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NATURAL EXTENSIONS AND ENTROPY OF α-CONTINUED

FRACTIONS

COR KRAAIKAMP, THOMAS A. SCHMIDT, AND WOLFGANG STEINER

Abstract. We construct a natural extension for each of Nakada’s α-continued fraction
transformations and show the continuity as a function of α of both the entropy and the
measure of the natural extension domain with respect to the density function (1+ xy)−2.
For 0 < α ≤ 1, we show that the product of the entropy with the measure of the domain
equals π2/6. We show that the interval (3 −

√
5)/2 ≤ α ≤ (1 +

√
5)/2 is a maximal

interval upon which the entropy is constant. As a key step for all this, we give the explicit
relationship between the α-expansion of α− 1 and of α.

1. Introduction

Shortly after the introduction at the end of the 1950s of the idea of Kolmogorov–Sinai
entropy, hereafter simply entropy, Rohlin [Roh61] defined the notion of natural extension
of a dynamical system and showed that a system and its natural extension have the same
entropy. In briefest terms, a natural extension is a minimal invertible dynamical system of
which the original system is a factor under a surjective map; natural extensions are unique
up to metric isomorphism.

In 1977, Nakada, Ito and Tanaka [NIT77] gave an explicit planar map fibering over the
regular continued fraction map of the unit interval. Their planar map is so straightforward
that it has an obvious invariant measure, and from this they gave a natural manner to
derive the invariant measure for the continued fraction map. (See [Kea95] for discussion of
the possible historical implications.) In particular, they showed that their planar system
is a natural extension of the regular continued fraction system with its Gauss measure.

In 1981, Nakada [Nak81] introduced his α-continued fractions, which form a one dimen-
sional family of interval maps, Tα with α ∈ [0, 1]. (In fact, T1 is the Gauss continued
fraction map, and T1/2 is the nearest-integer continued fraction map.) Using planar nat-
ural extensions, he gave the entropy for those maps corresponding to α ∈ [1/2, 1]. In
1991, Kraaikamp [Kra91] gave a more direct calculation of these entropy values by using
his S-expansions, based upon inducing past subsets of the planar natural extension of the
regular continued fraction map given in [NIT77].
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It was not until 1999 that further progress was made on the entropy of the α-continued
fractions. Moussa, Cassa and Marmi [MCM99] gave the entropy for the maps with α ∈
[
√
2 − 1, 1/2). Let h(Tα) denote the entropy of Tα, and let g = (

√
5 − 1)/2 be the golden

mean; with their results, one knew

h(Tα) =





π2

6 ln(1 + α)
for g ≤ α ≤ 1 ;

π2

6 ln(1 + g)
for

√
2− 1 ≤ α ≤ g .

In 2008, Luzzi and Marmi [LM08] presented numeric data showing that the entropy
function α 7→ h(Tα) behaves in a rather complicated fashion as α varies. They also claimed
that α 7→ h(Tα) is a continuous function of α whose limit at α = 0 is zero. Unfortunately,
their proof of continuity was flawed; however, Tiozzo [Tio] has since salvaged the result
for α > 0.056 . . . (and, in an updated version, after our work was completed, has shown
Hölder continuity throughout the full interval). Luzzi and Marmi also conjectured that,
for non-zero α, the product of the entropy and the area of the standard number theoretic
planar extension for Tα is constant.

Also in 2008, prompted by the numeric data of [LM08], Nakada and Natsui [NN08]
gave explicit intervals on which α 7→ h(Tα) is respectively constant, increasing, decreasing.
Indeed, they showed this by exhibiting intervals of α such that T k

α(α) = T k′

α (α− 1) for
pairs of positive integers (k, k′) and showed that the entropy is constant (resp. increasing,
decreasing) on such an interval if k = k′ (resp. k > k′, k < k′). They conjectured that
there is an open dense set of α ∈ [0, 1] for which the Tα-orbits of α− 1 and α synchronize.
(Carminati and Tiozzo [CT] confirm this conjecture and also identify maximal intervals
where Tα-orbits synchronize.)

We prove the continuity of the entropy function and confirm the conjectures of Luzzi–
Marmi and of Nakada–Natsui (including reproving results of [CT]). Our main results are
stated more precisely in Section 3.

Our approach. Our results follow from giving an explicit description of a planar natural
extension for each α ∈ (0, 1], see Section 7, and this by way of giving details of the
relationship between the α-expansions of α− 1 and α; see Theorem 5.

Experimental evidence, and experience with S-expansions [Kra91], “quilting” [KSS10]
and with analogous natural extensions for β-expansions [KS12], leads one to expect that
the planar natural extension for Tα has fibers over the interval that are constant between
points in the union of the Tα orbits of α− 1 and α; see e.g. Figure 7. Thus, one is quickly
interested in finding “synchronizing intervals” for which all α have orbits that meet after
the same number of respective steps, and share initial expansions of α and α− 1. This is
easily expressed in terms of matrix actions, and one can gain some geometric intuition; see
Figure 3 and Remark 6.9. From this perspective, the fundamental relationship is expressed
by (6.1). Furthermore, it is easy to discover the “folding operation” on these synchronizing
intervals, see Remark 9.2.
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However, the matrix methods by themselves are awkward when it is necessary to char-
acterize the values α for which there is synchronization. We do this in Theorem 5, using
our characteristic sequences. Furthermore, and crucially, a detailed description of the nat-
ural extensions in general is too fraught with details without the use of formal language
notation and vocabulary. Mainly, this is because of the fractal nature of pieces of these
planar regions; see Figures 1, 2, 6 and 7 for hints of this phenomenon. (See also Theorem 7
for a statement giving the shape of a natural extension with our vocabulary.) Thus, we
express the α-expansions as words over an appropriate alphabet, and build up notation to
represent the basic operations relating the expansion of α and α − 1. Further details on
our approach are given in the outline below.

Outline. The sections of the paper are increasingly technical, with the exception of the
final two sections. We establish notation that is needed for formulating the results in the
following section, including some operations on words and the definition of our character-
istic sequences. We state a collection of our main results in Section 3.

Thereafter, we first relate the regular continued fraction and the general α-expansion of
a real number. This then allows a proof that a natural extension for Tα is given by our Tα

on the closure of the orbits of (x, 0). It also allows us to show the constancy of h(Tα)µ(Ωα),
thus proving the conjecture of Luzzi and Marmi.

In order to reach the deeper results, in Section 6 we give the explicit relationship between
the α expansions of α−1 and of α, which is used to describe the (maximal in an appropriate
sense) intervals for synchronizing orbits. This is then applied in Section 7 to give a detailed
description of the natural extension domain, as the union of fibers that are constant on
intervals void of the Tα-orbits of α− 1 and α. In Section 8, we describe how the natural
extensions deform along a synchronizing interval, and derive the behavior of the entropy
function along such an interval.

Relying on the previous two sections, in Section 9 we prove the main result of continuity.
In the following section, we show the more challenging result that the entropy (and hence
the measure of the natural extensions) is constant on the interval [g2, g]. (We give results
along the way that show that this is a maximal interval with this property.)

In Section 11, we give further results on the set of synchronizing orbits, in particular
showing the transcendence of limits under a natural folding operation on the set of intervals
of synchronizing orbits. We end this paper with a list of remaining open questions.

2. Basic Notions and Notation

One dimensional maps, digit sequences. For α ∈ [0, 1], we let Iα := [α− 1, α] and
define the map Tα : Iα → [α− 1, α) by

Tα(x) :=

∣∣∣∣
1

x

∣∣∣∣−
⌊ ∣∣∣∣

1

x

∣∣∣∣+ 1− α

⌋
(x 6= 0),
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Tα(0) := 0. For x ∈ Iα, put

ε(x) :=

{
+1 if x ≥ 0 ,
−1 if x < 0 ,

and dα(x) :=

⌊∣∣∣∣
1

x

∣∣∣∣ + 1− α

⌋
,

with dα(0) = ∞. Furthermore, let

εn = εα,n(x) := ε(T n−1
α (x)) and dn = dα,n(x) := dα(T

n−1
α (x)) (n ≥ 1).

This yields the α-continued fraction expansion of x ∈ R :

x = d0 +
ε1

d1 +
ε2

d2 + · · ·
,

where d0 ∈ Z is such that x − d0 ∈ [α− 1, α). (Standard convergence arguments justify
equality of x and its expansion.) These α-continued fractions include the regular continued
fractions (RCF), given by α = 1, and the nearest integer continued fractions, given by
α = 1/2. We will often use the by-excess continued fractions, given by α = 0. The map
T0 gives infinite expansions for all x ∈ [−1, 0); each expansion has all signs εn = −1, and
digits dn ≥ 2. A number in this range is rational if and only if it has an eventually periodic
expansion of period (ε : d) = (−1 : 2); in particular, −1 has the purely periodic expansion
with this period.

The point α is included in the domain of Tα because its Tα-orbit plays an important
role, as does that of α− 1. We thus define

bαn = (εα,n(α− 1) : dα,n(α− 1)) and bαn = (εα,n(α) : dα,n(α)) (n ≥ 1),

and informally refer to these sequences as the α-expansions of α− 1 and α. Setting

J(ε1 : d1)(ε2 : d2) · · · K :=
ε1

d1 +
ε2

d2 + · · ·
,

gives equalities such as J bα1 bα2 · · · K = α− 1 and J bα1 bα2 · · · K = α. We also set

J(ε1 : d1) · · · (εn : dn), y K := ε1

d1 + · · ·+ εn
dn + y

(y ∈ R).

Since dα(x) ≥ 1 for all x ∈ Iα, α ∈ [0, 1], and dα(x) ≥ 2 when ε(x) = −1, let

A0 := A ∪ {(+1 : ∞)} where A := A− ∪ A+ ,

with

(2.1) A− := { (−1 : d) | d ∈ Z, d ≥ 2} and A+ := { (+1 : d) | d ∈ Z, d ≥ 1} .

Every “digit” (ε(x) : dα(x)) is thus in A0. We define an order � on A0 by

(ε : d) � (ε′ : d′) if and only if ε/d ≤ ε′/d′ .

For any x, x′ ∈ Iα, α ∈ [0, 1], x ≤ x′ implies (ε(x) : dα(x)) � (ε(x′) : dα(x
′)).
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The interval Iα \ {0} is partitioned by the rank-one cylinders of Tα, which are defined
by

∆α(a) := {x ∈ Iα | (ε(x) : dα(x)) = a} (a ∈ A0) .

All cylinders ∆α(a) with a ∈ A , bα1 ≺ a ≺ bα1 , are full, that is their image under Tα is the
interval [α− 1, α), and

Tα

(
∆α(b

α
1 )
)
=
[
Tα(α− 1), α

)
, Tα

(
∆α(b

α
1 )
)
=
[
Tα(α), α

)
, Tα

(
∆α(+1 : ∞)

)
= {0} .

Two-dimensional maps, matrix formulation, invariant measure. The standard
number theoretic planar map associated to continued fractions is defined by

Tα(x, y) :=

(
Tα(x),

1

dα(x) + ε(x) y

)
(x ∈ Iα, y ∈ [0, 1]) .

For any x ∈ ∆α(ε : d), (ε : d) ∈ A , we have

(2.2) Tα(x, y) =
(
M(ε:d) · x,N(ε:d) · y

)
,

where

M(ε:d) := (−1)

(
−d ε
1 0

)
and N(ε:d) :=

tM−1
(ε:d) = (−ε)

(
0 1
ε d

)
.

As usual, the 2 × 2 matrix

(
a b
c d

)
acts on real numbers by

(
a b
c d

)
· x =

ax+ b

cx+ d
, and tM

denotes the transpose of M . Note that M · x is a projective action, therefore the factors
(−1) and (−ε) do not change the actions of M(ε:d) and N(ε:d). However, these factors will
be useful in several matrix equations.

Let µ be the measure on Iα × [0, 1] given by

dµ =
dx dy

(1 + xy)2
.

Then we have, for any rectangle [x1, x2]× [y1, y2] ⊂ Iα× [0, 1] and any invertible matrix M ,

(2.3) µ
(
[x1, x2]× [y1, y2]

)
= log

(1 + x1y1)(1 + x2y2)

(1 + x1y2)(1 + x2y1)
= µ

(
M · [x1, x2]× tM−1 · [y1, y2]

)
.

Words, symbolic notation. For any set V , the Kleene star V ∗ =
⋃

n≥0 V
n denotes

the set of concatenations of a finite number of elements in V , and V ω denotes the set of
(right) infinite concatenations of elements in V . The length of a finite word v is denoted
by |v|, that is |v| = n if v ∈ V n. For the Kleene star of a single word (or letter) v, we
write v∗ instead of {v}∗, and vω denotes the unique element of {v}ω. We will also use the
abbreviations v[m,n] = vmvm+1 · · · vn, v[m,n) = vmvm+1 · · · vn−1, where v[m,m−1] = v[m,m) is
the empty word, and v[m,∞) = vmvm+1 · · · .

In light of (2.2), we set, for v = v1 · · · vn ∈ A ∗,

Mv := Mvn · · ·Mv1 and Nv :=
tM−1

v = Nvn · · ·Nv1 .

Then we have, for example, Mbα
[1,n]

· (α− 1) = T n
α (α− 1) and Mbα

[1,n]
· α = T n

α (α).
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Operations on words via matrices. The two matrices

W :=

(
1 0
−1 −1

)
and E :=

(
1 −1
0 1

)

arise naturally in our discussion. Note that W 2 is the identity, and also that

(2.4) M(ε:d)W = M(−ε:d+ε) .

The action of E is E · x = x− 1, and

(2.5) E±1M(ε:d) = M(ε:d±1) .

Therefore, let the left superscript (W ) and right superscripts (+1), (−1) denote operators,
related to W and E±1 respectively, acting on letters in A0 by

(W )(ε : d) :=

{
(−ε : d+ ε) if d < ∞ ,
(+1 : ∞) if d = ∞ ,

(ε : d)(±1) :=

{
(ε : d± 1) if d < ∞ ,
(+1 : ∞) if d = ∞ .

We extend this definition to words v = v[1,n] ∈ A ∗
0 , n ≥ 2, by setting (W )v := (W )v1v[2,n]

and v(±1) := v[1,n)vn
(±1). Similarly, we set (W )v := (W )v1v[2,∞) for v = v[1,∞) ∈ A ω

0 .

Characteristic sequences, alternating order, operation v 7→ v̂. To every finite or
infinite word on the alphabet A−, we associate a (correspondingly finite or infinite) char-
acteristic sequence of positive integers (and ∞) in the following way.

• The characteristic sequence of v ∈ A ∗
− is a1a2 · · · a2ℓ+1, where the integers ℓ ≥ 0

and aj ≥ 1, 1 ≤ j ≤ 2ℓ+ 1, are defined by

v = (−1 : 2)a1−1 (−1 : 2 + a2) (−1 : 2)a3−1 · · · (−1 : 2 + a2ℓ) (−1 : 2)a2ℓ+1−1 .

• The characteristic sequence of v ∈ A ω
− that does not end with the infinite periodic

word (−1 : 2)ω is a1a2 · · · , where the aj ≥ 1, j ≥ 1, are the unique positive integers
such that

v = (−1 : 2)a1−1 (−1 : 2 + a2) (−1 : 2)a3−2 (−1 : 2 + a4) · · · .
• The characteristic sequence of v ∈ A ∗

−(−1 : 2)ω is a1a2 · · · with aj = ∞ for all
j > 2ℓ, where the integers ℓ ≥ 0 and aj ≥ 1, 1 ≤ j ≤ 2ℓ, are defined by

v = (−1 : 2)a1−1 (−1 : 2 + a2) (−1 : 2)c2 · · · (−1 : 2 + a2ℓ) (−1 : 2)ω .

We compare characteristic sequences using the alternating (partial) order on words of
integers (and ∞), i.e.,

a[1,n) <alt a
′
[1,n) if and only if a[1,j] = a′[1,j], (−1)jaj+1 < (−1)ja′j+1 for some 0 ≤ j < n .

Using the characteristic sequences, we introduce an operation on words in A ∗
− ∪ A ω

− \
A ∗

−(−1 : 2)ω that will allow us to express the relationship between the α-expansion of α−1
and α.

• For v ∈ A ∗
− with characteristic sequence a1a2 · · · a2ℓ+1, we set

v̂ := (−1 : 2 + a1) (−1 : 2)a2−1 (−1 : 2 + a3) · · · (−1 : 2)a2ℓ−1 (−1 : 2 + a2ℓ+1) .
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• For v ∈ A ω
− \ A ∗

−(−1 : 2)ω with characteristic sequence a1a2 · · · , we set

v̂ := (−1 : 2 + a1) (−1 : 2)a2−1 (−1 : 2 + a3) (−1 : 2)a4−1 · · · .
The characteristic sequence a[1,∞) of a number x ∈ [−1, 0) is defined to be the charac-

teristic sequence of its by-excess expansion (ε0,1(x) : d0,1(x)) (ε0,2(x) : d0,2(x)) · · · ∈ A ω
− .

3. Results

For the ease of the reader, we gather the main results of the paper in this section.

For any α ∈ (0, 1], the standard natural extension domain is

Ωα :=
{
T n
α (x, 0) | x ∈ [α− 1, α), n ≥ 0

}
.

We establish the positivity and finiteness of µ(Ωα) in Section 5. The map Tα is invertible
almost everywhere on Ωα, and it is straightforward to define appropriate dynamical systems
such that the system of Tα is a factor of the system of Tα, by way of the (obviously surjec-
tive) projection to the first coordinate. These systems also verify the minimality criterion
for natural extensions, which yields the following theorem. For details, see Section 5.

Theorem 1. Let α ∈ (0, 1], µα be the probability measure given by normalizing µ on Ωα,
να the marginal measure obtained by integrating µα over the fibers {x}×{y | (x, y) ∈ Ωα},
Bα the Borel σ-algebra of Iα, and B′

α the Borel σ-algebra of Ωα. Then (Ωα, Tα,B
′
α, µα) is

a natural extension of (Iα, Tα,Bα, να).

In the same section, relying on Abramov’s formula for the entropy of an induced system,
we prove the following conjecture of Luzzi and Marmi [LM08].

Theorem 2. For any α ∈ (0, 1], we have h(Tα)µ(Ωα) = π2/6.

By Theorem 2, all properties of the entropy h(Tα) can be directly derived from the
properties of µ(Ωα). Therefore, we consider only µ(Ωα) in the following. In particular, the
following theorem implies the continuity of α 7→ h(Tα) on (0, 1], which was claimed to be
proved in [LM08] (see the introduction of this paper). The proof is given in Section 9.

Theorem 3. The function α 7→ µ(Ωα) is continuous on (0, 1].

The following theorem, which is proved in Section 10, extends results of [Nak81, MCM99,
CMPT10].

Theorem 4. For any α ∈ [g2, g], we have µ(Ωα) = log(1 + g).

Moreover, we show that [g2, g] is the maximal interval with this property, and we con-
jecture that µ(Ωα) > log(1 + g) for all α ∈ (0, 1] \ [g2, g].

The proofs of Theorems 3 and 4 heavily rely on understanding how the α-expansion of
α is related to that of α− 1 and how the evolution of the natural extension depends on
this relation.
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Theorems 5 and 6 strengthen and clarify results of [NN08]. The first, proved in Section 6,
states that synchronization of the Tα-orbits of α and α− 1 occurs for α in

Γ :=
{
α ∈ (0, 1] | T n

α (α− 1) ≥ 0 or T n
α (α) ≥ 0 for some n ≥ 1

}
,

and the set of labels of finitely synchronizing orbits is

F :=
{
v ∈ A

∗
− | a[2j,2ℓ+1] <alt a[1,2ℓ−2j+2], a[2j+1,2ℓ+1] ≤alt a[1,2ℓ−2j+2] for all 1 ≤ j ≤ ℓ

}
,

where a[1,2ℓ+1] = a1a2 · · ·a2ℓ+1 denotes the characteristic sequence of v. For v ∈ F , set

ζv := J(v v̂ )ωK + 1 , χv :=

{
Jv, 0K + 1 if |v| ≥ 1,

1 if |v| = 0,
ηv :=

{
J(v(+1))ωK + 1 if |v| ≥ 1,

1 if |v| = 0,

Γv :=

{
(ζv, ηv) if |v| ≥ 1 ,

(g, 1] if |v| = 0 .

Theorem 5. The set Γ is the disjoint union of the intervals Γv, v ∈ F .

For any α ∈ Γv, v ∈ F , we have

bα[1,|v| ] = v, bα[1,|v̂| ] =
(W )v̂(−1), bα|v̂|+1 =

(W )bα|v|+1 , T |v|+1
α (α− 1) = T |v̂|+1

α (α) .

We have α ∈ (0, 1] \ Γ if and only if α ∈ (0, g] and the characteristic sequence a[1,∞) of
α− 1 satisfies a[n,∞) ≤alt a[1,∞) for all n ≥ 2.

The set (0, 1]\Γ is a set of zero Lebesgue measure. For any α in this set, bα[1,∞) =
(W )b̂α[1,∞).

We remark that similar results can be found in [CT, BCIT]. There, the description of
Γ is based on the RCF expansion of α instead of the characteristic sequence of α− 1, and
the number χv is called pseudocenter of Γv. In Section 4, we show that the characteristic
sequence of α − 1 is essentially the same as the RCF expansion of α. In particular, this
implies for α ∈ (0, 1] that α 6∈ Γ is equivalent with T n

1 (α) ≥ α for all n ≥ 1.

The evolution of Ωα on a synchronizing interval is described by the following theorem,
which is proved in Section 8.

Theorem 6. For any α ∈ [ζv, ηv], v ∈ F , we have

µ(Ωα) = µ(Ωζv)
(
1 +

(
|v̂| − |v|

)
νζv
(
[ζv − 1, α− 1]

))
,

with νζv as in Theorem 1.

On [ζv, ηv], the function α 7→ µ(Ωα) is: constant if |v| = |v̂|; increasing if |v̂| > |v|;
decreasing if |v̂| < |v|. Inverse relations hold for the function α 7→ h(Tα), cf. Theorem 2.

In order to describe the shape of Ωα, α ∈ (0, 1], we define

Uα,1 :=
{
bα[1,j] | 0 ≤ j < k

}
, Uα,3 :=

{
bα[1,j) a | 1 ≤ j < k, a ∈ A−, b

α
j ≺ a � (W )bα1

}
,

Uα,2 :=
{
bα[1,j] | 1 ≤ j < k′} , Uα,4 :=

{
bα[1,j) a | 2 ≤ j < k′, a ∈ A−, b

α
j ≺ a � (W )bα1

}
,
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where k = |v|+ 1, k′ = |v̂|+ 1 if α ∈ Γv, v ∈ F , k = k′ = ∞ if α ∈ (0, 1] \ Γ. Let

Lα := (Uα,3 ∪ Uα,1 U
∗
α,2 Uα,4)

∗ , L
′
α := Lα Uα,1 U

∗
α,2 ,

Ψα :=
⋃

w∈Lα

Nw ·
[
0, 1

dα(α)+1

]
, Ψ′

α :=
⋃

w∈L ′
α

Nw ·
[
0, 1

dα(α)+1

]
,

Cα :=
{
Ψα

}
∪
{
Nbα

[1,j]
·Ψα | 1 ≤ j < k

}
∪
{
Nbα

[1,j]
·Ψ′

α | 1 ≤ j < k′} .

Theorem 7. Let α ∈ (0, 1] and k, k′ as in the preceding paragraph. Then we have

(3.1) Ωα = Iα ×Ψα ∪
⋃

1≤j<k

[
T j
α(α− 1), α

]
×Nbα

[1,j]
·Ψα ∪

⋃

1≤j<k′

[
T j
α(α), α

]
×Nbα

[1,j)
·Ψ′

α .

If T j
α(α− 1) 6∈ (x, x′) for all 0 ≤ j < k and T j

α(α) 6∈ (x, x′) for all 0 ≤ j < k′, then the
density of the invariant measure να defined in Theorem 1 is continuous on (x, x′).

For any Y ∈ Cα, the Lebesgue measure of Y ∩ ⋃Y ′∈Cα\{Y } Y
′ is zero, and

⋃

Y ∈Cα

Y = Ψ′
α = tE ·Ψα .

For any w ∈ L ′
α, we have Nw ·

(
0, 1

dα(α)+1

)
∩ ⋃w′∈L ′

α\{w}Nw′ ·
[
0, 1

dα(α)+1

]
= ∅.

This theorem is proved in Section 7. We remark that omitting the closure in the defini-
tions of Ψα and Ψ′

α and in (3.1) changes the sets under consideration only by sets of measure
zero. Moreover, Section 7 also provides the speed of convergence of approximations of Ωα by
finitely many rectangles. Note that

[
0, 1

dα(α)+1

]
⊆ Ψα, thus Iα×

[
0, 1

dα(α)+1

]
⊂ Ωα, and that[

0, 1
dα(α)

]
= tE ·

[
0, 1

dα(α)+1

]
⊆ Ψ′

α. By Proposition 10.1, we have
[
Tα(α), α]×

[
0, 1

dα(α)

]
⊆ Ωα

for α ∈ (0, 1] \ Γ, and the same can also be shown for α ∈ Γ.

Finally, we show in Section 9 that to the left of any interval Γv, v ∈ F , there exists an
interval on which µ(Ωα) is constant. To this end, we define the “folding” operation

Θ(v) := v v̂(−1) (v ∈ A
∗
−) .

We will see that Θ maps F to itself, and that (ζΘn(v))n≥0 is a sequence of rapidly converging
quadratic numbers; see also [CMPT10]. Therefore, we define

τv := lim
n→∞

ζΘn(v) .

Theorem 8. For any v ∈ F , we have Θ(v) ∈ F and ζv = ηΘ(v).

For any α ∈ [τv, ζv], v ∈ F , we have µ(Ωα) = µ(Ωζv).

The limit point τv is a transcendental real number.
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4. Relation between α-expansions and RCF expansions

We start with proving a relation between the characteristic sequence of α − 1 and the
RCF expansion of α.

Proposition 4.1 (cf. [Zag81, Exercise 3 on p. 131]). Let α ∈ (0, 1), and a1a2 · · · be the
characteristic sequence of α− 1. Then

α =

{
[0; a1, a2, a3, . . . ] if α 6∈ Q ,

[0; a1, a2, . . . , a2ℓ] if a2ℓ+1 = ∞ .

Proof. Let α ∈ (0, 1), and a[1,∞) be the characteristic sequence of α− 1. Assume first that
α ∈ Q, i.e., there exists some ℓ ≥ 1 such that a2ℓ+1 = ∞, 1 ≤ aj < ∞ for 1 ≤ j ≤ 2ℓ.
Then since α − 1 is obviously rational, its by-excess expansion is eventually periodic and
this period is that of the purely periodic −1, we have

α− 1 = J(−1 : 2)a1−1 (−1 : 2 + a2) (−1 : 2)a3−1 · · · (−1 : 2 + a2ℓ) (−1 : 2)ωK
= J(−1 : 2)a1−1 (−1 : 2 + a2) (−1 : 2)a3−1 · · · (−1 : 2 + a2ℓ),−1K ,

thus
M(−1:2+a2ℓ) · · ·Ma3−1

(−1:2)M(−1:2+a2)M
a1−1
(−1:2) · (α− 1) = −1 = E · 0 .

Since (2.4) and (2.5) give

(4.1) M(−1:2+n) = EM(+1:n)W ,

induction gives

(4.2) Mn−1
(−1:2) =

(
n n− 1

1− n 2− n

)
= W M(+1:n) E

−1 ,

and α− 1 = E · α clearly holds, we obtain that

0 = E−1M(−1:2+a2ℓ)M
a2ℓ−1−1

(−1:2) · · ·M(−1:2+a2) M
a1−1
(−1:2) · (α− 1)

= M(+1:a2ℓ) M(+1:a2ℓ−1) · · ·M(+1:a2)M(+1:a1) · α ,

thus α = J(+1 : a1) · · · (+1 : a2ℓ), 0K = [0; a1, . . . , a2ℓ].

For α 6∈ Q, we have

α− 1 = lim
ℓ→∞

J(−1 : 2)a1−1 (−1 : 2 + a2) (−1 : 2)a3−1 · · · (−1 : 2 + a2ℓ) (−1 : 2)ωK ,

thus α = limℓ→∞[0; a1, . . . , a2ℓ] = [0; a1, a2, . . . ]. �

Proposition 4.1 and the ordering of the RCF expansions gives the following corollary.

Corollary 4.2. Let x, x′ ∈ [−1, 0) with characteristic sequences a[1,∞), a
′
[1,∞). Then

x ≤ x′ if and only if a[1,∞) ≥alt a
′
[1,∞) .

Now we show how the RCF expansion of x ∈ (0, α] can be constructed from the α-
expansion of x. This is a key argument in the following section.
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Lemma 4.3. Let α ∈ (0, 1). For any x ∈ (0, α], the 1-expansion of x is obtained from the
α-expansion of x by successively replacing all digits in A− using the following rules:

(+1 : d) (−1 : 2)n−1 (−1 : d′) 7→ (+1 : d− 1) (+1 : n) (+1 : d′ − 1) , d ≥ 2, n ≥ 1, d′ ≥ 3,

(+1 : d) (−1 : 2)n (+1 : d′) 7→ (+1 : d− 1) (+1 : n) (+1 : 1) (+1 : d′) ,
d ≥ 2, n ≥ 1, 1 ≤ d′ < ∞,

(+1 : d) (−1 : 2)n−1 (+1 : ∞) 7→ (+1 : d− 1) (+1 : n) (+1 : ∞) , d ≥ 2, n ≥ 2.

Proof. Let v[1,∞) be the α-expansion of x ∈ (0, α], i.e., vj = (εα,j(x) : dα,j(x)) for all j ≥ 1.
By (4.2), we have

M(−1:d′)M
n−1
(−1:2) M(+1:d) = M(−1:d′) W M(+1:n)E

−1M(+1:d) = M(+1:d′−1)M(+1:n) M(+1:d−1) .

Therefore, any sequence v′[1,∞) which is obtained from v[1,∞) by replacements of the form

(+1 : d) (−1 : 2)n−1 (−1 : d′) 7→ (+1 : d − 1) (+1 : n) (+1 : d′ − 1) satisfies Jv′[1,∞)K =

Jv[1,∞)K = x. This includes (+1 : d) (−1 : 2)n 7→ (+1 : d− 1) (+1 : n) (+1 : 1). We have of
course J(+1 : n − 1) (+1 : 1), 0K = J(+1 : n), 0K, hence replacing (+1 : d) (−1 : 2)n−1 (+1 :
∞) by (+1 : d− 1) (+1 : n) (+1 : ∞) also does not change the value of the sequence.

Since v[1,∞) does not end with (+1 : 1) (+1 : ∞)ω, the same holds for any new se-
quence v′[1,∞). Therefore, it only remains to show that all digits in A− can be replaced by

digits in A+ using the given rules. Since x ∈ (0, α], we have v1 ∈ A+. If v1 = (+1 : 1), then
Tα(x) = 1/x − 1 > 0 implies that v2 ∈ A+. More generally, the pattern (+1 : 1) (−1 : d)
does not occur in v[1,∞). Thus any digit vj ∈ A− is preceded by a word in (+1 : d)A ∗

− with
d ≥ 2, and replacements do not change this fact. This implies that we can successively
eliminate all digits in A− . �

Remark 4.4. The above can be compared with the conversions from α-expansions to RCF
given in [NN02, NN08].

Lemma 4.5. Let α ∈ (0, 1), x ∈ (0, α], and suppose that Tm
α (x) > 0 for some m ≥ 1. Then

there is some n ≥ 1 such that Tm
α (x) = T n

1 (x) and T m
α (x, y) = T n

1 (x, y) for all y ∈ [0, 1].

Proof. Let v[1,∞) be the α-expansion of x ∈ (0, α], and Tm
α (x) > 0 for some m ≥ 1. The

procedure described in Lemma 4.3 provides a sequence v′[1,n] ∈ A ∗
+ with Mv′

[1,n]
= Mv[1,m]

.

Since Mv′
[1,n]

·x = Mv[1,m]
·x = Tm

α (x) ∈ (0, α), we have v′j = (+1 : d1,j(x)) for all 1 ≤ j ≤ n,

i.e., T n
1 (x) = Mv′

[1,n]
· x = Tm

α (x) and T n
1 (x, y) = T m

α (x, y) for all y ∈ [0, 1]. �

Lemma 4.6. Let α ∈ (0, 1] and x ∈ Iα. The α-expansion of x contains no sequence of
dα(α) consecutive digits (−1 : 2).

Proof. The α-expansion of x contains a sequence of dα(α) consecutive digits (−1 : 2) if and
only if the α-expansion of Tm

α (x) starts with (−1 : 2)dα(α) for some m ≥ 0. Therefore, it
suffices to show that (−1 : 2)dα(α) cannot be a prefix of an α-expansion.
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Suppose on the contrary that the α-expansion of x begins with (−1 : 2)dα(α). In partic-
ular, this means that T n

α (x) = Mn
(−1:2) · x < 0 for all 0 ≤ n < dα(α). By (4.2), we have

Mn
(−1:2) · z ≥ 0 for all z ∈

[
1

n+1
− 1, 1

n
− 1
)
. It follows that x ∈

[
α− 1, 1

dα(α)
− 1
)
. Since

α > T dα(α)
α (x) = M

dα(α)
(−1:2) · x ≥ M

dα(α)
(−1:2) · (α− 1) =

dα(α)α + α− 1

1− dα(α)α
,

where we have used that the action of M(−1:2) is order preserving on the negative numbers,
and α ≤ x + 1 < 1

dα(α)
, we obtain that dα(α)α

2 + dα(α)α − 1 < 0. We must also have

α > Tα(α) =
1
α
− dα(α), thus α

2+ dα(α)α− 1 > 0. Since dα(α) ≥ 1, this is impossible. �

Lemma 4.7. Let α ∈ (0, 1), x ∈ (0, α] and suppose that Tm
α (x) < 0 for all m ≥ 1. Then,

for any n ≥ 1, we cannot have both d1,n(x) > dα(α) and d1,n+1(x) > dα(α).

Proof. If x ∈ (0, α], Tm
α (x) < 0 for all m ≥ 1, then we can write the α-expansion of x as

(+1 : d) (−1 : 2)a1−1 (−1 : 2 + a2) (−1 : 2)a3−1 (−1 : 2 + a4) · · ·
with d ≥ 2, aj ≥ 1 for all j ≥ 1. By Proposition 4.1, the 1-expansion of x is

(+1 : d− 1) (+1 : a1) (+1 : a2) (+1 : a3) (+1 : a4) · · · .
By Lemma 4.6, we have a2j+1 ≤ dα(α) for all j ≥ 0, which proves the lemma. �

Lemma 4.8. Let α ∈ (0, 1), x ∈ (0, α], and T n−1
1 (x) ∈

(
0, 1

dα(α)+1

]
, T n

1 (x) ∈
(
0, 1

dα(α)+1

]
for

some n ≥ 1. Then there is some m ≥ 1 such that T n
1 (x) = Tm

α (x) and T n
1 (x, y) = T m

α (x, y)
for all y ∈ [0, 1].

Proof. Let v[1,∞) be the α-expansion of x ∈ (0, α], and v′[1,∞) its 1-expansion. If T
n−1
1 (x) ∈(

0, 1
dα(α)+1

]
, T n

1 (x) ∈
(
0, 1

dα(α)+1

]
, then v′n = (+1 : d), v′n+1 = (+1 : d′) with d, d′ > dα(α).

Similarly to the proof of Lemma 4.7, Lemmas 4.3 and 4.6 imply that v′n+1 = vm+1, Mv′
[1,n]

=

Mv[1,m]
for some m ≥ 1. Therefore, we have T n

1 (x) = Tm
α (x) and T n

1 (x, y) = T m
α (x, y). �

5. Natural extensions and entropy

The advantage for number theoretic usage of the natural extension map in the form Tα

is that the Diophantine approximation to an x ∈ [α− 1, α) by the finite steps in its α-
expansion is directly related to the Tα-orbit of (x, 0); see [Kra91]. We define our natural
extension domain in terms of these orbits. We show moreover that the entropy of Tα is
directly related to the measure of the natural extension domain; that is, this section ends
with the proof of Theorem 2.

We will see that the structure of Ωα can be quite complicated. Even for “nice” numbers
such as α = g2 and α = 1/4 it has a fractal structure; see [LM08] and Figures 1 and 2.

In the following, we show that Tα and Ωα give indeed a natural extension of Tα.
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−g −g2 0 g2−1
2+g2

−1
3+g2

1
3+g2

g

1/2

g2

1/3

1/4

0

Figure 1. The natural extension domain Ωg2 .

−3/4 −2/3 −1/2 0 1/4−4/9 4/17
0

3/4

2/3

1/2

1/3

1/4

1/5

Figure 2. The natural extension domain Ω1/4.
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Lemma 5.1. Let α ∈ (0, 1]. We have
[
0, 1

dα(α)+1

]2 ⊂ Ωα ⊆ Iα × [0, 1],

thus 0 < µ(Ωα) < ∞.

Proof. The inclusion Ωα ⊆ Iα × [0, 1] follows from the inclusion Na · [0, 1] ⊂ [0, 1], which
holds for every a ∈ A . Therefore, Ωα is bounded away from y = −1/x, and its compactness
yields that µ(Ωα) < ∞.

It remains to show that Ωα contains the square
[
0, 1

dα(α)+1

]2
, which implies µ(Ωα) > 0.

Every point in
[
0, 1

dα(α)+1

]2
can be approximated by points T n

1 (xn, 0), n ≥ 1, with xn ∈
(0, α], T n−1

1 (xn) ≤ 1
dα(α)+1

, T n
1 (xn) ≤ 1

dα(α)+1
. By Lemma 4.8, there exist numbers mn ≥ 1

such that T n
1 (xn, 0) = T mn

α (xn, 0), from which we conclude that
[
0, 1

dα(α)+1

]2 ⊂ Ωα. �

Lemma 5.2. Let α ∈ (0, 1]. Up to a set of µ-measure zero, Tα is a bijective map from Ωα

to Ωα.

Proof. For a ∈ A , let Dα(a) := {(x, y) ∈ Ωα | x ∈ ∆α(a)}. The map Tα is one-to-one,
continuous and µ-preserving on each Dα(a). Now, as the ∆α(a) partition Iα \ {0}, Tα is
continuous on Ωα except for its intersection with a countable number of vertical lines. Since
Ωα is compact and bounded away from y = −1/x, these lines are of µ-measure zero. Thus,
we find that

(5.1) Tα(Ωα) =
{
T n+1
α (x, 0) | x ∈ [α− 1, α), n ≥ 0

}
,

up to a µ-measure zero set, hence Tα(Ωα) = Ωα. This implies that

∑

a∈A

µ
(
Tα(Dα(a))

)
=
∑

a∈A

µ
(
Dα(a)

)
= µ

(
Ωα

)
= µ

(
Tα(Ωα)

)
= µ

( ⋃

a∈A

Tα(Dα(a))
)
,

and thus

µ
(
Tα(Dα(a)) ∩ Tα(Dα(a

′))
)
= 0 for all a, a′ ∈ A with a 6= a′ .

From its injectivity on the Dα(a), we conclude that Tα is bijective on Ωα up to a set of
measure zero. �

Our candidate (Ωα, Tα,B
′
α, µα) for a natural extension of (Iα, Tα,Bα, να) is such that the

factor map is projection onto the first coordinate, call this map π. The first three criteria
of the definition of a natural extension are clearly satisfied here: (1) π is a surjective
and measurable map that pulls-back µα to να; (2) π ◦ Tα = Tα ◦ π; and, (3) Tα is an
invertible transformation. It remains to show the minimality of the extended system:
(4) any invertible system that admits (Iα, Tα,Bα, να) as a factor must itself be a factor of
(Ωα, Tα,B

′
α, µα). We employ the standard method to verify this last criterion, in that we

verify that B′
α =

∨
n≥0 T n

α π−1Bα.



NATURAL EXTENSIONS AND ENTROPY OF α-CONTINUED FRACTIONS 15

Proof of Theorem 1. Since Tα is invertible, with µα as an invariant probability measure,
we must only show that B′

α =
∨

n≥0 T n
α π−1Bα, where π is the projection map to the first

coordinate. As usual, we define rank n cylinders as ∆α(v[1,n]) =
⋂n

j=1 T−j+1
α (∆α(vj)). Since

Tα is expanding, for any v[1,∞) ∈ A ω
0 the Lebesgue measure of ∆α(v[1,n]) tends to zero as n

goes to infinity. Thus Pα, the collection of all of these cylinders, generates Bα. Let Pα =
π−1Pα; it suffices to show that

∨
n∈Z T n

α Pα separates points of Ωα. We know that
∨

n≥0 T
n
αPα

separates points of Iα, thus
∨

n≥0 T n
α Pα separates points of the form (x, y), (x′, y′) with

x 6= x′. It now suffices to show that powers of T −1
α on Pα can separate points sharing the

same x-value. Now, on some neighborhood of µα-almost any point of Ωα, there is a ∈ A

such that T −1
α is given locally by (x, y) 7→ (M−1

a · x,N−1
a · y). But, N−1

a · y is an expanding
map. Since T −1

α takes horizontal strips to vertical strips, one can separate points. �

With the help of the following lemma and Abramov’s formula, we show that the product
of the entropy and the measure of the natural extension domain is constant.

Lemma 5.3. Let α ∈ (0, 1], T1,α be the first return map of T1 on Ω1 ∩Ωα, and Tα,1 be the
first return map of Tα on Ω1 ∩ Ωα. For µ-almost all (x, y) ∈ Ω1 ∩ Ωα, these two maps are
defined and T1,α(x, y) = Tα,1(x, y).

Proof. Note first that Ω1 ∩ Ωα = {(x, y) ∈ Ωα | x ≥ 0} since Ω1 = [0, 1]2. The ergodicity
of Tα (see [LM08]) yields that, for να-almost every x ∈ [0, α], there exists some m ≥ 0
such that Tm

α (x) ≥ 0, and thus there exists some n ≥ 0 such that Tα,1(x, y) = T n
1 (x, y) by

Lemma 4.5. Then we have T1,α(x, y) = T n′

1 (x, y) with 1 ≤ n′ ≤ n, thus T1,α and Tα,1 are
defined for να-almost all x ∈ [0, α], hence for µ-almost all (x, y) ∈ Ω1 ∩ Ωα.

The ergodicity of T1 yields that, for ν1-almost every x ∈ [0, α], there exists some n′′ ≥ 1

such that T n′′−1
1 (x) ≤ 1

dα(α)+1
and T n′′

1 (x) ≤ 1
dα(α)+1

. By Lemma 4.8, we obtain that

T n′′

1 (x, y) = T m′

α (x, y) for some m′ ≥ 1; it follows that n′′ ≥ n′. Applying Lemma 4.8 a

second time, we find that T n′′

1 (x, y) = T n′′−n′

1 T n′

1 (x, y) = T m′′

α T n′

1 (x, y) for some m′′ ≥ 1,
with m′′ ≤ m′. Since Tα is bijective µ-almost everywhere, we obtain that T n′

1 (x, y) =
T −m′′

α T n′′

1 (x, y) = T m′−m′′

α (x, y) for µ-almost all (x, y) ∈ Ω1∩Ωα. Since for these (x, y) there
is a power of Tα that agrees with the first return of T1, it follows that T1,α(x, y) = Tα,1(x, y)
holds here. �

Proof of Theorem 2. It is well known that h(T1) = π2/(6 log 2) and that µ(Ω1) =
µ([0, 1]2) = log 2, thus h(T1)µ(Ω1) = π2/6. With the definitions of Lemma 5.3, Abramov’s
formula [Abr59] yields that

h(T1,α) =
µ(Ω1)

µ(Ω1 ∩ Ωα)
h(T1) and h(Tα,1) =

µ(Ωα)

µ(Ω1 ∩ Ωα)
h(Tα) .

Since T1,α and Tα,1 are equal (up to a set of measure zero), and a system and its natural
extension have the same entropy [Roh61], we obtain that h(Tα)µ(Ωα) = h(T1)µ(Ω1). �
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6. Intervals of synchronizing orbits

Luzzi and Marmi indicate in [LM08, Remark 3] that the natural extension domain can
be described in an explicit way when one has an explicit relation between the α-expansions
of α− 1 and of α. Such a relation is easily found for α ≥

√
2 − 1. Nakada and Natsui

[NN08] find the relation on some subintervals of (0,
√
2− 1), showing that it can be rather

complicated. The aim of this section is to provide a relation for every α ∈ (0, 1], i.e., to
prove Theorem 5.

Lemma 6.1. For each v ∈ A ∗
−, we have Mv̂ = EWMv EW .

Proof. Let a[1,2ℓ+1] be the characteristic sequence of v ∈ A ∗
−. By (4.1) and (4.2), we have

EWMn−1
(−1:2)EW = M(−1:2+n) ,

thus

EWMv EW = EWM
a2ℓ+1−1

(−1:2) M(−1:2+a2ℓ) · · ·Ma3−1
(−1:2) M(−1:2+a2)M

a1−1
(−1:2) EW

= M(−1:2+a2ℓ+1)M
a2ℓ−1
(−1:2) · · ·M(−1:2+a3)M

a2−1
(−1:2) M(−1:2+a1) = Mv̂ . �

Lemma 6.2. If α− 1 = Jv, xK with v ∈ A ∗
−, x ∈ R, then α = J(W )v̂(−1),W · xK.

If α− 1 = JvK, with v ∈ A ω
− , then α = J(W )v̂ K.

Proof. For any v ∈ A ∗
−, Lemma 6.1 implies that

(6.1) Mv · (α− 1) = Mv E · α = WE−1Mv̂ W · α ,

which proves the first statement. Taking limits, the second statement follows. �

Lemma 6.3. Let x ∈ Iα \ {0}, and a ∈ A . If |Tα(x) −Ma · x| < 1, then Tα(x) = Ma · x
and (ε(x) : dα(x)) = a.

Proof. Let a = (ε′ : d′) ∈ A , then we haveMa·x = ε′/x−d′ and Tα(x) = ε(x)/x−dα(x). We
cannot have ε′ 6= ε(x) since this would imply Ma ·x ≤ −2, contradicting |Tα(x)−Ma ·x| < 1.
Since d′, dα(x) are integers and ε′ = ε(x), |Tα(x)−Ma · x| < 1 yields that d′ = dα(x). �

We will use Lemma 6.3 mainly to deduce that Tα(x) = Ma · x from Ma · x ∈ [α− 1, α)
or from Tα(x) < 0, Ma · x ∈ [−1, 0).

Lemma 6.4. Let x ∈ Iα. If W ·x ∈ Iα, then Tα(W ·x) = Tα(x) and (ε(W ·x) : dα(W ·x)) =
(W )(ε(x) : dα(x)).

Proof. For x = 0, this is clear since W · 0 = 0. For x 6= 0, we have

M(W )(ε(x):dα(x)) · (W · x) = M(ε(x):dα(x))W W · x = M(ε(x):dα(x)) · x = Tα(x) ,

thus Tα(W · x) = Tα(x) and (ε(W · x) : dα(W · x)) = (W )(ε(x) : dα(x)) by Lemma 6.3. �
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Lemma 6.5. Let α ∈ (0, 1], v ∈ F . Then

(6.2) bα[1,|v| ] = v and bα[1,|v̂| ] =
(W )v̂(−1)

hold if and only if α ∈ Γv.

If α ∈ (ζv, ηv), then we have

(6.3) T n
α (α− 1) > ηv − 1 for all 1 ≤ n ≤ |v| , T n

α (α) > ηv − 1 for all 1 ≤ n ≤ |v̂| .
Moreover, we have Mv · (ηv − 1) = ηv (if |v| ≥ 1) and Mv′ · ζv = ζv, with v′ = (W )v̂(−1).

Proof. Let v ∈ F with characteristic sequence a[1,2ℓ+1], α ∈ (0, 1]. If v is the empty word,

then v̂ = (−1 : 3), and (W )v̂(−1) = (+1 : 1) = bα1 if and only if α ∈ (g, 1]. If α ∈ (g, 1), then
Tα(α) =

1
α
− 1 > 0, thus (6.3) holds in this case. We also have M(+1:1) · g = g.

Assume from now on that |v| ≥ 1; in particular, by Proposition 4.1, a1 ≥ 2. The
characteristic sequence of ζv − 1 = J(v v̂ )ωK is (a[1,2ℓ+1])

ω, and that of ηv − 1 = J(v(+1))ωK is

a′[1,∞) =

{ (
a[1,2ℓ] (a2ℓ+1 − 1) 1

)ω
if a2ℓ+1 ≥ 2,

(
a[1,2ℓ) (a2ℓ + 1)

)ω
if a2ℓ+1 = 1.

Write v = v[1,|v| ]. We next show that Mv[1,n]
· (ζv − 1) ∈ (ηv − 1, 0) for 1 ≤ n ≤ |v|. For

1 ≤ n ≤ |v|, the characteristic sequence of Mv[1,n]
· (ζv − 1) is ma[2j+2,2ℓ+1] (a[1,2ℓ+1])

ω for
some 0 ≤ j ≤ ℓ, 1 ≤ m ≤ a2j+1, where m = a1 is excluded when j = 0. In these cases, we
show that

(6.4) ma[2j+2,2ℓ+1] (a[1,2ℓ+1])
ω <alt a

′
[1,∞) .

Of course, it suffices to consider m = a2j+1 when j ≥ 1, and m = a1 − 1 when j = 0. The
case j = 0 is settled by a1−1 < a1 = a′1 in case ℓ ≥ 1, and by (a1−1) a1 <alt (a1−1) 1 = a′1 a

′
2

in case ℓ = 0. For 1 ≤ j ≤ ℓ, we have a[2j+1,2ℓ+1] ≤alt a[1,2ℓ−2j+1], thus it only remains to
consider the case a[2j+1,2ℓ+1] = a[1,2ℓ−2j+1]. Since a1 ≥ 2, it is not possible that j = ℓ and
a2ℓ+1 = 1 in this case. From a[2ℓ−2j+2,2ℓ+1] <alt a[1,2j], 1 ≤ j ≤ ℓ, we infer that

(6.5)
a[1,2j+1] ≥alt a[1,2j] 1 ≥alt a[2ℓ−2j+2,2ℓ] (a2ℓ+1 − 1) 1 = a′[2ℓ−2j+2,2ℓ+2] if a2ℓ+1 ≥ 2,

a[1,2j) ≥alt a[2ℓ−2j+2,2ℓ) (a2ℓ + 1) = a′[2ℓ−2j+2,2ℓ] if a2ℓ+1 = 1,

and strict inequality implies that a[2j+1,2ℓ+1] (a[1,2ℓ+1])
ω <alt a

′
[1,∞). In particular, this settles

the case j = ℓ. In case a2ℓ+1 ≥ 2, 1 ≤ j < ℓ, we have a[2j+2,2ℓ+1] <alt a[1,2ℓ−2j] = a′[1,2ℓ−2j],

thus a[2j+1,2ℓ+1] a[1,2ℓ+1] <alt a
′
[1,4ℓ−2j+2]. In case a2ℓ+1 = 1, 1 ≤ j < ℓ, we have a[2j,2ℓ+1] <alt

a[1,2ℓ−2j+2] = a′[1,2ℓ−2j+2], thus (6.4) holds in all our cases. Together with Corollary 4.2, this

yields that, indeed, Mv[1,n]
· (ζv − 1) ∈ (ηv − 1, 0) for 1 ≤ n ≤ |v|.

We clearly have Mv[1,n]
· (ηv − 1) < 0 for 1 ≤ n < |v|, and Mv(+1) · (ηv − 1) = ηv − 1, thus

Mv · (ηv − 1) = ηv. Note that x 7→ Ma · x is order preserving and expanding on (−1, 0) for
any a ∈ A−. For any α ∈ Γv, we have therefore Mv[1,n]

· (α− 1) ∈ (ηv − 1, 0), 1 ≤ n < |v|,
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and Mv ·(α−1) ∈ (ηv−1, α), thus bα[1,|v| ] = v, T n
α (α−1) > ηv−1 for 1 ≤ n ≤ |v|. Moreover,

we have bα[1,|v| ] 6= v for all α ≥ ηv.

Since the characteristic sequence of (v(+1))ω is a′[1,∞), that of
̂(v(+1))ω is 1 a′[1,∞), and we

obtain that ̂(v(+1))ω = (v̂(−1))ω. By Lemma 6.2, we get that

ηv =
q
(W ) ̂(v(+1))ω

y
=

q
(W )(v̂(−1))ω

y
=

q
v′ (v̂(−1))ω

y
,

with v′ = v′[1,|v̂| ] =
(W )v̂(−1). The characteristic sequence of Mv′

[1,n]
· ηv, 1 ≤ n ≤ |v̂|, is

therefore of the form ma′[2j+1,∞) for some 1 ≤ m ≤ a′2j with 1 ≤ j ≤ ℓ if a2ℓ+1 = 1,
1 ≤ j ≤ ℓ+ 1 if a2ℓ+1 ≥ 2. We show that

(6.6) a′[2j,∞) ≤alt a
′
[1,∞) .

For 1 ≤ j ≤ ℓ, (6.5) and a′[1,2ℓ) = a[1,2ℓ) imply that

a′[2j,2ℓ+2] ≤alt a[1,2ℓ−2j+3] = a′[1,2ℓ−2j+3], a′[1,2j) = a[1,2j) ≥alt a
′
[2ℓ−2j+4,2ℓ+2] if a2ℓ+1 ≥ 2,

a′[2j,2ℓ] ≤alt a[1,2ℓ−2j+1] = a′[1,2ℓ−2j+1], a′[1,2j) = a[1,2j) ≥alt a
′
[2ℓ−2j+2,2ℓ] if a2ℓ+1 = 1.

In this case, (6.6) follows from a′[1,∞) = (a′[1,2ℓ+2])
ω and a′[1,∞) = (a′[1,2ℓ])

ω respectively. For

j = ℓ+1 (and a2ℓ+1 ≥ 2), (6.6) is a consequence of a′2ℓ+2 = 1 < a′1 when ℓ ≥ 1 or a1 ≥ 3, and
of a′[1,∞) = 1ω when ℓ = 0 and a1 = 2. Now, Corollary 4.2 yields that Mv′

[1,n]
·ηv ∈ [ηv−1, 0)

for 1 ≤ n ≤ |v̂|.
The equation

ζv =
q
(W )(̂v v̂)ω

y
=

q
(W )(v̂ v)ω

y

shows that Mv′
[1,n]

· ζv < 0 for 1 ≤ n < |v̂|, and Mv′ · ζv = ζv. As x 7→ Mv′1
· x is order

reversing on (0, 1) and x 7→ Mv′n · x is order preserving on (−1, 0) for 2 ≤ n ≤ |v̂|, we
obtain for any α ∈ Γv that Mv′

[1,n]
· α ∈ (ηv − 1, 0) for 1 ≤ n < |v̂|, Mv′ · α ∈ (ηv − 1, α),

thus bα[1,|v̂| ] = v′, and T n
α (α) > ηv − 1 for 1 ≤ n ≤ |v̂|. We also obtain that bα[1,|v̂| ] 6= v′ for

all α ≤ ζv, which concludes the proof of the lemma. �

Lemma 6.6. For any α ∈ Γ, there exists a unique v ∈ F such that α ∈ Γv.

Proof. Let α ∈ Γ, and a[1,∞) be the characteristic sequence of α − 1. If Tα(α) ≥ 0, then
using (4.2)

0 ≥ W · Tα(α) = WM(+1:dα(α)) · α = M
dα(α)−1
(−1:2) · (α− 1) = T dα(α)−1

α (α− 1) ,

thus α ∈ Γ(−1:2)dα(α)−1 by Lemma 6.5. Assume from now on that Tα(α) < 0. Then the
characteristic sequence of Tα(α) is a[2,∞) by Lemma 6.2.

If T n
α (α−1) ≥ 0 for some n ≥ 1, and n is minimal with this property, then the by-excess

expansion of α− 1 starts with bα[1,n]
(+1). Since this word does not end with (−1 : 2), there

exists some m ≥ 1 such that the characteristic sequence of bα[1,n]
(+1) is a[1,2m] 1. Therefore,
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the characteristic sequence of bα[1,n] is a[1,2m) (a2m − 1) 1 (if a2m ≥ 2) or a[1,2m−2] (a2m−1 +1)

(if a2m = 1). Set m = ∞ if T n
α (α− 1) < 0 for all n ≥ 1.

Similarly, if T n
α (α) ≥ 0 for some n ≥ 2, and n is minimal with this property, then the

0-expansion of Tα(α) starts with bα[2,n]
(+1). Therefore, the characteristic sequence of bα[2,n]

(+1)

is a[2,2m′+1] 1 for some m′ ≥ 1, and that of bα[2,n] is a[2,2m′] (a2m′+1 − 1) 1 (if a2m′+1 ≥ 2) or

a[2,2m′) (a2m′ + 1) (if a2m′+1 = 1). Set m′ = ∞ if T n
α (α) < 0 for all n ≥ 1.

Let v ∈ A ∗
− be the word with characteristic sequence

a′[1,2ℓ+1] =





a[1,2m) (a2m − 1) 1 if m ≤ m′, a2m ≥ 2,

a[1,2m−2] (a2m−1 + 1) if m ≤ m′, a2m = 1,

a[1,2m′+1] if m > m′.

We show that (6.2) holds. Suppose first m ≤ m′. Then bα[1,|v| ] = v by the definition

of v, and the characteristic sequence of v̂(−1) is 1 a[1,2m]. Removing the first letter of v̂(−1)

yields a word with characteristic sequence a[2,2m], and m ≤ m′ implies that bα[2,∞) starts

with this word. By Lemma 6.2 and since Tα(α) < 0, Lemma 6.3 shows that bα1 is equal
to the first letter of (W )v̂(−1). Therefore, we also have bα[1,|v̂| ] =

(W )v̂(−1). Suppose now

m > m′. Then bα[1,∞) starts with v. As for m ≤ m′, the first letter of (W )v̂(−1) is equal

to bα1 . Since the characteristic sequence of v̂(−1) is 1 a[1,2m′] (a2m′+1 − 1) 1 (if a2m′+1 ≥ 2) or

1 a[1,2m′) (a2m′ + 1) (if a2m′+1 = 1), we obtain that bα[1,|v̂| ] =
(W )v̂(−1). Therefore, α and v

satisfy (6.2).

Next we show that v ∈ F , i.e., a′[2j,2ℓ+1] <alt a
′
[1,2ℓ−2j+2] and a′[2j+1,2ℓ+1] ≤alt a

′
[1,2ℓ−2j+1]

for all 1 ≤ j ≤ ℓ. Since the characteristic sequence of T
1+a2+a4+···+a2j−2
α (α) is a[2j,∞) for

all 1 ≤ j ≤ ℓ, we have a[2j,∞) ≤alt a[1,∞) by Corollary 4.2. If m ≤ m′, this yields that
a′[2j,2ℓ+1] <alt a[2j,2ℓ+1] ≤alt a[1,2ℓ−2j+2] = a′[1,2ℓ−2j+2]. If m > m′, then we have a[2ℓ+2,∞) >alt

a[1,∞) because a[2ℓ+2,∞) is the characteristic sequence of T
|v̂|
α (α)− 1, thus a[2j,∞) ≤alt a[1,∞)

implies that a[2j,2ℓ+1] <alt a[1,2ℓ−2j+2]. In this case, we obtain that a′[2j,2ℓ+1] = a[2j,2ℓ+1] <alt

a[1,2ℓ−2j+2] = a′[1,2ℓ−2j+2]. Consider now a′[2j+1,2ℓ+1], 1 ≤ j ≤ ℓ. If j = ℓ, m ≤ m′, and

a2m ≥ 2, then a′2ℓ+1 = 1 ≤ a′1. In all other cases we have a[2j+1,∞) ≤alt a[1,∞) because

a[2j+1,∞) is the characteristic sequence of T
a1+a3+···+a2j−1
α (α−1). Ifm > m′, then this implies

that a′[2j+1,2ℓ+1] = a[2j+1,2ℓ+1] ≤alt a[1,2ℓ−2j+1] = a′[1,2ℓ−2j+1]. If m ≤ m′, then the fact that

a[2m+1,∞) is the characteristic sequence of T
|v|
α (α−1)−1 implies that a[2j+1,2m] <alt a[1,2m−2j],

thus a′[2j+1,2ℓ+1] ≤alt a[1,2ℓ−2j+1] = a′[1,2ℓ−2j+1]. This proves that v ∈ F .

By Lemma 6.5, we have shown that α ∈ Γ implies that α ∈ Γv for some v ∈ F . Suppose
that α ∈ Γv and α ∈ Γw for two different v, w ∈ F . Since bα[1,|v| ] = v and bα[1,|w| ] = w by

Lemma 6.5, v is a prefix of w or w is a prefix of v. Then (W )v̂(−1) is not a prefix of (W )ŵ(−1),
and (W )ŵ(−1) is not a prefix of (W )v̂(−1), thus bα[1,|v̂| ] 6= (W )v̂(−1) or bα[1,|ŵ| ] 6= (W )ŵ(−1). Again
by Lemma 6.5, this implies that α 6∈ Γv or α 6∈ Γw . Thus α lies in a unique α ∈ Γv. �
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Lemma 6.7. We have α ∈ (0, 1]\Γ if and only if α ∈ (0, g] and the characteristic sequence

a[1,∞) of α−1 satisfies a[n,∞) ≤alt a[1,∞) for all n ≥ 2. If α ∈ (0, 1]\Γ, then bα[1,∞) =
(W )b̂α[1,∞).

Proof. We have α ∈ (0, 1] \ Γ if and only if bα[1,∞) ∈ A ω
− and bα[2,∞) ∈ A ω

− , which in turn is

equivalent to bα[1,∞) ∈ A ω
− and bα[1,∞) =

(W )b̂α[1,∞) by Lemmas 6.2 and 6.3. Since Γv = (g, 1]

for the empty word v, we have (0, 1] \ Γ ⊂ (0, g].

Let α ∈ (0, g], and a[1,∞) be the characteristic sequence of α − 1. If bα[1,∞) ∈ A ω
− ,

then a[2j+1,∞) is the characteristic sequence of T
a1+a3+···+a2j−1
α (α − 1) for all j ≥ 0, thus

a[2j+1,∞) ≤alt a[1,∞) by Corollary 4.2. If moreover bα[1,∞) = (W )b̂α[1,∞), then a[2j,∞) is the

characteristic sequence of T
1+a2+a4+···+a2j−2
α (α− 1) for all j ≥ 1, thus a[2j,∞) ≤alt a[1,∞).

On the other hand, if a[2j+1,∞) ≤alt a[1,∞) for all j ≥ 1, then we obtain recursively
from Corollary 4.2, Lemma 6.3 and the fact that M(−1:2) is increasing on (−1, 0) that
bα[a1+a3+···+a2j−3+1,a1+a3+···+a2j−1]

= (−1 : 2)a2j−1−1(−1 : 2 + a2j), thus bα[1,∞) ∈ A ω
− . If

moreover a[2j,∞) ≤alt a[1,∞) holds for all j ≥ 1, then we obtain in the same way that

bα[a2+a4+···+a2j−2+2,a2+a4+···+a2j+1] = (−1 : 2)a2j−1(−1 : 2 + a2j+1) for all j ≥ 1, thus bα[2,∞) ∈
A ω

− . This implies α ∈ (0, 1] \ Γ. �

By the following lemma, the orbits of α− 1 and α synchronize for almost all α ∈ (0, 1].

Lemma 6.8. The set (0, 1] \ Γ has zero Lebesgue measure.

Proof. By Lemma 6.7 and Proposition 4.1, we have

(0, 1] \ Γ =
{
α ∈ (0, 1] | T n

1 (α) ≥ α for all n ≥ 1
}

⊂
⋃

d≥1

{
α ∈ [1/d, 1] | T n

1 (α) ≥ 1/d for all n ≥ 1
}
.

Since T1 is ergodic, this set is the countable union of null sets. �

We remark that Lemma 6.8 was also proved in [CT]. Furthermore, they showed that
the Hausdorff measure of (0, 1] \ Γ is 1.

Putting everything together, we obtain the main result of this section.

Proof of Theorem 5. Lemma 6.6 shows that Γ is the disjoint union of the intervals Γv,
v ∈ F . For any α ∈ Γv, we have bα[1,|v| ] = v and bα[1,|v̂| ] =

(W )v̂(−1) by Lemma 6.5, thus

T
|v|
α (α− 1) = W · T |v̂|

α (α) by Lemma 6.2. Then Lemma 6.4 gives T
|v|+1
α (α− 1) = T

|v̂|+1
α (α)

and bα|v̂|+1 =
(W )bα|v|+1. The statements on (0, 1] \ Γ are shown in Lemmas 6.7 and 6.8. �

Remark 6.9. Let Lv := MvE and Rv := E−1Mv̂W . Then Lemma 6.1 implies that for each
v ∈ F , Lv = WRv and Theorem 5 implies that the graphs of Lv · x and Rv · x cross above
(ζv, ηv), with common zero at χv. See Figure 3.

We give examples realizing some of the various cases that arise in Lemma 6.6.
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Figure 3. Graphs of α 7→ T 4
α(α) in solid red, α 7→ T 4

α(α− 1) in dot-
ted blue, α 7→ T 2

α(α) in solid green, and α 7→ T 2
α(α− 1) in dotted cyan,

near Γv for v = (−1 : 2)(−1 : 3)(−1 : 4)(−1 : 2) = Θ
(
(−1 : 2)(−1 : 3)

)
.

On Γv = (0.3867 . . . , 0.3874 . . . ), Rv · α and Lv · α agree with T 4
α(α) and

T 4
α(α− 1), respectively; have a common zero at χ = χv; and, meet the graph

of the identity function at ζ = ζv and η = ηv, respectively. To aid com-
parison with Figure 7, gridline is at α = 113/292. For α ∈ Γ(−1:2)(−1:3) =
(0.3874 . . . , 0.4142 . . . ), one has T 4

α(α) = T 4
α(α− 1) — compare with Fig-

ure 6, whereas to the left of ζ = ζv, one sees that there is a gap before once
again these agree. The transcendental τv lies in this gap.

Example 6.10. If α = 1/r for some positive integer r, then bα[1,r) = (−1 : 2)r−1 and

bα1 = (+1 : r) imply that α ∈ Γ(−1:2)r−1 . We have T r−1
α (α) = 0 = Tα(α).

Example 6.11. If α = 37/97, then bα[1,4] = (−1 : 2)(−1 : 3)(−1 : 3)(−1 : 2) and T 4
α(α− 1) =

1/4. The characteristic sequence of v = bα[1,4] is 21112, thus v̂ = (−1 : 4)(−1 : 3)(−1 : 4).

Since bα[1,3] = (+1 : 3)(−1 : 3)(−1 : 3) = (W )v̂(−1), we have α ∈ Γv. Note that T 3
α(α) =

−1/5 = W · T 4
α(α− 1), T 5

α(α− 1) = 0 = T 4
α(α), and that |v| = 4 > 3 = |v̂|.

Example 6.12. If α = 58/195, then bα[1,5] = (−1 : 2)(−1 : 2)(−1 : 4)(−1 : 4)(−1 : 5) and

T 5
α(α− 1) = 0, bα[1,5] = (+1 : 4)(−1 : 2)(−1 : 3)(−1 : 2)(−1 : 2) and T 5

α(α) = 1/4. The

characteristic sequence of bα[1,5]
(+1) is 3212141, and that of bα[2,5]

(+1) is 21211. This yields that

m = 3, m′ = 2 in Lemma 6.6, hence α ∈ Γv, where v = (−1 : 2)(−1 : 2)(−1 : 4)(−1 : 4)
has the characteristic sequence 32121. Since v̂ = (−1 : 5)(−1 : 2)(−1 : 3)(−1 : 2)(−1 : 3),
we have |v| = 4 < 5 = |v̂|.

Theorem 8 shows that v ∈ F for which |v| = |v̂| abound. In the following examples,
we exhibit families of words showing that strict inequality (in each direction) also arises
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infinitely often. Note that [NN08] also give infinite families realizing each of the three types
of behavior.

Example 6.13. Let v = (−1 : 2)m (−1 : 3)ℓ (−1 : 2) for some positive integers m and ℓ.
Then the characteristic sequence of v is a[1,2ℓ+1] = (m + 1) 12ℓ−1 2, thus v ∈ F . Since
v̂ = (−1 : 3 +m) (−1 : 3)ℓ−1 (−1 : 4), we have |v| − |v̂| = m.

Example 6.14. Let v = (−1 : 2)m+1 (−1 : 4)ℓ for some positive integers m and ℓ. Then the

characteristic sequence is a[1,2ℓ+1] = (m+2) (2 1)ℓ, thus v̂ = (−1 : 4+m)
(
(−1 : 2) (−1 : 3)

)ℓ
and |v̂| − |v| = ℓ−m. Again, membership of v in F follows trivially.

In the central range [g2, g], however, we always have equality |v| = |v̂|.
Lemma 6.15. For any v ∈ F with Γv ⊂ [g2, g], we have |v| = |v̂|.

Proof. Let a[1,2ℓ+1] be the characteristic sequence of v ∈ F with Γv ⊂ [g2, g]. Then we
have a1 = 2 because bα1 = (−1 : 2) and bα2 6= (−1 : 2) for each α ∈ [g2, g). This implies
that a[1,2ℓ+1] ∈ {1, 2}∗. Since α − 1 ≥ −g and the characteristic sequence of −g is 2 1ω,
Corollary 4.2 yields that a[1,2j+1] 6= 2 12j−1 2 for all 1 ≤ j ≤ ℓ. Therefore, the number of 1s
between any two 2s in a[1,2ℓ+1] is even. Moreover, a[2j,2ℓ+1] = 2 12ℓ−2j+1 is impossible for
1 ≤ j ≤ ℓ. Since a[1,2ℓ+1] is of odd length, we obtain that a[1,2ℓ+1] ∈ 2(11)∗ (2(11)∗2(11)∗)∗.

We have |v| =∑ℓ
j=0 a2j+1 − 1 and |v̂| =∑ℓ

j=1 a2j + 1, thus |v| = |v̂|. �

Immediately to the right of [g2, g] lies the interval Γv = (g, 1] with the empty word v,
where |v| = 0 < 1 = |v̂|. Example 6.13 (with m = 1) provides intervals Γv arbitrarily
close to the left of [g2, g] with |v| > |v̂|. The following example shows that the opposite
inequality also occurs arbitrarily close to the left of [g2, g].

Example 6.16. Let m be a positive integer and set

v = (−1 : 2) (−1 : 3)m (−1 : 2) (−1 : 4) (−1 : 3)m (−1 : 4) (−1 : 3)m (−1 : 4) (−1 : 2) .

Then the characteristic sequence is a[1,6m+7] = 212m−12212m+1212m+122, thus v ∈ F , and

v̂ = (−1 : 4) (−1 : 3)m−1 (−1 : 4) (−1 : 2) (−1 : 3)m+1 (−1 : 2) (−1 : 3)m+1 (−1 : 2) (−1 : 4)

shows that |v̂| = |v|+ 1.

7. Structure of the natural extension domains

For an explicit description of Ωα, we require detailed knowledge of the effects of Tα on
the regions fibered above non-full cylinders determined by the Tα-orbits of α− 1 and α. To
this end, we use the languages Lα and L ′

α defined in Section 3. Throughout the section,
let

k =

{
|v|+ 1 if α ∈ Γv, v ∈ F ,
∞ if α ∈ (0, 1] \ Γ, k′ =

{
|v̂|+ 1 if α ∈ Γv, v ∈ F ,
∞ if α ∈ (0, 1] \ Γ.
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We make use of the extended languages L ×
α and L ′×

α , defined by

L
×
α :=

(
Ũα,3 ∪ Uα,1 U

∗
α,2 Ũα,4

)∗
, L

′×
α := L

×
α Uα,1 U

∗
α,2 ,

where Uα,1 :=
{
bα[1,j] | 0 ≤ j < k

}
, Uα,2 :=

{
bα[1,j] | 1 ≤ j < k′} as in Section 3, and

Ũα,3 :=
{
bα[1,j) a | j ≥ 1, a ∈ A , bαj ≺ a ≺ bα1

}

Ũα,4 :=
{
bα[1,j) a | j ≥ 2, a ∈ A , bαj ≺ a ≺ bα1

} if α ∈ (0, 1] \ Γ,

Ũα,3 :=
{
bα[1,j) a | 1 ≤ j < k, a ∈ A , bαj ≺ a ≺ bα1

}
∪
{
bα[1,k) a | a ∈ A+, a ≺ bα1

}

Ũα,4 :=
{
bα[1,j) a | 2 ≤ j < k′, a ∈ A , bαj ≺ a ≺ bα1

}
∪
{
bα[1,k′) a | a ∈ A+, a ≺ bα1

} if α ∈ Γ.

Let

Ψ×
α :=

{
Nw · 0 | w ∈ L

×
α

}
and Ψ′×

α :=
{
Nw · 0 | w ∈ L

′×
α

}
.

The languages introduced above allow us to view the region Ωα as being the union of
pieces, each of which fibers over a subinterval whose left endpoint is in the Tα-orbit of
α or of α− 1. We will see in Lemma 7.4 that L ′×

α is the language of the α-expansions
avoiding (+1 : ∞) if either α ∈ (0, 1] \ Γ or T k−1

α (α− 1) = T k′−1
α (α) = 0. For other α,

L ′×
α is slightly different from the language of the α-expansions. However, any α ∈ Γ lies

in some Γv and hence shares various properties with χv. We thus can exploit the fact that
T k−1
α (χv) = T k′−1

α (χv) = 0 to aid in the description of Ωα.

From their definitions, we clearly have Ψ×
α ⊂ Ψ′×

α . Using these languages, we describe Ωα

in terms of its fibering over Iα. For example, Corollary 7.7 shows that the fiber in Ωα above
any x ∈ Iα is squeezed between the closures of Ψ×

α and Ψ′×
α . Thus, Iα×Ψ×

α ⊆ Ωα ⊆ Iα×Ψ′×
α .

Note also that Lemma 7.10 shows that Ψα = Ψ×
α and Ψ′

α = Ψ′×
α .

Proposition 7.1. Let α ∈ (0, 1]. Then we have

(7.1)
⋃

n≥0

T n
α

(
[α− 1, α)× {0}

)

= [α− 1, α)×Ψ×
α ∪

⋃

1≤j<k

[
T j
α(α− 1), α

)
×Nbα

[1,j]
·Ψ×

α ∪
⋃

1≤j<k′

(
T j
α(α), α

)
×Nbα

[1,j]
·Ψ′×

α .

Here, (x, x′) denotes the open interval between x and x′ (and not a point in R2), and
the map Tα always acts on products of two sets in R.

The following lemmas are used in the proof of the proposition.

Lemma 7.2. For any α ∈ (0, 1], L ′×
α admits the partition

L
′×
α = L

×
α ∪

⋃

1≤j<k

L
×
α bα[1,j] ∪

⋃

1≤j<k′

L
′×
α bα[1,j] .

Proof. In the factorization L ′×
α = L ×

α Uα,1 U
∗
α,2, there are two cases: the exponent of Uα,2

being zero or not. In the first case, the element of Uα,1 can be the empty word bα[1,0], which
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gives L ×
α , or a word bα[1,j], 1 ≤ j < k. In the second case, we can factor exactly one power of

Uα,2 to the right. Since the decomposition of every w ∈ L ′×
α into factors in L ×

α , Uα,1, U
∗
α,2

(in this order) is unique, this proves the lemma. �

By Lemma 7.2, we can write (7.1) as

(7.2)
⋃

n≥0

T n
α

(
[α− 1, α)× {0}

)
=

⋃

w∈L
′×
α

Jα
w × {Nw · 0} ,

where

Jα
w :=





[α− 1, α) if w ∈ L ×
α ,

[
T j
α(α− 1), α

)
if w ∈ L ×

α bα[1,j], 1 ≤ j < k ,
(
T j
α(α), α

)
if w ∈ L ′×

α bα[1,j], 1 ≤ j < k′ .

From now on, denote by ∆α(w), w ∈ A ∗, the set of x ∈ [α− 1, α) with α-expansion
starting with w. This only differs from previous definitions in that ∆α(w) never contains
the point α.

Lemma 7.3. Let α ∈ (0, 1] \ Γ or α = χv, v ∈ F . Then

Jα
w = T |w|

α

(
∆α(w)

)
= Mw ·∆α(w) for all w ∈ L

′×
α .

Proof. The second equality follows immediately from the definitions.

The first equality clearly holds if w is the empty word. We proceed by induction on |w|.
The definition of L ′×

α implies that every w′ ∈ L ′×
α with |w′| ≥ 1 can be written as w′ = wa

with w ∈ L ′×
α , a ∈ A . Let first w ∈ L ×

α bα[1,j), 1 ≤ j < k, which implies bαj � a � bα1 .

Since T j−1
α (α− 1) < 0, we have

Jα
w =

[
T j−1
α (α− 1), α

)
=
[
T j−1
α (α− 1), −1

dα,j(α−1)+α

)
∪

⋃

a∈A :
bαj ≺a�bα1

∆α(a) ∪ {0} .

Then, Jα
w = T

|w|
α (∆α(w)) implies that

T |w|+1
α

(
∆α(wb

α
j )
)
= Tα

(
Jα
w ∩∆α(b

α
j )
)
=
[
T j
α(α− 1), α

)
= Jwbαj

,

T |w|+1
α

(
∆α(wa)

)
= [α− 1, α) = Jwa (bαj ≺ a ≺ bα1 ) ,

T |w|+1
α

(
∆α(wb

α
1 )
)
=
(
Tα(α), α

)
= Jwbα1

.

If w ∈ L ′×
α bα[1,j), 2 ≤ j < k′, then similar arguments yield that T

|w|+1
α (∆α(wa)) = Jwa for

bαj � a � bα1 . Finally, if w ∈ L ×
α bα[1,k) or w ∈ L ′×

α bα[1,k′) (which is possible only for α ∈ Γ),

then α = χv yields that Jα
w = [0, α) and Jα

w = (0, α) respectively. Here, wa ∈ L ′×
α is

equivalent to a ∈ A+, a � bα1 , and we obtain again that T
|w|+1
α (∆α(wa)) = Jwa. �
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Lemma 7.4. Let α ∈ (0, 1] \ Γ or α = χv, v ∈ F . Then

(7.3) [α− 1, α) =
⋃

w∈L
′×
α ∩A n

∆α(w) ∪ {x ∈ [α− 1, α) | T n−1
α (x) = 0}

for all n ≥ 1, i.e., L ′×
α is the language of the α-expansions of x ∈ [α−1, α) avoiding (1 : ∞).

Proof. We have L ′×
α ∩ A = {a ∈ A | bα1 � a � bα1}, thus (7.3) holds for n = 1. In the

proof of Lemma 7.3, we have seen that

T |w|
α

(
∆α(w)

)
\ {0} =

⋃

a∈A :
wa∈L

′×
α

T |w|
α

(
∆α(wa)

)

for all w ∈ L ′×
α . By applying M−1

w , we obtain the corresponding subdivision of ∆α(w),
which yields inductively (7.3) for all n ≥ 1. �

Lemmas 7.3 and 7.4 show that (7.2) and thus (7.1) hold if α ∈ (0, 1] \ Γ or α = χv,
v ∈ F . For general α ∈ Γ, note that

(7.4) Tα

(
Jα
w × {Nw · 0}

)
= {0} × {0} ∪

⋃

a∈A :
wa∈L

′×
α

Jα
wa × {Nwa · 0}

holds for all w ∈ L ′×
α \

(
L ×

α bα[1,k) ∪ L ′×
α bα[1,k′)

)
, by arguments similar to the proof of

Lemma 7.3. For w ∈ L ×
α bα[1,k) ∪ L ′×

α bα[1,k′), we use the following two lemmas.

Lemma 7.5. Let α ∈ (0, 1], w ∈ A ∗ with |w| ≥ 1. Then the membership of w in L ×
α is

equivalent to that of w(−1) in L ′×
α . Furthermore, we have Ψ′×

α = tE ·Ψ×
α .

Proof. The equivalence between w ∈ L ×
α and w(−1) ∈ L ′×

α follows directly from the
definition of L ×

α and L ′×
α . Then we find that

Ψ′×
α = {Nw · 0 | w ∈ L

′×
α } = {Nw(−1) · 0 | w ∈ L

×
α } = {tENw · 0 | w ∈ L

×
α } = tE ·Ψ×

α . �

Lemma 7.6. Let α ∈ Γ and w = bα[1,k), w
′ = bα[1,k′), or w = u bα[1,k), w

′ = u(−1) bα[1,k′) with

u ∈ L ×
α , |u| ≥ 1. Then we have w,w′ ∈ L ′×

α and

(7.5) Tα

(
Jα
w × {Nw · 0}

)
∪ Tα

(
Jα
w′ × {Nw′ · 0}

)

= {0} × {0} ∪
⋃

a∈A :
wa∈L

′×
α

Jα
wa × {Nwa · 0} ∪

⋃

a∈A :
w′a∈L

′×
α

Jα
w′a × {Nw′a · 0} .

Proof. By Theorem 5, we have sgn(T k−1
α (α− 1)) = − sgn(T k′−1

α (α)). We can assume that
T k−1
α (α− 1) < 0, the case T k′−1

α (α) < 0 being symmetric, and the case T k−1
α (α− 1) = 0
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being trivial since (7.4) holds for w and w′ in this case (except for the point {0}× {0} not
belonging to Tα(J

α
w′ × {Nw′ · 0})). Then

Tα

(
Jα
w × {Nw · 0}

)
=
[
T k
α (α− 1), α

)
× {Nwbα

k
· 0} ∪ {0} × {0}

∪ [α− 1, α)×
{
Nwa · 0 | bαk ≺ a ≺ bα1} ∪

(
Tα(α), α

)
× {Nwbα1

· 0}

and, if bαk′ ≺ bα1 ,

Tα

(
Jα
w′ × {Nw′ · 0}

)
=
[
α− 1, T k′

α (α)
)
× {Nw′bα

k′
· 0}

∪ [α− 1, α)×
{
Nw′a · 0 | bαk′ ≺ a ≺ bα1} ∪

(
Tα(α), α

)
× {Nw′bα1

· 0} ,

whereas Tα

(
Jα
w′ × {Nw′ · 0}

)
=
(
Tα(α), T

k′

α (α)
)
× {Nw′bα1

· 0} if bαk′ = bα1 .

Theorem 5 gives that T k
α (α− 1) = T k′

α (α) and bαk = (W )bαk′ by Lemma 6.4. If w = bα[1,k),

w′ = bα[1,k′), then we have Mw′(W )a = MwaE for any a ∈ A , whereas

Mw′(W )a = Mu(−1) bα
[1,k′ )

(W )a = MaWMbα
[1,k′ )

E−1Mu = MaMbα
[1,k)

Mu = Mwa

otherwise. In all cases, this yields that Nwa · 0 = Nw′(W )a · 0. Applying this for a ∈ A−, we
obtain that

Tα

(
Jα
w × {Nw · 0}

)
∪ Tα

(
Jα
w′ × {Nw′ · 0}

)
=
(
Tα(α), α

)
× {Nwbα1

· 0, Nw′bα1
· 0} ∪ {0} × {0}

∪ [α− 1, α)×
{
Nwa · 0 | a ∈ A+, a ≺ bα1

}
∪ [α− 1, α)×

{
Nw′a · 0 | a ∈ A+, a ≺ bα1

}
,

which is precisely (7.5). �

Proof of Proposition 7.1. We have already noted that (7.1) is equivalent to (7.2), and
that (7.2) follows from Lemmas 7.3 and 7.4 for α ∈ (0, 1]\Γ or α = χv, v ∈ F . For general
α ∈ Γ, we already know that (7.4) holds for w ∈ L ′×

α \
(
L ×

α bα[1,k) ∪ L ′×
α bα[1,k′)

)
. Together

with Lemma 7.6, this gives inductively that
⋃

w∈L
′×
α :

|w|≤nm/m′

Jα
w × {Nw · 0} ⊆

⋃

0≤j≤n

T j
α

(
[α− 1, α)× {0}

)
⊆

⋃

w∈L
′×
α :

|w|≤nm′/m

Jα
w × {Nw · 0}

for every n ≥ 0, where m = min(k, k′) and m′ = max(k, k′). This shows again (7.2), hence
the proposition. �

For α ∈ (0, 1], x ∈ Iα, the x-fiber is

Φα(x) := {y | (x, y) ∈ Ωα} .
The description of Ωα as the union of pieces fibering above the various Jα

w shows both that
fibers are constant between points in the union of the orbits of α and α− 1 and that a
fiber contains every fiber to its left. The maximal fiber is therefore Φα(α), which by (7.1)
and Lemma 7.2 equals Ψ′×

α . To be precise, we state the following.
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Corollary 7.7. Let α ∈ (0, 1]. If x, x′ ∈ Iα, x ≤ x′, then

Ψ×
α ⊆ Φα(α− 1) ⊆ Φα(x) ⊆ Φα(x

′) ⊆ Φα(α) = Ψ′×
α .

If (x, x′ ] ∩
({

T j
α(α− 1) | 0 ≤ j < k

}
∪
{
T j
α(α) | 1 ≤ j < k′}) = ∅, then Φα(x) = Φα(x

′).

Remark 7.8. The inclusion Ψ×
α ⊆ Φα(α−1) can be strict only when α−1 ∈

{
T j
α(α) | j ≥ 1

}

or α−1 ∈
{
T j
α(α− 1) | j ≥ 1

}
, which implies that α ∈ (0, 1] \Γ. Furthermore, Lemma 7.5

implies that Ψ×
α = tE−1 · Ψ′×

α ; since Ψ′×
α ⊆ [0, 1] and tE−1 · y = y/(y + 1) takes [0, 1] to

[0, 1/2], we find that Ψ×
α ⊆ [0, 1/2]. Compare this with Figures 4, 5 and 6.

Now we give a description of Ωα which provides good approximations of Ωα and of µ(Ωα).
We show how the languages L ×

α and L ′×
α can be replaced by the restricted languages Lα

and L ′
α. To this matter, we define the alphabet

Aα :=
{
a ∈ A− | bα1 � a � (W )bα1

}
∪
{
bα1
}
.

This set can also be written as { (−1 : d′) | 2 ≤ d′ ≤ dα(α) + 1} ∪ {(+1 : dα(α))}.
Lemma 7.9. Let α ∈ (0, 1]. Then bαj ∈ Aα for all 1 ≤ j < k, bαj ∈ Aα for all 1 ≤ j < k′.
We have Lα = L ×

α ∩ A ∗
α and L ′

α = L ′×
α ∩ A ∗

α .

Proof. Let first α ∈ (0, 1] \ Γ, and a[1,∞) be the characteristic sequence of α− 1. We have

a1 = dα(α)− 1 since (+1 : dα(α)) = bα1 = (W )(−1 : 2 + a1) = (+1 : 1 + a1) by Theorem 5.
Moreover, Theorem 5 implies that an ≤ a1 for all n ≥ 1 and that a[2,∞) is the characteristic

sequence of bα[2,∞), thus b
α
[1,∞) ∈ A ω

α and bα[1,∞) ∈ A ω
α .

Let now α ∈ Γv, and a[1,2ℓ+1] be the characteristic sequence of v ∈ F . If ℓ = 0, then we

have bα[1,k) = (−1 : 2)a1−1, bα[1,k′) = bα1 = (+1 : a1), and these words are in A ∗
α . If ℓ ≥ 1, then

a1 = dα(α)− 1 as in the case α ∈ (0, 1] \ Γ. Again, we have an ≤ a1 for all 1 ≤ n ≤ 2ℓ+1,
thus bα[1,k) ∈ A ∗

α and bα[1,k′) ∈ A ∗
α .

The equations Lα = L ×
α ∩ A ∗

α and L ′
α = L ′×

α ∩ A ∗
α are now immediate consequences

of the definitions. �

Lemma 7.10. For any α ∈ (0, 1], we have Ψα = Ψ×
α and Ψ′

α = Ψ′×
α .

Proof. We know from Lemma 5.1 and Corollary 7.7 that
[
0, 1

dα(α)+1

]
⊂ Ψ′×

α . The last letter

of any w ∈ L ′×
α with Nw · 0 ∈

(
0, 1

dα(α)+1

)
is not in Aα, thus w ∈ L ×

α by Lemmas 7.2

and 7.9. This implies that
[
0, 1

dα(α)+1

]
⊂ Ψ×

α . Since L ×
α L ′×

α = L ′×
α and L ′

α ⊂ L ′×
α , we

obtain that Nw ·
[
0, 1

dα(α)+1

]
⊂ Ψ′×

α for all w ∈ L ′
α, thus Ψ

′
α ⊆ Ψ′×

α . For the other inclusion,

write any w′ ∈ L ′×
α as w′ = uw, with w ∈ A ∗

α and u empty or ending with a letter in
A \ Aα. Then we have u ∈ L ×

α by Lemmas 7.2 and 7.9, and w ∈ L ′×
α ∩ A ∗

α = L ′
α, thus

Nw′ · 0 = NwNu · 0 ∈ Nw ·
[
0, 1

dα(α)+1

]
⊂ Ψ′

α. Since Ψ′
α is closed, this shows that Ψ′

α = Ψ′×
α .

In the same way, L ×
α L ×

α = L ×
α and L ×

α ∩ A ∗
α = Lα imply that Ψα = Ψ×

α . �
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Lemma 7.11. For any α ∈ (0, 1], we have

Ωα = Iα ×Ψα ∪
⋃

1≤j<k

[
T j
α(α− 1), α

]
×Nbα

[1,j]
·Ψα ∪

⋃

1≤j<k′

[
T j
α(α), α

]
×Nbα

[1,j)
·Ψ′

α

=
⋃

w∈L ′
α

Jα
w ×Nw ·

[
0, 1

dα(α)+1

]
.

For any w ∈ L ′
α, we have Nw ·

(
0, 1

dα(α)+1

)
∩ ⋃w′∈L ′

α\{w}Nw′ ·
[
0, 1

dα(α)+1

]
= ∅.

Proof. The first equation follows from Proposition 7.1 and Lemma 7.10. The decomposition
L ′

α = Lα ∪ ⋃1≤j<k Lα b
α
[1,j] ∪

⋃
1≤j<k′ L

′
α b

α
[1,j] gives the second equation.

To show the disjointness of Nw ·
(
0, 1

dα(α)+1

)
and

⋃
w′∈L ′

α\{w}Nw′ ·
[
0, 1

dα(α)+1

]
, note first

that α ∈ Γv, v ∈ F , implies that dα(α) = dχv
(χv) and L ′

α = L ′
χv
. Therefore, we can

assume that α = χv or α ∈ (0, 1] \ Γ. Then Lemma 7.3 yields that

(7.6) T |w|
α

(
∆α(w)×

[
0, 1

dα(α)+1

])
= Jα

w ×Nw ·
[
0, 1

dα(α)+1

] (
w ∈ L

′
α

)
.

Since Tα is bijective (up to a set of measure zero) by Lemma 5.2, the disjointness of the
cylinders ∆α(w) and ∆α(w

′) yields that µ
(
Jα
w×Nw ·

[
0, 1

dα(α)+1

]
∩ Jα

w′×Nw′ ·
[
0, 1

dα(α)+1

])
= 0

for all w,w′ ∈ L ′
α with |w| = |w′|, w 6= w′. For all w,w′ ∈ L ′

α with |w| < |w′|, we have

(7.7) T |w|
α

(
T |w′|−|w|
α (∆α(w

′))×Nw′
[1,|w′|−|w| ]

·
[
0, 1

dα(α)+1

])
= Jα

w′ ×Nw′ ·
[
0, 1

dα(α)+1

]
.

The inclusion Na ·
[
0, 1
]
⊂
[

1
dα(α)+1

, 1
]
for all a ∈ Aα gives that

∆α(w)×
[
0, 1

dα(α)+1

)
∩

⋃

w′∈L ′
α:

|w′|>|w|

T
|w′|−|w|
α (∆α(w′))×Nw′

[1,|w′|−|w| ]
·
[
0, 1

dα(α)+1

]
= ∅ .

As Tα is bijective and continuous µ-almost everywhere, applying T |w|
α yields that Jα

w ×Nw ·[
0, 1

dα(α)+1

]
and

⋃
w′∈L ′

α: |w′|>|w| J
α
w′ ×Nw′ ·

[
0, 1

dα(α)+1

]
are µ-disjoint. We have shown that

µ

(
Jα
w ×Nw ·

[
0, 1

dα(α)+1

]
∩

⋃

w′∈L ′
α:

|w′|≥|w|,w′ 6=w

Jα
w′ ×Nw′ ·

[
0, 1

dα(α)+1

])
= 0 .

Inverting the roles of w and w′, we also obtain for all w′ ∈ L ′
α with |w′| < |w| that

Jα
w × Nw ·

[
0, 1

dα(α)+1

]
and Jα

w′ × Nw′ ·
[
0, 1

dα(α)+1

]
are µ-disjoint. Since (0, α] ⊆ Jα

w for all

w ∈ L ′
α, this yields that the intersection ofNw ·

[
0, 1

dα(α)+1

]
and

⋃
w′∈L ′

α\{w}Nw′ ·
[
0, 1

dα(α)+1

]

has zero Lebesgue measure, thus Nw ·
(
0, 1

dα(α)+1

)
∩ ⋃w′∈L ′

α\{w}Nw′ ·
[
0, 1

dα(α)+1

]
= ∅. �
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We study now the sets

(7.8) Ξα,n :=
⋃

w∈L ′
α:

|w|≥n

Jα
w ×Nw ·

[
0, 1

dα(α)+1

]
(n ≥ 0) ,

which are obtained from Ωα by removing finitely many rectangles. In the following, we can
and usually do ignore various sets of measure zero.

Lemma 7.12. Let α ∈ (0, 1] \ Γ or α = χv, v ∈ F . For any n ≥ 0, we have

µ(Ξα,n) ≤ µ(Ωα)
( dα(α)
dα(α)+α

)n
.

Proof. For any n ≥ 0, we have

(7.9) T −n
α

(
Ξα,n \ Ξα,n+1

)
=

⋃

w∈L ′
α:

|w|=n

T −n
α

(
Jα
w ×Nw ·

[
0, 1

dα(α)+1

])
= Xα,n ×

[
0, 1

dα(α)+1

]

by Lemma 7.11 and (7.6), withXα,n :=
⋃

w∈L ′
α: |w|=n∆α(w). For any w

′ ∈ L ′
α with |w′| > n,

we have T
|w′|−n
α (∆α(w

′)) ⊂ ∆α(w
′
[ |w′|−n+1,|w′| ]) ⊂ Xα,n. Therefore, (7.7) implies that

T −n
α (Ξα,n+1) ⊂ Xα,n ×

[
1

dα(α)+1
, 1
]
.

With Theorem 1, we obtain that

µ(Ξα,n \ Ξα,n+1)

µ(Ξα,n)
≥

µ
(
Xα,n ×

[
0, 1

dα(α)+1

])

µ
(
Xα,n × [0, 1]

) ≥ min
x∈Iα

∫ 1/(dα(α)+1)

0
1

(1+xy)2
dy

∫ 1

0
1

(1+xy)2
dy

= min
x∈Iα

y
1+xy

∣∣1/(dα(α)+1)

y=0

y
1+xy

∣∣1
y=0

= min
x∈Iα

1 + x

dα(α) + 1 + x
=

α

dα(α) + α
.

This implies that µ(Ξα,n+1) ≤ dα(α)
dα(α)+α

µ(Ξα,n). Since Ξα,0 = Ωα, this proves the lemma. �

Remark 7.13. Since [0, α] × Ψ′
α ⊂ Ωα for α ∈ (0, 1] \ Γ or α = χv, v ∈ F , Lemma 7.12

implies that the Lebesgue measure of
⋃

w∈L ′
α: |w|≥nNw ·

[
0, 1

dα(α)+1

]
is at most of the order

( dα(α)
dα(α)+α

)n
for these α. For α ∈ Γv, v ∈ F , we obtain that µ(Ξα,n) ≤ cα

( dα(α)
dα(α)+χv

)n
for

some cα > 0. A calculation similar to the proof of Lemma 7.12 shows that we can choose
cα = 1+χv

χvα(1+α)
µ(Ωχv

).

Lemmas 7.11 and 7.12 and the estimate µ(Ωα) ≤ µ(Iα × [0, 1]) = log
(
1 + 1

α

)
give the

following bound for the error of an approximation of µ(Ωα) by a sum of measures of
rectangles which are contained in Ωα.

Corollary 7.14. Let α ∈ (0, 1] \ Γ or α = χv, v ∈ F . Then we have, for any n ≥ 0,

0 ≤ µ(Ωα) −
∑

w∈L ′
α:

|w|<n

µ
(
Jα
w ×Nw ·

[
0, 1

dα(α)+1

])
≤
(

dα(α)
dα(α)+α

)n
log
(
1 + 1

α

)
.
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Proof of Theorem 7. Equation (3.1) is proved in Lemma 7.11 and implies that the den-
sity of the invariant measure να is continous on any interval (x, x′) satisfying T j

α(α− 1) 6∈
(x, x′) for all 0 ≤ j < k and T j

α(α) 6∈ (x, x′) for all 0 ≤ j < k′. The equation Ψ′
α =

⋃
Y ∈Cα

Y

follows from L ′
α = Lα ∪ ⋃1≤j<k Lα b

α
[1,j] ∪

⋃
1≤j<k′ L

′
α b

α
[1,j] and the compactness of Ψ′

α.

By Lemma 7.11, Nw ·
(
0, 1

dα(α)+1

)
is disjoint from the rest of the intervals constitut-

ing Ψ′
α. Taking the closure in unions of such intervals does not increase the measure, by

Lemma 7.12. Therefore, the disjointness of the decomposition L ′
α = Lα∪

⋃
1≤j<k Lα b

α
[1,j]∪⋃

1≤j<k′ L
′
α b

α
[1,j] implies that, for any Y ∈ Cα, the Lebesgue measure of Y ∩ ⋃Y ′∈Cα\{Y } Y

′

is zero. Finally, Ψ′
α = tE ·Ψα follows from Lemmas 7.5 and 7.10. �

8. Evolution of the natural extension along a synchronizing interval

Given v ∈ F , both bα[1,|v| ] and bα[1,|v̂| ] are invariant within the interval Γv. The same is

hence true for Ψα and Ψ′
α, which we accordingly denote by Ψv and Ψ′

v, respectively. The
evolution of the natural extension domain, and of the entropy, is now straightforward to
describe along such an interval. The following lemma is mainly a rewording of (3.1), but
addresses the endpoints of Γv.

Lemma 8.1. Let v = v[1,|v| ] ∈ F , v′ = v′[1,|v̂| ] =
(W )v̂(−1). For any α ∈ [ζv, ηv], we have

Ωα =
⋃

0≤j≤|v|

[
Mv[1,j] · (α− 1), α

)
×Nv[1,j] ·Ψv ∪

⋃

1≤j≤|v̂|

(
Mv′

[1,j]
· α, α

)
×Nv′

[1,j]
·Ψ′

v .

Proof. Since Mv[1,j] · (α− 1) ∈ [α− 1, α] for all 0 ≤ j ≤ |v|, and Mv′
[1,j]

· α ∈ [α− 1, α] for

all 1 ≤ j ≤ |v̂|, the equation follows from the proof of Theorem 7. �

Remark 8.2. Note that (Mv′ · ζv, ζv) is the empty interval by Lemma 6.5, therefore the
contribution from Nv′ · Ψ′

v vanishes at α = ζv. Similarly, if v is not the empty word, then
[Mv · (ηv−1), ηv) is the empty interval and there is no contribution from Nv ·Ψv at α = ηv.

Example 8.3. If v is the empty word, then Ωα = Iα×Ψv ∪
(
M(+1:1) · α, α

)
×N(+1:1)·Ψ′

v. Here,
we know from [Nak81] that Ψv = [0, 1/2], Ψ′

v = [0, 1], Ωα = Iα×[0, 1/2]∪ [Tα(α), α]×[1/2, 1]
if α ∈ (g, 1], and Ωg = Ig × [0, 1/2], see Figure 4.

Example 8.4. For α ∈ Γ(−1:2) = [
√
2− 1, g], the natural extension domain is

Ωα = Iα×Ψ(−1:2) ∪
[
M(−1:2) · (α− 1), α

)
×N(−1:2)·Ψ(−1:2) ∪

(
M(+1:2) · α, α

)
×N(+1:2)·Ψ′

(−1:2) .

We know from [Nak81, MCM99] that Ψ(−1:2) = [0, g2] and Ψ′
(−1:2) = [0, g],

Ωα = Iα ×
[
0, g
]
∪
[
Tα(α− 1), α

]
×
[
1/2, g

]
∪
[
Tα(α), α

]
×
[
g2, 1/2

] (
α ∈ Γ(−1:2)

)
.

In Figure 5, one can see how [Tα(α− 1), α]× [1/2, g] shrinks and [Tα(α), α]× [g2, 1/2] grows
when α increases.
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α = g

0−g2 g
0

1/2

α = 4/5

0α−1 αTα(α) 1
1+α

0

1/2

1

α = 1

0 1
0

1

Figure 4. The natural extension domain Ωα for α ∈ [g, 1].

α = 4/9

0

α−1 Tα(α−1) αTα(α)

1
2+α

−1
2+α

0

1/2

1/3

α = χ(−1:2) = 1/2

0−1/2 1/2

1
2+α

−1
2+α

0

1/2

1/3

α = 5/9

0

α−1 Tα(α−1) αTα(α)

1
2+α

−1
2+α

0

1/2

1/3

Figure 5. The natural extension domain Ωα for α ∈ Γ(−1:2) = (
√
2− 1, g).

Figure 6 shows the fractal structure appearing in the interval Γ(−1:2)(−1:3), which is im-

mediately to the left of
√
2− 1. An even more complicated example of a natural extension

domain is shown in Figure 7, see also Figures 1 and 2.

Now, we can evaluate the measure of Ωα, α ∈ Γv, as a function of the measures of Ωηv

and of [α, ηv]×Ψ′
v. When we compare with Ωζv , it is even sufficient to know the density νζv .

Compare [KSS10] for similar arguments.

Proof of Theorem 6. Let v = v[1,|v| ] ∈ F , v′ = v′[1,|v̂| ] =
(W )v̂(−1), and compare Ωα,

α ∈ [ζv, ηv], with Ωηv . By Lemma 8.1, Remark 8.2 and since Ψ′
α is the disjoint union of

the elements of Cα (Theorem 7), we have

Ωα \ Ωηv =
⋃

0≤j≤|v|
Mv[1,j] · [α− 1, ηv − 1]×Nv[1,j] ·Ψv \ [α, ηv]×Nv[1,|v| ] ·Ψv ,

Ωηv \ Ωα =
⋃

0≤j≤|v̂|
Mv′

[1,j]
· [α, ηv]×Nv′

[1,j]
·Ψ′

v \ [α, ηv]×Nv[1,|v| ] ·Ψv ,
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α = 2/5

0α−1 Tα(α−1) αTα(α)

−1
2+α

−1
3+α

1
3+α

0

1/2

1/3

1/4

α =
√
2− 1

0
√
2− 2 1− 1/

√
2

√
2− 1

−1
2+α

−1
3+α

1
2+α

1
3+α

0

1/2

1/3

1/4

Figure 6. The natural extension domain Ωα for α = 2/5 and α =
√
2− 1.

0ℓ0 ℓ1 ℓ2ℓ3 ℓ4 r0r1r2 r3 r4

−1
2+α

−1
3+α

−1
4+α

1
3+α

0

1/2

1/3

1/4

Figure 7. The domain Ωα for α = 113/292 ∈ Γ(−1:2)(−1:3)(−1:4)(−1:2), with
ℓj = T j

α(α− 1) and rj = T j
α(α).

up to sets of measure zero, thus

µ(Ωα)− µ(Ωηv)

=
∑

0≤j≤|v|
µ
(
Mv[1,j] · [α− 1, ηv − 1]×Nv[1,j] ·Ψv

)
−
∑

0≤j≤|v̂|
µ
(
Mv′

[1,j]
· [α, ηv]×Nv′

[1,j]
·Ψ′

v

)
.
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From Theorem 7, we have Ψv =
tE−1 ·Ψ′

v, thus

(8.1) µ
(
[α− 1, ηv − 1]×Ψv

)
= µ

(
E · [α, ηv]× tE−1 ·Ψ′

v

)
= µ

(
[α, ηv]×Ψ′

v

)

by (2.3). Applying (2.3) with Mv[1,j] , 1 ≤ j ≤ |v|, and Mv′
[1,j]

, 1 ≤ j ≤ |v̂|, gives

µ(Ωα) = µ(Ωηv) +
(
|v| − |v̂|

)
µ
(
[α− 1, ηv − 1]×Ψv

)
,

in particular µ(Ωζv) = µ(Ωηv) +
(
|v| − |v̂|

)
µ
(
[ζv − 1, ηv − 1]×Ψv

)
. Therefore, we also have

µ(Ωα) = µ(Ωζv) +
(
|v̂| − |v|

)
µ
(
[ζv − 1, α− 1]×Ψv

)
.

Since Mv[1,j] · (ζv − 1) ≥ ηv − 1 for all 1 ≤ j ≤ |v| and Mv′
[1,j]

· ζv ≥ ηv − 1 for all

1 ≤ j ≤ |v̂| by Lemma 6.5, Lemma 8.1 yields that the fibers Φζv(x) are equal to Ψv for all
x ∈ [ζv − 1, ηv − 1). This gives

µ
(
[α− 1, ηv − 1]×Ψv

)
= µ(Ωζv) νζv

(
[ζv − 1, α− 1]

)
,

which proves the formula for µ(Ωα). The monotonicity relations for α 7→ µ(Ωα) are an
obvious consequence, and the inverse relations for α 7→ h(Tα) follow from Theorem 2. �

9. Continuity of entropy and measure of the natural extension domain

By Theorem 6, the normalizing constant µ(Ωα) is continuous on [ζv, ηv] for every v ∈ F .
We now prove that there is a synchronizing interval immediately to the left of Γv, which
implies that µ(Ωα) is continuous on the left of ζv as well. Recall that Θ(v) := v v̂(−1).

Lemma 9.1. For every v ∈ F , we have Θ(v) ∈ F . The left endpoint of the interval Γv

is the right endpoint of the interval ΓΘ(v), i.e., ζv = ηΘ(v). Moreover,

|Θ(v)| = |Θ̂(v)| = |v|+ |v̂| .

Proof. Let v ∈ F with characteristic sequence a[1,2ℓ+1]. If |v| = 0, then Θ(v) = (−1 : 2),
and all statements are true. If v is non-empty, then the characteristic sequence of Θ(v) is

a[1,2ℓ+1] a[1,2ℓ] (a2ℓ+1 − 1) 1 if a2ℓ+1 ≥ 2, a[1,2ℓ+1] a[1,2ℓ) (a2ℓ + 1) if a2ℓ+1 = 1 .

In both cases, we have Θ(v) ∈ F and Θ̂(v) = v̂ v(+1). The equality of the lengths of Θ(v)

and Θ̂(v) with the sum of those of v and v̂ then follows directly. The definitions of ζv and
ηv yield that ζv = ηΘ(v). �

Remark 9.2. One can think of Θ(v) as giving a folding operation on the set of labels of
intervals of synchronizing orbits. In terms of Remark 6.9, the fixed point of Rv is also of
course the fixed point of

(Rv)
2 = E−1Mv̂WE−1Mv̂W = E−1Mv̂MvE = Mv v̂(−1)E = LΘ(v) .

Compare this with Figure 3.

From Lemma 9.1 and Theorem 6, we deduce the following result.
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Corollary 9.3. If v ∈ F , then, irrespective of the behavior of the entropy function α 7→
h(Tα) on Γv, this function is constant immediately to the left, that is on [ηΘ(v), ζv].

It remains to consider α ∈ (0, 1]\Γ that is not the left endpoint of an interval Γv, v ∈ F .
For this, let Z = {ζv | v ∈ F}.
Lemma 9.4. Let α ∈ (0, 1] \ (Γ ∪ Z). For every n ≥ 1, there exists some δ > 0 such that

bα
′

[1,n) = bα[1,n) and bα
′

[1,n) = bα[1,n) for all α′ ∈
{

[α, α+ δ) if α = ηv for some v ∈ F ,
(α− δ, α + δ) else.

Proof. Let α ∈ (0, 1] \ Γ, i.e., Tm
α (α− 1) < 0 and Tm

α (α) < 0 for all m ≥ 1.

If Tm
α (α− 1) > α− 1 and Tm

α (α) > α− 1 for all m ≥ 1, then due to the continuity of
x 7→ Mw ·x for general w, we clearly have for each n ≥ 1, some δ > 0 such that bα

′

[1,n) = bα[1,n)
and bα

′

[1,n) = bα[1,n) for all α
′ ∈ (α− δ, α + δ).

If Tm
α (α) = α− 1 for some m ≥ 1, then Mbα

[1,m]
· α′ < α′ − 1 for all α′ > α. Let m be

minimal with this property, then Tm
α′ (α′) ≥ 0 for all α′ > α sufficiently close to α, which

implies that α ∈ Z.

Finally, suppose that Tm
α (α) > α− 1 for all m ≥ 1, and Tm

α (α− 1) = α− 1 for some
m ≥ 1. Similarly to the preceding paragraph, this implies that α = ηv for some v ∈ F .
Now we have, for each n ≥ 1, some δ > 0 such that bα

′

[1,n) = bα[1,n) and bα
′

[1,n) = bα[1,n) for all

α′ ∈ [α, α+ δ). �

Proof of Theorem 3. By the remarks of the beginning of the section, we only have to
consider the continuity of µ(Ωα) at α ∈ (0, 1] \ (Γ ∪ Z). Moreover, we only have to show
right continuity if α = ηv for some v ∈ F . By the monotonicity on every interval Γv, it
suffices to compare µ(Ωα) with µ(Ωα′), α′ ∈ (0, 1] \ Γ.

If {w ∈ L ′
α : |w| < n} = {w ∈ L ′

α′ : |w| < n}, n ≥ 2, then dα′(α′) = dα(α), and
Corollary 7.14 yields that

∣∣µ(Ωα)− µ(Ωα′)
∣∣ ≤

∑

w∈L ′
α:

|w|<n

∣∣∣µ
(
Jα
w ×Nw ·

[
0, 1

dα(α)+1

])
− µ

(
Jα′

w ×Nw ·
[
0, 1

dα(α)+1

])∣∣∣

+
( dα(α)
dα(α)+α

)n
log
(
1 + 1

α

)
+
( dα(α)
dα(α)+α′

)n
log
(
1 + 1

α′

)
.

Fix ǫ > 0, choose n ≥ 2 and an interval around α such that
( dα(α)
dα(α)+α′

)n
log
(
1 + 1

α′

)
< ǫ/3

for every α′ in this interval. Lemma 9.4 gives some δ > 0 such that {w ∈ L ′
α : |w| < n} =

{w ∈ L ′
α′ : |w| < n} for all α′ ∈ (α − δ, α + δ) and α′ ∈ [α, α + δ) respectively. Since

{w ∈ L ′
α : |w| < n} is a finite set, and Jα

w = Mw ·∆α(w), J
α′

w = Mw ·∆α′(w) by Lemma 7.3,
∑

w∈L ′
α:

|w|<n

∣∣∣µ
(
Jα
w ×Nw ·

[
0, 1

dα(α)+1

])
− µ

(
Jα′

w ×Nw ·
[
0, 1

dα(α)+1

])∣∣∣ < ǫ

3

for α′ sufficiently close to α. This shows the continuity of α 7→ µ(Ωα). �
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10. Constancy of entropy on [g2, g]

Lemma 6.15, Theorems 3 and 5 show that the entropy is constant on intervals covering
almost all points in [g2, g]. To show that the entropy is constant on the whole interval
[g2, g], we must exclude that the function α 7→ h(Tα) forms a “devil’s staircase”. To this
end, we improve some of the previous results.

For simplicity, we assume in the following proposition that α ∈ (0, 1] \ Γ although the
statement can be proved for general α ∈ (0, 1]. Note that this description, together with
Lemma 7.11, is useful for drawing figures approximating the natural extension domains.

Proposition 10.1. For any α ∈ (0, 1] \ Γ, we have
⋃

w∈L ′
α:

bα1 w∈L ′
α

Jα
bα1w

×Nw ·
[
0, 1

dα(α)

]
⊂ Ωα .

Proof. Let α ∈ (0, 1] \ Γ, and a[1,∞) be the characteristic sequence of α − 1. We first

prove that Jα
bα1

×
[
0, 1

dα(α)

]
⊂ Ωα. We already know both that Iα ×

[
0, 1

dα(α)+1

]
⊂ Ωα and[

0, 1
dα(α)

]
⊂ Ψ′

α, with Ψ′
α being the closure of

⋃
w′∈L ′

α
Nw′ ·

[
0, 1

dα(α)+1

]
. It thus suffices to

show that Jα
bα1

⊆ Jα
w′ for all w′ ∈ L ′

α with Nw′ ·
[
0, 1

dα(α)+1

]
∩
(

1
dα(α)+1

, 1
dα(α)

)
6= ∅, i.e., for

all w′ ending with (−1 : dα(α) + 1) or bα1 . If w′ ends with bα1 , then Jα
w′ = Jα

bα1
; thus we

need consider only w′ ending with (−1 : dα(α) + 1). Furthermore, we need only consider
w′ ∈ L ′

α \ Lα, since Jα
w′ = [α − 1, α) otherwise. This means that w′ ∈ Lα b

α
[1,j] for some

j ≥ 1 or w′ ∈ L ′
α b

α
[1,j] for some j ≥ 2. Let first w′ ∈ Lα b

α
[1,j]. Since α ∈ (0, 1] \ Γ, we have

dα(α) ≥ 2, thus w′ does not end with (−1 : 2). Therefore, the characteristic sequence of
bα[j+1,∞) is a[2n+1,∞) for some n ≥ 1, and that of bα[j,∞) is 1 a[2n,∞), with a2n = dα(α)−1 = a1.

Since a[2n,∞) ≤alt a[1,∞), we obtain that a[2n+1,∞) ≥alt a[2,∞), thus T
j
α(α − 1) ≤ Tα(α), i.e.,

Jα
bα1

⊆ Jα
w′. If w′ ∈ Lα b

α
[1,j], then the characteristic sequences of bα[j,∞) and bα[j+1,∞) are

1 a[2n−1,∞) and a[2n,∞) respectively for some n ≥ 2, with a2n−1 = a1, thus we obtain that
T j
α(α) ≤ Tα(α). Therefore, Jα

bα1
⊆ Jα

w′ holds for all w′ ∈ L ′
α ending with (−1 : dα(α) + 1)

or bα1 , hence Jα
bα1

×
[
0, 1

dα(α)

]
⊂ Ωα.

From Jα
bα1
×
[
0, 1

dα(α)

]
⊂ Ωα, we infer that J

α
bα1w

×Nw·
[
0, 1

dα(α)

]
⊂ T |w|

α

(
Jα
bα1
×
[
0, 1

dα(α)

])
⊂ Ωα

for any w ∈ L ′
α with bα1w ∈ L ′

α. �

Lemma 10.2. For any α ∈ [g2,
√
2− 1], we have

Ωα ⊂ Iα ×
[
0, g2

]
∪
[
Tα(α− 1), α

]
×
([
0, 1

3−g

]
∪
[
1
2
, g
])

.

Proof. Since bg
2

[1,∞) = (−1 : 2) (−1 : 3)ω, no word in (−1 : 2) (−1 : 3)∗ (−1 : 2) occurs in

bα[1,∞) for α ≥ g2. Hence the maximal height of a fiber in Ωα is limn→∞N(−1:3)n (−1:2) ·0 = g,

i.e., Ωα ⊆ Iα × [0, g]. Further, since (+1 : 2) /∈ L ′
α and N(−1:3) · Ψ′

α ⊆ N(−1:3) · [0, g], we
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have that
(

1
3−g

, 1
2

)
∩ Ψ′

α = ∅. For x < Tα(α − 1) = M(−1:2) · (α − 1) and n ≥ 0, we have

M(−1:2) (−1:3)n · x < M(−1:2) (−1:3)n (−1:2) · (α − 1) < α − 1, thus max{y | (x, y) ∈ Ωα} =
limn→∞N(−1:3)n · 0 = g2 for x ∈ [α− 1, Tα(α− 1)). �

With a little more effort, it can be shown that Iα×
[
0, 1

3+g

]
∪
[
Tα(α), α

]
×
[
0, g2

]
⊂ Ωα for

any α ∈ [g2,
√
2− 1]. However, the statement of Lemma 10.2 is sufficient for the following.

Instead of the sets Ξα,n defined in (7.8), we study now

Ξ′
α,n := Ξα,n \

⋃

w∈L ′
α:

bα1w∈L ′
α, |w|<n

Jα
bα1w

×Nw ·
[
1
4
, 1
3

]
(n ≥ 0).

Lemma 10.3 (cf. Lemma 7.12). Let α ∈ [g2,
√
2− 1] \ Γ. Then we have, for any n ≥ 0,

µ(Ξ′
α,n) ≤ µ(Ωα)

(
1√
5

)n
.

Proof. The proof runs along the same lines as that of Lemma 7.12. For any n ≥ 0, we have

Ξ′
α,n\Ξ′

α,n+1 =

(
(
Ξα,n\Ξα,n+1

)
∪
(
Ξα,n+1 ∩

⋃

w∈L ′
α:

bα1 w∈L ′
α, |w|=n

Jα
bα1w

×Nw ·
[
1
4
, 1
3

])
)
\
⋃

w∈L ′
α:

bα1w∈L ′
α, |w|<n

Jα
bα1w

×Nw ·
[
1
4
, 1
3

]
.

We show first that the intersection with Ξα,n+1 can be omitted in this equation. Let w ∈ L ′
α

with bα1w ∈ L ′
α, |w| = n. Proposition 10.1 shows that Jα

bα1w
× Nw ·

[
1
4
, 1
3

]
⊂ Ωα. The set

Nw ·
(
1
4
, 1
3

]
is disjoint from Nw′ ·

[
0, 1

4

]
for every w′ ∈ L ′

α with |w| = n. If, for w′ ∈ L ′
α

with |w′| < n, Nw′ ·
[
0, 1

4

]
overlaps with Nw ·

(
1
4
, 1
3

]
, then it also overlaps with Nw ·

(
0, 1

4
),

contradicting Theorem 7. Therefore, we have Jα
bα1w

× Nw ·
[
1
4
, 1
3

]
⊂ Ξα,n+1 (up to a set of

measure zero) for every w ∈ L ′
α with bα1w ∈ L ′

α, |w| = n, thus

Ξ′
α,n \ Ξ′

α,n+1 =

(
(
Ξα,n \ Ξα,n+1

)
∪
⋃

w∈L ′
α:

bα1w∈L ′
α, |w|=n

Jα
bα1 w

×Nw ·
[
1
4
, 1
3

]
)

\
⋃

w∈L ′
α:

bα1w∈L ′
α, |w|<n

Jα
bα1w

×Nw ·
[
1
4
, 1
3

]
.

Let Xα,n :=
⋃

w∈L ′
α: |w|=n∆α(w) as in the proof of Lemma 7.12, and set

X ′
α,n := Xα,n \

⋃

w∈L ′
α:

bα1w∈L ′
α, |w|<n

T |w|+1−n
α

(
∆
(
bα1w

))
.

By arguments in the proofs of Lemmas 7.11 and 7.12 and since Tα

(
∆
(
bα1w

))
= Jα

bα1
∩∆α(w),

we obtain that

X ′
α,n ×

[
0, 1

4

]
∪
(
X ′

α,n ∩ Jα
bα1

)
×
[
1
4
, 1
3

]
⊂ T −n

α

(
Ξ′
α,n \ Ξ′

α,n+1

)
.
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Since T −n
α (Ξ′

α,n) ⊂ Xα,n × [0, 1] and

T n
α

(
T |w|+1−n
α (∆(bα1w))× [0, 1] ∩ Ωα

)
⊂ Jα

bα1 w
×Nbα1w

· [0, 1] = Jα
bα1w

×Nw ·
[
1
4
, 1
3

]

for any w ∈ L ′
α with |w| < n, we have

T −n
α (Ξ′

α,n) ⊂ X ′
α,n × [0, 1] ∩ Ωα .

With Lemma 10.2 and Tα(α) ≤ −g2 ≤ Tα(α− 1), i.e., Jα
bα1

⊇ Jα
bα1
, we obtain that

µ(Ξ′
α,n \ Ξ′

α,n+1)

µ(Ξ′
α,n)

≥
µ
((
X ′

α,n \ Jα
bα1

)
×
[
0, 1

4

])
+ µ
((
X ′

α,n ∩ Jα
bα1

)
×
[
0, 1

3

])

µ
((
X ′

α,n \ Jα
bα1

)
×
[
0, g2

])
+ µ
((
X ′

α,n ∩ Jα
bα1

)
×
([
0, 1

3−g

]
∪
[
1
2
, g
])) .

Using that p+p′

q+q′
≥ min

{
p
q
, p′

q′

}
for all p, p′, q, q′ > 0, the estimates

µ
((
X ′

α,n \ Jα
bα1

)
×
[
0, 1

4

])

µ
((
X ′

α,n \ Jα
bα1

)
×
[
0, g2

]) ≥ min
x∈Iα

∫ 1/4

0
1

(1+xy)2
dy

∫ g2

0
1

(1+xy)2
dy

= min
x∈Iα

x+ 2 + g

x+ 4
≥ 2

4− g
,

µ
((
X ′

α,n ∩ Jα
bα1

)
×
[
0, 1

3

])

µ
((
X ′

α,n ∩ Jα
bα1

)
×
([
0, 1

3−g

]
∪
[
1
2
, g
])) ≥ min

x∈[Tα(α−1),α]

1
x+3

1
x+1+g

− 1
x+2

+ 1
x+3−g

≥ 2g

2g + 1
,

yield that

µ(Ξ′
α,n+1)

µ(Ξ′
α,n)

= 1− µ(Ξ′
α,n \ Ξ′

α,n+1)

µ(Ξ′
α,n)

≤ 1−min
{ 2

4− g
,

2g

2g + 1

}
=

1

2g + 1
=

1√
5
.

Since Ξ′
α,0 = Ωα, this proves the lemma. �

Lemma 10.4. There exist constants C1, C2 > 0 such that

µ
((
Iα ∪ Iα′

)
×
(
Ψα \Ψα′

))
≤ C1

(
1√
5

)n
, µ

((
Iα ∪ Iα′

)
×
(
Ψ′

α \Ψ′
α′

))
≤ C2

(
1√
5

)n
,

for all α, α′ ∈ [g2,
√
2− 1] \ Γ, n ≥ 1, such that bα

′

[1,n) = bα[1,n).

Proof. For any α, α′ ∈ [g2,
√
2− 1] \Γ, n ≥ 1, with bα

′

[1,n) = bα[1,n), we also have bα
′

[1,n) = bα[1,n).
Therefore, Lemma 7.11 and Proposition 10.1 yield that

Ψ′
α \Ψ′

α′ ⊂ Y ′
α,n :=

⋃

w∈L ′
α:

|w|≥n

Nw ·
[
0, 1

4

]
\

⋃

w∈L ′
α:

bα1w∈L ′
α, |w|<n

Nw ·
[
1
4
, 1
3

]
.

Since [0, α]×Y ′
α,n ⊂ Ξ′

α,n and µ(Ξ′
α,n) ≤ µ(Ωα)

(
1√
5

)n
by Lemma 10.3, there exists a constant

C2 > 0 such that µ
((
Iα ∪ Iα′

)
×
(
Ψ′

α \Ψ′
α′

))
≤ C2

(
1√
5

)n
, cf. the proof of Lemma 7.12. As

in (8.1), we have µ
((
Iα ∪ Iα′

)
×
(
Ψα \Ψα′

))
= µ

(([
α, α + 1] ∪ [α′, α′ + 1]

)
×
(
Ψ′

α \ Ψ′
α′

))
,

which yields the constant C1. �
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In view of the equation Ωα =
⋃

j≥0 J
α
bα
[1,j]

×Nbα
[1,j]

·Ψα ∪ ⋃j≥1 J
α
bα
[1,j]

×Nbα
[1,j]

·Ψ′
α, which

holds for α ∈ (0, 1] \ Γ by Theorem 7, we consider, for any n ≥ 1,

Υα,n :=
⋃

j≥n

Jα
bα
[1,j]

×Nbα
[1,j]

·Ψα ∪ Jα
bα
[1,j]

×Nbα
[1,j]

·Ψ′
α .

Lemma 10.5. There exists a constant C3 > 0 such that

µ(Υα,n) ≤ C3 (3g
5)n

for all α ∈ [g2,
√
2− 1] \ Γ, n ≥ 1.

Proof. For any n ≥ 0, we have

µ
(
Jα
bα
[1,n+1]

×Nbα
[1,n+1]

·Ψα

)

µ
(
Jα
bα
[1,n]

×Nbα
[1,n]

·Ψα

) =
µ
((
Jα
bα
[1,n]

∩∆α

(
bαn+1

))
×Nbα

[1,n]
·Ψα

)

µ
(
Jα
bα
[1,n]

×Nbα
[1,n]

·Ψα

)

by (2.3). If bαn+1 = (−1 : 2), i.e., T n
α (α− 1) ∈

[
α− 1, −1

2+α

)
, then

µ
((
Jα
bα
[1,n]

∩∆α

(
bαn+1

))
×Nbα

[1,n]
·Ψα

)

µ
(
Jα
bα
[1,n]

×Nbα
[1,n]

·Ψα

) ≤ min
y∈[0,g2]

∫ −1/(2+α)

Tn
α (α−1)

1
(1+xy)2 dx∫ α

Tn
α (α−1)

1
(1+xy)2 dx

= min
y∈[0,g2]

1 + (2 + α) T n
α (α− 1)

T n
α (α− 1)− α

1 + αy

2 + α− y
=

1 + (2 + α)T n
α (α− 1)

T n
α (α− 1)− α

1 + αg2

1 + g + α

≤ (1− α− α2)(1 + αg2)

1 + g + α
≤ 3g5.

If bαn+1 = (−1 : 3), i.e., T n
α (α− 1) ∈

[ −1
2+α

, −1
3+α

)
, then

µ
((
Jα
bα
[1,n]

∩∆α

(
bαn+1

))
×Nbα

[1,n]
·Ψα

)

µ
(
Jα
bα
[1,n]

×Nbα
[1,n]

·Ψα

) ≤ min
y∈[0,g]

1 + αy

(α + 1)2 (3 + α− y)
≤ g

(1 + g2)3
.

If bαn+1 = (−1 : 4), i.e., T n
α (α− 1) ∈

[ −1
3+α

, −1
4+α

)
, then

µ
((
Jα
bα
[1,n]

∩∆α

(
bαn+1

))
×Nbα

[1,n]
·Ψα

)

µ
(
Jα
bα
[1,n]

×Nbα
[1,n]

·Ψα

) ≤ min
y∈[0,g]

1 + αy

(α2 + 3α+ 1) (4 + α− y)
≤ 1

3(7g − 2)
.

We obtain that

µ
(
Jα
bα
[1,n+1]

×Nbα
[1,n+1]

·Ψα

)

µ
(
Jα
bα
[1,n]

×Nbα
[1,n]

·Ψα

) ≤ max
{
3g5,

g

(1 + g2)3
,

1

3(7g − 2)

}
= 3g5 ≈ 0.2705 .

In the same way, we get that

µ
(
Jα
bα
[1,n+1]

×Nbα
[1,n+1]

·Ψ′
α

)
≤ 3g5 µ

(
Jα
bα
[1,n]

×Nbα
[1,n]

·Ψ′
α

)
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for all n ≥ 1. Since the elements of Cα are disjoint (Theorem 7) and the closure in the
definition of Υα,n does not increase the measure by Lemma 7.12, this implies that

µ(Υα,n) =

∞∑

j=n

(
µ
(
Jα
bα
[1,j]

×Nbα
[1,j]

·Ψα

)
+ µ
(
Jα
bα
[1,j]

×Nbα
[1,j]

·Ψ′
α

))

≤
∞∑

j=n

(3g5)j
(
µ
(
Iα ×Ψα

)
+ 1

3g5
µ
(
Jα
bα1

×Nbα1
·Ψ′

α

))
≤ C3 (3g

5)n

for some constant C3 > 0. �

Lemma 10.6. There exists a constant C4 > 0 such that

∣∣µ(Ωα′)− µ(Ωα)
∣∣ ≤ C4 n

(
1√
5

)n
.

for all α, α′ ∈ [g2,
√
2− 1] \ Γ, n ≥ 1, such that bα

′

[1,n) = bα[1,n).

Proof. For any α, α′ ∈ [g2,
√
2− 1] \ Γ, n ≥ 1, such that bα

′

[1,n) = bα[1,n), let

(10.1) Ωα,α′,n :=
⋃

0≤j<n

Jα′

bα
[1,j]

×Nbα
[1,j]

·Ψα ∪
⋃

1≤j<n

Jα′

bα
[1,j]

×Nbα
[1,j]

·Ψ′
α .

Since bα
′

[1,n) = bα[1,n) implies bα
′

[1,n) = bα[1,n), Lemma 10.5 yields that

0 ≤ µ(Ωα)− µ(Ωα,α,n) = µ(Υα,n) ≤ C3 (3g
5)n .

For α < α′, we obtain similarly to the proof of Theorem 6 that

µ(Ωα,α′,n)− µ(Ωα,α,n)

=
n−1∑

j=0

(
µ
(
Mbα

[1,j]
· [α− 1, α′ − 1]×Nbα

[1,j]
·Ψα

)
− µ

(
[α, α′]×Nbα

[1,j]
·Ψα

))

−
n−1∑

j=1

(
µ
(
Mbα

[1,j]
· [α, α′]×Nbα

[1,j]
·Ψ′

α

)
+ µ

(
[α, α′]×Nbα

[1,j]
·Ψ′

α

))

= µ
(
[α, α′]×Ψ′

α

)
−

n−1∑

j=0

µ
(
[α, α′]×Nbα

[1,j]
·Ψα

)
−

n−1∑

j=1

µ
(
[α, α′]×Nbα

[1,j]
·Ψ′

α

)
.

Since this quantity is equal to µ
(
[α, α′]× Yα,n

)
, where Yα,n is the projection of Υα,n to the

y-axis, there exists a constant C5 > 0 such that

0 ≤ µ(Ωα,α′,n)− µ(Ωα,α,n) ≤ C5 (3g
5)n .
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It remains to compare µ(Ωα,α′,n) with µ(Ωα′,α′,n). We have

µ(Ωα′,α′,n \ Ωα,α′,n) ≤
n−1∑

j=0

µ
(
Jα′

bα
[1,j]

×Nbα
[1,j]

·
(
Ψα′ \Ψα

))
+

n−1∑

j=1

µ
(
Jα′

bα
[1,j]

×Nbα
[1,j]

·
(
Ψ′

α′ \Ψ′
α

))

≤
(
C1 n+ C2 (n− 1)

) (
1√
5

)n

by Lemma 10.4, thus
∣∣µ(Ωα′,α′,n) − µ(Ωα,α′,n)

∣∣ ≤
(
C1 n + C2 (n − 1)

) (
1√
5

)n
. Putting all

estimates together yields the lemma. �

Lemma 10.7. For any n ≥ 1, we have

#
{
bα[1,n] | α ∈ [g2, g) \ Γ

}
≤ 2n .

Proof. It follows from the proof of Lemma 6.15 that
⋃

n≥1

{
bα[1,n] | α ∈ [g2, g) \ Γ

}
⊂
(
(−1 : 2)(−1 : 3)∗(−1 : 4)(−1 : 3)∗

)∗
.

For every word w in this set, it is not possible that both w (−1 : 2) and w (−1 : 4) are in
the set, thus #

{
bα[1,n] | α ∈ [g2, g) \ Γ

}
≤ 2#

{
bα[1,n) | α ∈ [g2, g) \ Γ

}
. �

Finally, combining Lemmas 10.6 and 10.7 gives the main result of this section.

Proof of Theorem 4. By Theorem 6 and Lemma 6.15, µ(Ωα) is constant on every inter-
val Γv ⊂ [g2, g], v ∈ F . Therefore, we only have to consider the difference between µ(Ωα)
and µ(Ω′

α) for α, α
′ ∈ [g2,

√
2− 1] \ Γ.

Let α, α′ ∈ [g2,
√
2 − 1] \ Γ with α < α′, and fix some n ≥ 1. For J ≥ 0, define two

sequences (αj)0≤j≤J , (α
′
j)0≤j≤J in the following manner. Set α0 := α and, recursively,

α′
j := max

{
α′′ ∈ [αj, α

′] \ Γ | bα′′

[1,n) = b
αj

[1,n)

}
, αj+1 := min

(
(α′

j, α
′] \ Γ

)
if α′

j 6= α′. The

maximum exists since all sufficiently large α′′ with bα
′′

[1,n) = b
αj

[1,n) lie in Γ, thus α′
j = ζv for

some v ∈ F or α′
j = α′, and αj+1 = ηv if α

′
j 6= α′. Since the αj are increasing, the b

αj

[1,n) are

different for distinct j, hence there exists, by Lemma 10.7, some J < 2n such that α′
J = α′.

By Theorem 6 and Lemma 6.15, µ(Ωα′
j
) is equal to µ(Ωαj+1

) for 0 ≤ j < J , thus

∣∣µ(Ωα′)− µ(Ωα)
∣∣ ≤

J∑

j=0

∣∣µ(Ωα′
j
)− µ(Ωαj

)
∣∣ ≤ 2nC4 n

(
1√
5

)n

by Lemma 10.6. Since this inequality holds for every n ≥ 1, and
√
5 > 2, we obtain that

µ(Ωα′) = µ(Ωα). �

By the discussion at the end of Section 6, the entropy decreases to the right of [g2, g] and
behaves chaotically immediately to the left of [g2, g]. However, the intervals to the left of
[g2, g] where the entropy decreases seem to be much smaller than those where the entropy
increases. Therefore, we conjecture that h(Tα) < h(Tg2) for all α ∈ (0, g2). See also the
plots of the function α 7→ h(Tα) in [LM08].
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11. Limit points

Recall that τv denotes the limit point of the monotonically decreasing sequence (ζΘj(v))j≥0.

Proof of Theorem 8. We argue using the transcendence results of Adamczewski and

Bugeaud [AB05]. Let v ∈ F , and a
(j)
[1,2ℓj+1] be the characteristic sequence of Θj(v), j ≥ 0.

By the proof of Lemma 9.1, a
(j+1)
[1,2ℓj+1+1] starts with a

(j)
[1,2ℓj+1] a

(j)
[1,2ℓj)

(if ℓj ≥ 1).

This implies that limj→∞ ℓj = ∞. Let a′[1,∞) be the infinite sequence having all sequences

a
(j)
[1,2ℓj+1] as prefix (with the exception of 1 if v is the empty word). Then a′[1,∞) is the

characteristic sequence of bτv[1,∞), thus τv = [0; a′1, a
′
2, . . . ] by Proposition 4.1.

The sequence a′[1,∞) is not eventually periodic because it contains, for every j ≥ 0,

a
(j)
[1,2ℓj+1] and a

(j)
[1,2ℓj ]

(a
(j)
2ℓj+1 − 1) or a

(j)
[1,2ℓj)

(a
(j)
2ℓj

+ 1) as factors. If a′[1,∞) were eventually

periodic, then every sufficiently long factor would determine uniquely the following element
of the sequence. Therefore, τv is not quadratic. (This is also mentioned in [CMPT10].)
Since a′[1,∞) starts with arbitary long “almost squares” and a′j ≤ a′1 for all j ≥ 2, Theorem 1

of [AB05] applies, hence τv is transcendental. �

Remark 11.1. From the above, the largest element of (0, 1] \ (Γ ∪ Z) is

τv = [0; 2, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, . . . ]

= 0.3867499707143007 · · · ,
with v the empty word. This partial quotients sequence is the fixed point of the morphism
defined by 2 7→ 211, 1 7→ 2. It is known to be the smallest aperiodic sequence in {1, 2}ω
with the property that all its proper suffixes are smaller than itself with respect to the
alternate order, and appears therefore in several other contexts; see [Dub07, LS]. Note
that all elements of Z = {ζv | v ∈ F} have (purely) periodic RCF expansion.

Proposition 11.2. The point g2 is a two sided limit of the set {τv | v ∈ F}.

Proof. Let v = (−1 : 2) (−1 : 3)ℓ, then its characteristic sequence is 2 12ℓ, thus v belongs
to F \ Θ(F ). For increasing ℓ, ζv tends to g2 from above, and the same clearly holds
for τv. Similarly, the τv corresponding to v = (−1 : 2) (−1 : 3)ℓ (−1 : 2) (see Example 6.13)
tend to g2 from below. �

12. Open questions

As usual, we find that we now have more questions than when we began our project.
We list a few, in the form of problems.

• Prove that h(Tα) is maximal on [g2, g].
• Determine explicit values for h(Tα) when α < g2 and for the invariant density να
when α <

√
2− 1.

• Prove that να is always of the form A/(x+B) as [CMPT10] conjecture.



42 COR KRAAIKAMP, THOMAS A. SCHMIDT, AND WOLFGANG STEINER

• (From H. Nakada) Determine all α such that h(Tα) = h(T1).
• In general, determine the sets of α with equal entropy.
• Determine the sets of all α giving isomorphic dynamical systems.
• Generalize our approach to use with other continued fractions, such as the α-Rosen
fractions considered in [DKS09].

We note that Arnoux and the second named author have work in progress that responds
to a question from [LM08] that we had included in an earlier version of our open problems
list: Each Tα arises as a cross-section of the geodesic flow on the unit tangent bundle of
the modular surface. This result is shown to be equivalent to Theorem 1.
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