (2.1)

We consider the possible nonnegative equilibria of System (1.1)-(1.3) given by
Formulae (1.5) and (1.6). Taking N as a bifurcation parameter at fixed r≥0, it is
not difficult to compute the critical value at which Vu =Vi =0:

Ncrit(r)=
µV

(
(µT −r)+

√
(µT −r)2 + 4αr

Tmax

)

2αγ
=

µV

γT0
.

At r=0, Ncrit(0)=
µT µV

αγ
, and, as r→+∞,

Ncrit(r)→Ncrit(+∞)=
µV

γTmax
.

Note that Ncrit(0) does not depend on Tmax, whereas Ncrit(+∞) is small for large
Tmax. We compute the derivative of Ncrit with respect to r:

Ṅcrit(r)=
µV

2αγ


 −(µT −r)+ 2α

Tmax√
(µT −r)2 + 4αr

Tmax

−1


 .

Lemma 2.1. We assume that (2.1) holds. Then, for r≥0, the mapping r 7→Ncrit(r)
is decreasing and convex.

Proof. Obviously, N̈crit(r) is positive,

Ṅcrit(0)=
µV

αγµT

(
α

Tmax
−µT

)
<0,

and Ṅcrit(r)→0 as r→+∞, therefore Ṅcrit(r)<0 for any r >0.

Therefore we can define two domains of the quarter plane N >0,r≥0: first (I )
for infected, which lies strictly above the graph of mapping r 7→Ncrit(r), second (U )
for uninfected, which lies below the graph.
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Under the condition (2.1), the curve r 7→Ncrit(r) is one-to-one from [0,+∞) onto
(Ncrit(+∞),Ncrit(0)], as in Figure 2.1. In such a case, the role of parameters N and
r can be exchanged and one can define a critical value rcrit(N) for each Ncrit(+∞)<
N ≤Ncrit(0),

rcrit(N)=
µT µV −γαN

µV

(
1− µV

NγTmax

) . (2.2)

By convention, rcrit(N)=0 whenever N >Ncrit(0).

Fig. 2.1. Profile of the curve r 7→Ncrit(r) which defines the two domains U and I . With the
values of Fig. 1, N decreases from µT µV /αγ =666.67 to µV /γTmax =6.67.

Lemma 2.2. (i) In the domain (U ), the uninfected steady state Xu =(Tu,Iu,Vu)
is the only nonnegative equilibrium. In the domain (I ), there are two nonnegative
equilibria, Xu and the infected steady state Xi =(Ti,Ii,Vi).
(ii) It always holds 0<Tu <Tmax and, in (I ), 0<Ti <Tmax .

Proof. It remains only to prove (ii). Thanks to (2.1), on the one hand

Tu =
(r−µT )+

√
(µT −r)2 + 4rα

Tmax

2r
Tmax

<
(r−µT )+

√
(µT −r)2 +4µT r

2r
Tmax =Tmax.

On the other hand, Ti =µV /(γN)<Tmax whenever N >Ncrit(r)=µV /(γTmax).

The study of the stability of the uninfected solution is easy, however we include
it for the convenience of the reader.

Proposition 2.1. (i) In the domain (U ), the uninfected steady state is asymptoti-
cally stable. (ii) In the domain (I ), the uninfected steady state is unstable.

Proof. Let r≥0 be fixed. We compute explicitly the eigenvalues of the Jacobian
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matrix

J(Xu)=




r−µT − 2rTu

Tmax
0 −γTu

0 −µI γTu

0 NµI −µV


 .

They are all real:

λ1 =−
√

(−r+µT )2 +4
rα

Tmax
<0,

λ2 =−1
2

(
(µI +µV )+

√
(µI +µV )2−4(µIµV −NγµITu)

)
<0,

λ3 =
1
2

(
−(µI +µV )+

√
(µI +µV )2−4µIµV

(
1− N

Ncrit(r)

))
.

It is clear that λ3 <0 for N <Ncrit(r), therefore the three eigenvalues are negative.
As long there is no eigenvalue on the imaginary axis, it is standard that linear
stability yields nonlinear stability for a system of the form (1.4), therefore we will
not elaborate this point.

The issue of the stability of the infected solution is obviously more complicated.
For (N,r)∈I , we consider the Jacobian matrix:

J(Xi)=




r−µT − 2rTi

Tmax
−γVi 0 −γTi

γVi −µI γTi

0 NµI −µV


. (2.3)

The spectrum of J(Xi) is given by the roots (three real roots or one real and two
complex conjugates) of the following characteristic equation:

λ3 +d1λ
2 +d2λ+d3 =0 (2.4)

where the coefficients (functions of N and r) read:

d1 =µI +µV +
γαN

µV
+

rµV

γTmaxN
,

d2 =
γNαµI

µV
+γαN +

rµIµV

γTmaxN
+

rµ2
V

γTmaxN
,

d3 =
(

µIµV − µ2
V µI

γTmaxN

)
r+γNαµI−µV µIµT .

2.2. Study of the characteristic equation (2.4)
We recall that the Routh-Hurwitz criterion gives necessary and sufficient con-

ditions for all the roots of a real polynomial to have negative real parts (see, e.g.,
[3, Chap. XV, 6]). Therefore it provides a stability analysis only by examining the
coefficients of the characteristic polynomial, without computing the eigenvalues. In
the case of (2.4) where d0 =1, the roots have negative real part if and only if the
corresponding Hurwitz determinants are positive:

D1 =d1 >0, D2 =d1d2−d3 >0, D3 =d3D2 >0.
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In other words, the roots of (2.4) have negative real part if and only if

d1 >0, d3 >0, D2 =d1d2−d3 >0. (2.5)

Obviously, d1 >0. We compute d3 =0, which is equivalent to

αγN2 +(rµV −µV µT )N− rµ2
V

γTmax
=0,

whose positive solution is Ncrit(r). Therefore d3 >0 for N >Ncrit(r), i.e., whenever
(N,r)∈I .

Next, we compute the leading determinant

D2 =d1d2−d3 =
1

µ2
V (Tmax)2γ2N2

(Ar2 +Br+C), (2.6)

which obviously has the sign of Ar2 +Br+C. The coefficients reads:

A=µ5
V +µ4

V µI ,

B =−NγTmaxµ2
V (NγµIµV Tmax−2γαNµV −2NγµIα

−µ3
V −3µ2

V µI−µ2
IµV ),

C =N2γ2(Tmax)2(Nγµ3
V α+NγµIαµ2

V +Nγµ2
IµV α+γ2N2α2µV

+γ2N2α2µI +µ3
V µIµT ).

Note that A>0 is fixed, B and C depend on N . While C >0, B(N) vanishes at

N0 =
µV (3µIµV +µ2

I +µ2
V )

γ(µIµV Tmax−2µV α−2µIα)
. (2.7)

Since Tmax is large with respect to the other data, N0 is positive but small:

Ncrit(+∞)=
µV

γTmax
<N0 <Ncrit(0).

Therefore, for Ncrit(+∞)≤N <N0, we have B >0, and B <0 for N >N0.
To determine the sign of the second order polynomial Ar2 +Br+C, we compute

the discriminant

∆(N)=B2−4AC =N2γ2(Tmax)2µ5
V (aN2 +bN +c),

which in turn is of the sign of aN2 +bN +c.
The coefficient a,b and c reads:

a=γ2TmaxµI (−4µIα+µITmaxµV −4µV α) ,

b=−2γµIµV

(
Tmaxµ2

I +3µITmaxµV −4µIα+µ2
V Tmax−4µV α

)
,

c=µV

(
µ4

V +6µ3
V µI +11µ2

V µ2
I−4µ2

V µIµT +6µV µ3
I−4µ2

IµV µT +µ4
I

)
.

For Tmax large enough, a>0 and b<0. However, the sign of c, which does not contain
Tmax, depends on the data.
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Next we compute:

δ = b2−4ac

= 16γ2µI (µI +µV )µV (Tmaxαµ4
I +4TmaxαµV µ3

I +5µ2
Iµ

2
V Tmaxα

+µ2
Iµ

2
V (Tmax)2µT +4µ2

IµV α2−4µ2
IµV TmaxαµT +4µIµ

3
V Tmaxα

+4µIµ
2
V α2−4µITmaxαµ2

V µT +µ4
V αTmax).

For large Tmax, δ has the sign of the coefficient of (Tmax)2, hence δ >0.
The roots of ∆=0, namely those of aN2 +bN +c=0, are N1 <N2:

N1 =
−b−

√
δ

2a
, N2 =

−b+
√

δ

2a
. (2.8)

It is clear that N2 >0, while N1 has the sign of c. However, N1 plays a role only if
larger than Ncrit(+∞). We also remark that N2 is small for large Tmax, therefore
N2 <Ncrit(0).

It is useful to determine the position of N0, see (2.7), with respect to N1 and N2:

Lemma 2.3. We have N1 <N0 <N2 <Ncrit(0).
Proof. Since B(N0)=0, ∆(N0)=−4AC <0, hence aN2

0 +bN0 +c<0.

Now we are in position to begin our discussion following the position of N .

Case 1. The first case corresponds to N1 <N <N2. In such a case, aN2 +bN +
c<0, hence ∆(N)<0. Obviously, Ar2 +Br+C has the sign of A which is positive.

Case 2. The second case corresponds to N <N1 or N >N2.
(i) If N <N1, then, by Lemma 2.3, B >0. Hence, Ar2 +Br+C >0 for any r≥0 since
A,B,C >0. It thus follows that D2 >0.
(ii) If N >N2, then, by Lemma 2.3, B <0. Since ∆>0, the equation Ar2 +Br+C =0
admits the two real and positive solutions

r1(N)=
−B−√∆

2A
, r2(N)=

−B+
√

∆
2A

. (2.9)

Consequently, the Hurwitz determinant D2 is positive for rcrit(N)≤ r<r1(N) and
r>r2(N), it vanishes at r= r1(N) and r= r2(N), it is negative for r1(N)<r<r2(N).

Case 3. The third case corresponds to N =N1 or N =N2. In such a case, ∆=0
and the polynomial Ar2 +Br+C has the double root r=−B/2A. However, this
solution makes sense only if B <0, namely N >N0. Then by Lemma 2.3, we discard
the case N =N1. Therefore at N =N2, D2 is positive except at r(N2)=−B/2A
where it vanishes.

Remark 2.2. It is important to see that rcrit(N)<r1(N) whenever N ≥N2 (see
(2.2)). For N2≤N ≤Ncrit(0), if rcrit(N)= r1(N), then we would have simultaneously
d3 =0 and D2 =0 which is impossible since d1 and d2 are always positive. When
N >Ncrit(0), rcrit(N)=0 by convention and r1(N)>0.

We are now in position to define the subdomain P of I by

P ={(N,r), N ≥N2, r1(N)≤ r≤ r2(N)}, (2.10)



Xinyue Fan, Claude-Michel Brauner 9

with

N2 =
−b+

√
δ

2a
, r1(N)=

−B−√∆
2A

, r2(N)=
−B+

√
∆

2A
,

and at N =N2, r1 = r2 =−B/2A.

We have seen that, in the domain I , d1 and d3 are positive, and d1d2−d3 is
positive except in P. More precisely, d1d2−d3 is negative for N >N2, r1(N)<r <
r2(N) and d1d2−d3 vanishes at r = r1(N) and r= r2(N).

The following theorem is a consequence of the above discussion and the Ruth-
Hurwitz criterion.

Theorem 2.4. We assume Tmax large enough. Then the infected equilibrium
Xi =(Ti,Ii,Vi) is asymptotically stable for (N,r)∈I \P.

However, we can not infer from Theorem 2.4 that the infected equilibrium Xi is
unstable in P or its interior. This issue will be addressed in Section 3.2.

Fig. 2.2. Full portrait of the domains I , U and P in the (N,r) quarter plan in loga-
rithmic scales. Numerical values are as in Figure 1. Here N0 =154.35, N2 =169.81, Ncrit(0)=
666.67, rcrit(N2)=0.08, r1(N2)= r2(N2)=14.03.

2.3. Asymptotics

It is interesting to consider the asymptotical case when Tmax→+∞. First, we
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compute explicitly N2 from Formula (2.8):

N2 =
1

γTmaxµI(−4µIα+µITmaxµV −4µV α)

{
µV Tmaxµ3

I +3µ2
Iµ

2
V Tmax−4µ2

IµV α

+µIµ
3
V Tmax−4µIµ

2
V α+2

{
(µV +µI)µIµV (αTmaxµ4

I +4µV Tmaxαµ3
I

+5µ2
Iµ

2
V Tmaxα+4µ2

IµV α2−4µ2
ITmaxµV αµT +µ2

I(Tmax)2µ2
V µT

+4µIµ
3
V Tmaxα+4µIµ

2
V α2−4µITmaxµ2

V αµT +µ4
V Tmaxα)

} 1
2
}

.

Therefore, for large Tmax,

N2 =
µ2

I +µ2
V +3µIµV +2

√
µV µIµT (µI +µV )

γµI
(Tmax)−1 +L.O.T. (2.11)

Next, we compute, for N2≤N ≤Ncrit(0),

r1(N)−rcrit(N)=

γ

2µ4
V (µV +µI)(γNTmax−µV )

{
µIµ

3
V γ2N3(Tmax)3−2µ2

V µIγ
2αN3(Tmax)2

−N2µ5
V γ(Tmax)2−2µ3

V γ2αN3(Tmax)2−µ2
IN

2µ3
V γ(Tmax)2−4N2µ4

V µIγ(Tmax)2

+4µ3
V µIγαN2Tmax +4µ4

V γαN2Tmax +Nµ6
V Tmax +3Nµ5

V µITmax

+µ2
INµ4

V Tmax−
{

N2Tmax
2µ5

V (µ5
V +6µ4

V µI−2µ3
V γNµITmax

+11µ3
V µ2

I−4µ3
V µIµT +8µ2

V γNµIα−6µ2
V γNµ2

ITmax−4µ2
V µ2

IµT

+6µ2
V µ3

I +µV γ2N2µ2
I(Tmax)2−4µV γ2N2αµITmax +8µV γNµ2

Iα

−2µV γNµ3
ITmax +µV µ4

I−4γ2N2µ2
IαTmax)

} 1
2

NγTmax−2µ5
V NµT Tmax

−2µ4
V NµT µITmax +

{
N2(Tmax)2µ5

V (µ5
V +6µ4

V µI−2µ3
V γNµITmax

+11µ3
V µ2

I−4µ3
V µIµT +8µ2

V γNµIα−6µ2
V γNµ2

ITmax−4µ2
V µ2

IµT

+6µ2
V µ3

I +µV γ2N2µ2
I(Tmax)2−4µV γ2N2αµITmax +8µV γNµ2

Iα

−2µV γNµ3
ITmax +µV µ4

I−4γ2N2µ2
IαTmax)

} 1
2

µV

}

that we take at N =N2. As Tmax→+∞, it comes out that the quantity r1(N2)−
rcrit(N2) has a finite limit `>0:

`=
1

(µ2
V +2µIµV +µ2

I +2
√

µIµV µT (µI +µV ))µIµV

{{
µIµV µT

+µI

√
µIµV µT (µI +µV )+µV

√
µIµV µT (µI +µV )

}{
µ2

V +3µIµV +µ2
I

+2
√

µIµV µT (µI +µV )
}}

.
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Fig. 2.3. r1(N2)−rcrit(N2) is computed vs. Tmax. The limiting value is `=5.12. For the
usual value Tmax =1500.0, we have r1(N2)−rcrit(N2)=13.95.

3. Hopf bifurcation and instability
While the Routh-Hurwitz criterion ensures asymptotic stability, clearly insta-

bility does not hold automatically when the criterion is not satisfied. Additional
information is needed. In this section we will prove that the infected steady state is
unstable in the interior of the region P and Hopf bifurcation occurs at the boundary
on a vertical line.

3.1. Parametrization of the eigenvalues
Let us fix N >N2. We may simply write r1 (resp. r2) for r1(N) (resp. r2(N)).

We consider the family of infected equilibria Xi(r), smoothly parameterized by the
logistic parameter r≥ rcrit = rcrit(N).

The Jacobian matrix (2.3) reads

J(Xi(r))=




r−µT − 2rTi

Tmax
−γVi(r) 0 −γTi

γVi(r) −µI γTi

0 NµI −µV


 ,

where

Vi(r)=
αN

µV
− µT

γ
+

r

γ

(
1− µV

NγTmax

)
,

and the associated characteristic equation (2.4) is:

λ3 +d1(r)λ2 +d2(r)λ+d3(r)=0.

We recall that d3 >0 in I , hence d3(r)>0 for r >rcrit. Let us denote by λi(r),i=1,3,
the three eigenvalues. At fixed r, one of the eigenvalues is real whereas the others
are either real or complex conjugate. The mappings r 7→λi(r) are continuous, and
smooth except at exceptional points where two of the λi’s coincide as in Figure 3.1
(see [4, Chap. II, 1]).
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We also have the notations, according to Subsection 2.4:

D1(r)=d1(r), D2(r)=d1(r)d2(r)−d3(r). (3.1)

The relation between the Hurwitz determinant D2(r) and the sums of pairs of λi’s is
given by Orlando’s formula (see [3, Chap. XV, 7]):

D2(r)=−(λ1(r)+λ2(r))(λ2(r)+λ3(r))(λ1(r)+λ3(r)). (3.2)

From the results of Section 2 and Theorem 2.4, we know that the equilibria Xi(r)
are asymptotically stable whenever rcrit <r <r1 or r>r2. Stability may be lost when
either d3(r)=0 or D2(r)=0. The former case corresponds to r= rcrit where, say,
λ1 =0 and

λ2,3 =
1
2

(
−d1±

√
d2
1−4d2

)
<0,

(see Figure 3.1). The latter case occurs at r= r1 where a pair of purely imaginary
complex roots exists, as we are going to see. Before we observe:

Lemma 3.1. At least one of the eigenvalues is negative whenever r>rcrit.
Proof. For rcrit <r<r1, all the eigenvalues are negative or have negative real

part. If a real eigenvalue crosses the origin at some value r≥ r1, then d3 vanishes,
which contradicts d3(r)>0 for r>rcrit.

As a consequence, only a pair of complex conjugate eigenvalues may cross the
imaginary axis.
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Fig. 3.1. Real part (left) and imaginary part (right) of eigenvalues λ1 and λ2 as a function
of the bifurcation parameter r at fixed N =300. The graphic starts at rcrit =0.05625, λ1 =λ2 at
r =0.05734. The real eigenvalue λ3 <−10 is not pictured.

3.2. Hopf bifurcation
Let examine the values r= r1 and r= r2. According to Lemma 3.1 one of the

eigenvalues is negative, say λ3. Since D2(rj)=0, j =1,2, it follows from Orlando’s
formula (3.2) that λ1(rj)+λ2(rj)=0. More precisely, there is a simple Hopf
bifurcation:
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Fig. 3.2. Real part (left) and imaginary part (right) of eigenvalues λ1 and λ2 as a function of
the bifurcation parameter r at fixed N =300. They cross the imaginary axis at r1 =2.1846.
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Fig. 3.3. For larger r, real part (left) and imaginary part (right) of eigenvalues λ1 and λ2

as a function of the bifurcation parameter r at fixed N =300. They cross the imaginary axis at
r2 =464.1225.

Theorem 3.2. (i) At r= rj ,j =1,2, the eigenvalues λ1(rj) and λ2(rj) are purely
imaginary and conjugate;
(ii) in a neighborhood of rj, λ2(r)=λ1(r), the mapping r 7→λ1(r) is smooth and
(d/dr)Re(λ1)(rj) 6=0,j =1,2;
(iii) the third eigenvalue λ3(rj) is real and negative.

Proof. We apply a criterion of Liu (see [5, 6], [7]). It remains to prove that
dD2/dr(rj) 6=0.

Let us solve dD2/dr(rj)=0 which is easy: it follows from (2.6) that
2Arj +B =0, j =1,2, hence r1 = r2 which happens only at N =N2. Since N >N2, we
reach a contradiction and it holds dD2/dr(rj) 6=0.

3.3. Instability
We are now in position to complete the analysis begun in Theorem 2.4.

Theorem 3.3. The infected equilibrium Xi =(Ti,Ii,Vi) is unstable for (N,r)∈ ◦
P, the

interior of P.
Proof. Let N >N2 be fixed and r∈ (r1(N),r2(N)). We have D2(r)<0. Again,

according to Lemma 3.1, λ3 <0. Hence, by the reciprocal of Ruth-Hurwitz criterion,
one of the eigenvalues λk, k =1,2 has a non-negative real part. If Re(λk) is positive,
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instability is proved. Therefore, assume Re(λk)=0. Clearly λk 6=0 since d3 >0.
Hence, λ1(r) and λ2(r) should be purely imaginary and conjugate eigenvalues and
λ1(r)+λ2(r)=0. Then, by Orlando’s formula (3.2), D2(r)=0 and we reach a
contradiction. More precisely, we have that λ3(r)<0 and λ1(r) and λ2(r) have
positive real part.

3.4. Numerical results
In order to show the infected steady state stability numerically, we can fix N =300,

start from the value rcrit =0.05625, increase the logistical parameter r monotonically
until a critical condition is reached such that any further change would result in
instability, other parameters can be found in Fig. 1. We present the graphs of
numerical solution of the system (1.1)-(1.3) and the trajectory of the solution in the
T -V phase plane, see Figures 3.4 to 3.8. Initial data are T0 =Tu, I0 =0.0, V0 =0.0185.
Some figures assure that this solution approaches the limit cycle in the instability
subdomain P.
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Fig. 3.4. Numerical solution of System (1.1)-(1.3) in the domain I . Parameter values are
N =300 and rcrit =0.05625<r =1.0<r1 =2.1846. The infected equilibrium is stable.
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Fig. 3.5. Numerical solution of System (1.1)-(1.3) in the domain I . Parameter values are
N =300 and r =2.0<r1 =2.1846. The infected equilibrium is stable.
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Fig. 3.6. Numerical solution of System (1.1)-(1.3) in P. Parameter values are N =300 and
r1 <r =50.0<r2. The infected equilibrium is unstable, a periodic orbit is observed.
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Fig. 3.7. Numerical solution of System (1.1)-(1.3) in P. Parameter values are N =300 and
r =200.0<r2 =464.1225. The infected equilibrium is unstable, a periodic orbit is observed.
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Fig. 3.8. Numerical solution of System (1.1)-(1.3) in I . Parameter values are N =300 and
r =500.0>r2 =464.1225. The infected equilibrium is again stable.
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