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An extension of the Colombo phase transition model is proposed. The congestion phase is described by a two-dimensional zone defined around an equilibrium flux known as the classical fundamental diagram. General criteria to build such a set-valued fundamental diagram are enumerated, and instantiated on several equilibrium fluxes with different concavity properties. The solution of the Riemann problem in the presence of phase transitions is obtained through the construction of a Riemann solver, which enables the definition of the solution of the Cauchy problem using wavefront tracking. The free-flow phase is described using a Newell-Daganzo fundamental diagram, which allows for a more tractable definition of phase transition compared to the original Colombo phase transition model. The accuracy of the numerical solution obtained by a modified Godunov scheme is assessed on benchmark scenarios for the different flux functions constructed.

1. Introduction. First order scalar models of traffic. Hydrodynamic models of traffic go back to the 1950's with the seminal work of Lighthill, Whitham and Richards [START_REF] Lighthill | On kinematic waves ii a theory of traffic flow on long crowded roads[END_REF][START_REF] Richards | Shock waves on the highway[END_REF], who built the first model of the evolution of vehicle density on the highway using a first order scalar hyperbolic partial differential equation (PDE) referred to as the LWR PDE. Their model relies on the knowledge of an empirically measured flux function, also called the fundamental diagram in transportation engineering, for which measurements go back to 1935 with the pioneering work of Greenshields [START_REF] Greenshields | A study of traffic capacity[END_REF]. Numerous other flux functions have since been proposed in the hope of capturing effects of congestion more accurately, in particular: Greenberg [START_REF] Greenberg | An analysis of traffic flow[END_REF], Underwood [START_REF] Underwood | Speed, volume, and density relationships: Quality and theory of traffic flow[END_REF], Newell-Daganzo [START_REF] Daganzo | The cell transmission model: a dynamic representation of highway traffic consistent with the hydrodynamic theory[END_REF][START_REF] Newell | A simplified theory of kinematic waves in highway traffic ii: Queueing at freeway bottlenecks[END_REF], and Papageorgiou [START_REF] Wang | Real-time freeway traffic state estimation based on extended kalman filter: a general approach[END_REF]. The existence and uniqueness of an entropy solution to the Cauchy problem [START_REF] Serre | Systems of conservation laws[END_REF] for the class of scalar conservation laws to which the LWR PDE belong go back to the work of Oleinik [START_REF] Oleinik | Discontinuous solutions of non-linear differential equations[END_REF] and Kruzhkov [START_REF] Kruzhkov | First order quasilinear equations in several space variables[END_REF], (see also the seminal article of Glimm [START_REF] Glimm | Solutions in the large for nonlinear hyperbolic systems of equations[END_REF]), which was extended later to the initial-boundary value problem [START_REF] Bardos | First order quasilinear equations with boundary conditions[END_REF], and specifically instantiated for the scalar case with a concave flux function in [START_REF] Floch | Explicit formula for scalar non-linear conservation laws with boundary conditions[END_REF], in particular for traffic in [START_REF] Strub | Weak formulation of boundary conditions for scalar conservation laws: an application to highway traffic modelling[END_REF]. Numerical solutions of the LWR PDE go back to the seminal Godunov scheme [START_REF] Godunov | A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics[END_REF][START_REF] Leveque | Finite volume methods for hyperbolic problems[END_REF], which was shown to converge to the entropy solution of the first order hyperbolic PDE (in particular the LWR PDE). In the transportation engineering community, the Godunov scheme is known under the name of Cell Transmission Model (CTM), which was brought to this field by Daganzo in 1995 [START_REF] Daganzo | The cell transmission model: a dynamic representation of highway traffic consistent with the hydrodynamic theory[END_REF][START_REF]The cell transmission model, part ii: Network traffic[END_REF], and is one of the most used discrete traffic flow models in the literature today [START_REF] Cassidy | Methodology for assessing dynamics of freeway traffic flow[END_REF][START_REF] Daganzo | Possible explanations of phase transitions in highway traffic[END_REF][START_REF] Jia | The pems algorithms for accurate, real-time estimates of g-factors and speeds from single-loop detectors[END_REF][START_REF] Lin | Validating the Basic Cell Transmission Model on a Single Freeway Link[END_REF][START_REF] Munoz | Traffic density estimation with the cell transmission model[END_REF][START_REF] Papageorgiou | Some remarks on macroscopic traffic flow modelling[END_REF][START_REF]Congestion, ramp metering and tolls[END_REF].

Set-valued fundamental diagrams. The assumption of a Greenshields fundamental diagram or a triangular fundamental diagram, which significantly simplifies the analysis of the model algebraically, led to the aforementioned theoretical developments. Yet, experimental data clearly indicates that while the free flow part of a fundamental diagram can be approximated fairly accurately by a straight line, the congested regime is set valued, and can hardly be characterized by a single curve [START_REF] Varaiya | Reducing highway congestion: an empirical approach[END_REF]. An approach to model the set-valuedness of the congested part of the fundamental diagram consists in using a second equation coupled with the mass conservation equation (i.e. the LWR PDE model). Such models go back to Payne [START_REF] Payne | Models of freeway traffic and control[END_REF] and Whitham [START_REF] Whitham | Linear and Nonlinear Waves[END_REF] and generated significant research efforts, but led to models with inherent weaknesses pointed out by del Castillo [START_REF] Del Castillo | The reaction time of drivers and the stability of traffic flow[END_REF] and Daganzo [START_REF]Requiem for second-order fluid approximations of traffic flow[END_REF]. These weaknesses were ultimately addressed in several responses [START_REF] Aw | Resurrection of "second order" models of traffic flow[END_REF][START_REF] Papageorgiou | Some remarks on macroscopic traffic flow modelling[END_REF][START_REF] Zhang | A theory of nonequilibrium traffic flow[END_REF], leading to sustained research in this field.

Motivation for a new model. Despite the existing research, modeling issues remain in most 2 × 2 models of traffic available today. For instance, the Aw-Rascle model [START_REF] Aw | Resurrection of "second order" models of traffic flow[END_REF] raises issues about the validity of the physics of the highway [START_REF]On fluido-dynamic models for urban traffic[END_REF], such as the existence of a zero velocity achieved below jam density. In agreement with the remarks from Kerner [START_REF] Kerner | Experimental features of self-organization in traffic flow[END_REF][START_REF]Phase transitions in traffic flow[END_REF] affirming that traffic flow presents three different behaviors, free-flow, wide moving jams, and synchronized flow, Colombo proposed a 2 × 2 phase transition model [START_REF] Colombo | On a 2 × 2 hyperbolic traffic flow model[END_REF][START_REF]Hyperbolic phase transitions in traffic flow[END_REF] which considers congestion and free-flow in traffic as two different phases, governed by distinct evolutionary laws. The well-posedness of this model was proved in [START_REF] Colombo | Global well-posedness of traffic flow models with phase transitions[END_REF] using wavefront tracking introduced by Bressan [START_REF] Bressan | Hyperbolic systems of conservation laws: the one-dimensional Cauchy problem[END_REF]. In the phase transition model, the evolution of the parameters is governed by two distinct dynamics; in free-flow, the Colombo phase transition model is a classical first order model (LWR PDE), whereas in congestion a similar equation governs the evolution of an additional state variable, the linearized momentum q. The motivation for an extension of the 2 × 2 phase transition model comes from the following: (i) Phases gap. The phase transition model introduced by Colombo in [START_REF] Colombo | On a 2 × 2 hyperbolic traffic flow model[END_REF] uses a Greenshields flux function to describe congestion, which despite its simple analytical expression yields a fundamental diagram which is not connected and thus a complex definition of the solution of the Riemann problem between two different phases. We solve this problem by introducing a Newell-Daganzo flux function for free-flow, which creates a non-empty intersection between the congested phase and the free-flow phase, called metastable phase. It alleviates the inconvenience of having to use a shock-like phase transition in many cases of the Riemann problem with two different phases.

(ii) Definition of a general class of set-valued fundamental diagrams. The work achieved in [START_REF] Colombo | On a 2 × 2 hyperbolic traffic flow model[END_REF] enables the definition of a set-valued fundamental diagram for the expression of the velocity function introduced. However, experimental data shows that the fundamental diagram depends on space and time, and the congested domain changes accordingly. In this article we provide a general method to build an arbitrary set-valued fundamental diagram which in a special case corresponds to the fundamental diagram introduced in [START_REF] Colombo | On a 2 × 2 hyperbolic traffic flow model[END_REF]. This enables one to define a custom-made set-valued fundamental diagram.

Organization of the article. The rest of the article is organized as follows. Section 2 presents the fundamental features of the Colombo phase transition model [START_REF]Hyperbolic phase transitions in traffic flow[END_REF], which serves as the basis for the present work. In § 3, we introduce the modifications to the Colombo phase transition model, and introduce the notion of equilibrium which provides the basis for the construction of a class of 2 × 2 traffic models. We also assess general conditions which enable us to extend the results obtained for the original Colombo phase transition model to these new models. Finally, this section presents a modified Godunov scheme which can be used to solve the equations numerically. The two following sections instantiate the constructed class of models for two specific flux functions, which are the Newell-Daganzo (affine) flux function ( § 4) and the Greenshields (parabolic concave) flux function ( § 5). Each of these sections includes the discussion of the choice of parameters needed for each of the models, the solution of the Riemann problem, and a validation of the numerical results using a benchmark test for which wavefront tracking methods enable an almost exact solution used for comparison with the numerical solution. Finally, § 6 presents some concluding remarks.

2. The Colombo phase transition model. The original Colombo phase transition model [START_REF] Colombo | On a 2 × 2 hyperbolic traffic flow model[END_REF][START_REF]Hyperbolic phase transitions in traffic flow[END_REF] is a set of two coupled PDEs respectively valid in a free-flow regime and congested regime:

     ∂ t ρ + ∂ x (ρ v f (ρ)) = 0 in free-flow (Ω f ) ∂ t ρ + ∂ x (ρ v c (ρ, q)) = 0 ∂ t q + ∂ x ((q -q * ) v c (ρ, q)) = 0 in congestion (Ω c ) (2.1)
where the states variable ρ and q note respectively the density and the linearized momentum [START_REF]Hyperbolic phase transitions in traffic flow[END_REF]. Ω f and Ω c are the respective domains of validity of the free-flow and congested equations of the model and are explicited below. The term q * is a parameter characteristic of the road under consideration. An empirical model must be used to express the velocity v as a function of density in free-flow: v := v f (ρ), and as a function of density and linearized momentum in congestion: v := v c (ρ, q). Following usual choices for traffic applications [START_REF] Garavello | Traffic flow on networks[END_REF], the functions below are used:

v f (ρ) = 1 - ρ R V and v c (ρ, q) = 1 - ρ R q ρ
where R is the maximal density or jam density and V is the maximal free-flow speed.

The relation for free-flow is the Greenshields model [START_REF] Greenshields | A study of traffic capacity[END_REF] mentioned earlier while the second relation has been introduced in [START_REF] Colombo | On a 2 × 2 hyperbolic traffic flow model[END_REF]. As Ω c should be an invariant domain [START_REF] Serre | Systems of conservation laws[END_REF] for the congested dynamics from system (2.1), and according to the definition of v, the free-flow and congested domains are defined as follows:

Ω f = {(ρ, q) ∈ [0, R] × [0, +∞[ , v f (ρ) ≥ V f -, q = ρ V } Ω c = (ρ, q) ∈ [0, R] × [0, +∞[ , v c (ρ, q) ≤ V c+ , Q --q * R ≤ q-q * ρ ≤ Q + -q * R
where V f -is the minimal velocity in free-flow and V c+ is the maximal velocity in congestion such that V c+ < V f -< V . R is the maximal density and Q -and Q + are respectively the minimal and maximal value for q. The fundamental diagram in (ρ, q) coordinates and in (ρ, ρ v) coordinates is presented in figure 2.1. Remark 2.1. For the system to be strictly hyperbolic, one must have λ 1 (ρ, q) = λ 2 (ρ, q) for all (ρ, q) ∈ Ω c .

Remark 2.2. The 1-Lax curves are straight lines going through (0, q * ) in (ρ, q) coordinates which means along these curves shocks and rarefaction exist and coincide [START_REF] Temple | Systems of conversation laws with invariant submanifolds[END_REF]. One must note that the 1-Lax field is not genuinely non-linear (GNL). Indeed the 1-Lax curves are linearly degenerate (LD) for q = q * and GNL otherwise with rarefaction waves propagating in different directions relatively to the eigenvector depending on the sign of q -q * . The 2-Lax curves which are straight lines going through the origin in (ρ, ρ v) coordinates, are always LD. In congestion (high densities) the flux is multi-valued. Count C and velocity v were recorded every minute during one week. Flux Q was computed from the count. Density ρ was computed from flux and velocity according to the expression Q = ρ v (see [START_REF] Blandin | Numerical simulations of traffic data via fluid dynamic approach[END_REF] for an extensive analysis of this dataset). congestion as modeling a perturbation [START_REF] Zhang | A theory of nonequilibrium traffic flow[END_REF][START_REF]A non-equilibrium traffic model devoid of gas-like behavior[END_REF]. The equilibrium (Definition 3.1) would be the usual one-dimensional fundamental diagram, with dynamics described by the conservation of mass. Perturbations can move the system off equilibrium, leading the diagram to span a two-dimensional area in congestion. A single-valued map is able to describe the free-flow mode, which is therefore categorized as an equilibrium.

Ω f Ω c q * Q + Q - ρ q R Ω f Ω c ρ v ρ R
Definition 3.1. We call equilibrium the set of states for which the perturbation vanishes. In the following we respectively refer to the equilibrium velocity and equilibrium flux as the velocity and flux at equilibrium. In this article we present analytical requirements on the velocity function in congestion which, given the work done in [START_REF]Hyperbolic phase transitions in traffic flow[END_REF], enable us to construct a 2 × 2 phase transition model. These models provide support for a physically correct, mathematically well-posed initial-boundary-value problem which can model a two parameter dependent congestion on a stretch of highway. To be accurate, the two dimensional zone must be related to the reality of the local traffic nature, which is not always possible with the original Colombo phase transition model. Given the requirements described in § 3.1 and § 3.2.2, one is able to build a custom-made phase transition model. Note that unlike the Colombo phase transition model, the free-flow and congested domain of the fundamental diagram proposed in the present work are connected, as illustrated in figure 3.2. This feature enables one to define solutions in a simpler way and leads to a more straightforward numerical resolution. Moreover, the models derived need less parameters and thus are easier to calibrate. Finally, it is consistent with the fact that a gap between phases is not observed in experimental data, see figure 3.1. 

Ω f Ω c ρ ρv Ω f Ω c ρ v ρ

Analysis of the equilibrium.

We consider the density variable ρ to belong to the interval [0, R] where R is the maximal density. Given the critical density1 σ in (0, R], we define the equilibrium velocity v eq (•) on [0, R] by:

v eq (ρ) := V for ρ ∈ [0, σ] v eq c (ρ) for ρ ∈ [σ, R]
where V is the free-flow speed and

v eq c (•) is in C ∞ ((σ, R), R + ). It is important to note that v eq c (•
) is a function of ρ only, as it is the case for the classical fundamental diagram. The equilibrium flux Q eq (•) is thus defined on [0, R] by:

Q eq (ρ) := ρ v eq (ρ) = Q f (ρ) := ρ V for ρ ∈ [0, σ] Q eq c (ρ) := ρ v eq c (ρ) for ρ ∈ [σ, R].
In agreement with traffic flow features, the congested equilibrium flux Q eq c (ρ) must satisfy the following requirements (which are consistent with the ones given in [START_REF] Castillo | On the functional form of the speed-density relationship i: General theory[END_REF]).

(i) Flux vanishes at the maximal density: Q eq c (R) = 0. This condition encodes the physical situation in which the jam density has been reached. The corresponding velocity and flux of vehicles on the highway is zero.

(ii) Flux is a decreasing function of density in congestion: dQ eq c (ρ)/dρ ≤ 0. This is required as a defining property of congestion. It implies that dv eq c (ρ)/dρ ≤ 0. (iii) Continuity of the flux at the critical density: Q eq c (σ) = Q f (σ). Even if some models account for a discontinuous flux at capacity, the capacity drop phenomenon [START_REF]Phase transitions in traffic flow[END_REF], we assume as most of the transportation community that the flux at equilibrium is a continuous function of density.

(iv) Concavity of the flux in congestion: Q eq c (•). The flux function at equilibrium Q eq c (•) must be concave on [σ, σ i ] and convex on [σ i , R] where σ i is in (σ, R]. Given the plots experimentally obtained for congestion (figure 3.1), it is not clear in practice if the equilibrium flux is concave or convex in congestion. The assumption made here is detailed in remark 3.2.

Remark 3.2. A physical interpretation can be given to the concavity of the flux function. In congestion, when the density increases toward the maximal density, the velocity decreases toward zero. This yields the decreasing slope of the flux in congestion. The way in which drivers velocity decreases impacts the concavity of the flux, as per the expression of the second derivative of the equilibrium flux function,

d 2 Q eq c (ρ)/dρ 2 = ρ d 2 v eq c (ρ)/dρ 2 + 2 dv eq c (ρ)/dρ. (i)
If for a given density increase, the drivers reduce their speed more at high densities than at low densities (modeling aggressive drivers who wait until high density to reduce speed), then the velocity function is concave and the flux function is concave.

(ii) If the drivers reduce their speeds less at high densities than at low densities (modeling careful drivers who have reduced speed at low densities), then the velocity function is convex, and if its convexity is great enough, the flux function is convex.

(iii) An affine flux is given by a hyperbolic velocity function. The assumption above that if the flux is convex for a low congested density then it can not be concave for a higher congested density means that we assume that drivers tend to be more careful when congestion increases.

Remark 3.3. In this article we instantiate the general model proposed on the most common equilibrium flux functions, i.e. linear or concave, but the framework developed here applies to flux functions with changing concavity such as the Li flux function [START_REF] Tong | Nonlinear dynamics of traffic jams[END_REF] and yields a significantly more complex analysis.

Example 3.4. Assuming the system is always at equilibrium, we have: 

∂ t ρ + ∂ x Q(ρ) = 0 (3.1) for ρ ∈ [0, R] and with Q(•) ≡ Q f (•) in free-flow and Q(•) ≡ Q eq c (•) in congestion. Equation (3.

Analysis of the perturbation.

3.2.1. Model outline. In this section we introduce a perturbation to the equilibrium velocity in congestion as follows:

v c (ρ, q) = v eq c (ρ) (1 + q) (3.2)
where ρ ∈ [0, R], and q ∈ [q -, q + ] is the perturbation, which can be positive or negative. The equilibrium corresponds to q = 0, and the evolution of (ρ, q) is described similarly to the classical Colombo phase transition model [START_REF]Hyperbolic phase transitions in traffic flow[END_REF] by:

ρ Q(ρ) σ R ρ Q(ρ) σ = R
     ∂ t ρ + ∂ x (ρ v) = 0
in free-flow

∂ t ρ + ∂ x (ρ v) = 0 ∂ t q + ∂ x (q v) = 0 in congestion (3.3)
with the following expression of the velocity: 

v = v f (ρ) := V in free-flow v c (ρ, q) in congestion. ( 3 
Ω c is Q c (ρ, q) = ρ v c (ρ, q)
. The analytical expression of the free-flow and congested domains as explicited in (3.5) is motivated by the analysis conducted in table 3.1 and the necessity for these domains to be invariants [START_REF] Serre | Systems of conservation laws[END_REF] for the dynamics (3.3) in order to have a well-defined Riemann solver [START_REF] Toro | Riemann solvers and numerical methods for fluid dynamics[END_REF].

Ω f = {(ρ, q) | (ρ, q) ∈ [0, R] × [0, +∞[ , v c (ρ, q) = V , 0 ≤ ρ ≤ σ + } Ω c = (ρ, q) | (ρ, q) ∈ [0, R] × [0, +∞[ , v c (ρ, q) < V , q - R ≤ q ρ ≤ q + R (3.5) σ + is defined by v c (σ + , σ + q + /R) = V .
A definition of the whole set of parameters can be found in § 3.4 (See also illustration in figure 3.4 for the Newell-Daganzo case.). Definition 3.6. We define the set

{(ρ, q) | v c (ρ, q) = V , σ -≤ ρ ≤ σ + }
as the set of metastable states. We choose to place it in the free-flow domain for convenience in the definition of the Riemann solver. However, the states it contains can be considered to belong to the congestion domain.

Example 3.7. For a Newell-Daganzo flux for both congestion equilibrium and free-flow, the fundamental diagram obtained has the shape presented in figure 3.4. Remark 3.8. The left boundary of the congested domain is a convex curve in (ρ, q) coordinates (in figure 2.1 for the Colombo phase transition model as in figure 3.4 for the new model derived). Thus Ω c is not convex in (ρ, q) coordinates.

-1 0 σ -σ σ + ρ q R q + q - σ -σ σ + R ρ ρ v
The analysis of the congestion phase of the model (3.3) is outlined in table 3.1.

Eigenvalues λ 1 (ρ, q) = v eq c (ρ) (1 + q) + q v eq c (ρ) + ρ (1 + q)∂ρv eq c (ρ) λ 2 (ρ, q) = v eq c (ρ) (1 + q) Eigenvectors r 1 = ρ q r 2 = v eq c (ρ) -(1 + q) ∂ρv eq c (ρ) Nature of the Lax-curves ∇λ 1 .r 1 = ρ 2 (1 + q)∂ 2 ρρ v eq c (ρ) + 2 ρ (1 + 2 q) ∂ρv eq c (ρ) + 2 q v eq c (ρ) ∇λ 2 .r 2 = 0 Riemann- invariants q/ρ v eq c (ρ) (1 + q) Table 3.1
Algebraic features of the extended Colombo phase transition model for the congestion phase.

Physical and mathematical considerations. Physical interpretation and mathematical conditions translate into the following conditions:

Condition 3.9. Positivity of speed In order to maintain positivity of v c (•, •) on the congested domain, one must have:

∀ q ∈ [q -, q + ] 1 + q > 0 (3.6)
which is satisfied if and only if q -> -1.

Condition 3.10. Strict hyperbolicity of the congested system In order for the congested part of (3.3) to be strictly hyperbolic, one must have:

∀ (ρ, q) ∈ Ω c λ 1 (ρ, q), λ 2 (ρ, q) ∈ R and λ 1 (ρ, q) = λ 2 (ρ, q).
Given the expression of the eigenvalues outlined in table 3.1, and modulo a rearrangement, this yields:

∀ (ρ, q) ∈ Ω c ρ ∂ ρ v eq c (ρ) + q (v eq c (ρ) + ρ ∂ ρ v eq c (ρ)) = 0. (3.7)
Since v eq c (•) is positive and ρ v eq c (•) is a decreasing function of ρ, this can always be satisfied for small enough values of q, and when instantiated for specific expressions of v eq c (•), will result in a bound on the perturbation q. Condition 3.11. Shape of Lax curves For modeling consistency, we require the 1-Lax curves to be LD or to have no more than one inflexion point (σ i , q i ). In the latter case they should be concave for ρ ≤ σ i and convex for ρ ≥ σ i . Since the value of ∇λ 1 .r 1 (ρ, q) is the value at (ρ, q) of the concavity of the 1-Lax-curve going through (ρ, q), the latter is given for any (ρ, q) in the congested domain, by the sign of the expression:

∇λ 1 .r 1 = ρ (2 ∂ ρ v eq c (ρ) + ρ ∂ 2 ρρ v eq c (ρ)) + q (2 v eq c + 4 ρ ∂ ρ v eq c (ρ) + ρ 2 ∂ 2 ρρ v eq c (ρ)) (3.8)
which has the sign of the first term for q small enough. So if 2 ∂ ρ v eq c (ρ)+ρ ∂ 2 ρρ v eq c (ρ) > 0 the rarefaction waves go right in the (ρ, q) or (ρ, ρ v) plane. When v eq c (•) is such that 2 ∂ ρ v eq c (ρ) + ρ ∂ 2 ρρ v eq c (ρ) = 0 the heading of rarefaction waves changes with the sign of q (it is the case for the classical Colombo phase transition model [START_REF]Hyperbolic phase transitions in traffic flow[END_REF]), and in this case the 1-curves are LD for q = 0. This condition consists in ensuring that expression (3.8) is either identically zero (LD curve), or has no more than one zero and is an increasing function of the density. Remark 3.12. One may note that condition 3.10 on the strict hyperbolicity of the system is satisfied whenever condition 3.9 on the positivity of speed is satisfied. Indeed equation (3.7) can be re-written as

∀(ρ, q) ∈ Ω c ρ ∂ ρ v eq c (ρ) + q∂ ρ Q eq c (ρ) = 0, which given the first term is negative, is equivalent to ∀(ρ, q) ∈ Ω c ρ ∂ ρ v eq c (ρ) + q∂ ρ Q eq c (ρ) < 0. For non-zero values of ∂ ρ Q eq c (ρ), it yields q > -ρ ∂ ρ v eq c (ρ)/∂ ρ Q eq c (ρ) = -1 + v eq c (ρ)/∂ ρ Q eq c (ρ
) which is always satisfied when q -> -1, because the second term of the right hand side is negative.

Remark 3.13. In this model, traffic is anisotropic in the sense that no wave travels faster than vehicles (λ 1 (ρ, q) < λ 2 (ρ, q) = v c (ρ, q)). The speed of vehicles is always positive and they stop only at maximal density.

Cauchy problem.

In this section we define a solution of the Cauchy problem for the system (3.3). Following [START_REF]Hyperbolic phase transitions in traffic flow[END_REF], we use a definition derived from [START_REF] Bressan | Hyperbolic systems of conservation laws: the one-dimensional Cauchy problem[END_REF].

Definition 3.14. Given T in R + , and an initial condition u 0 in BV (R), an admissible solution of problem (3.3) is a function u(•, •) in BV ([0, T ) × R) such that the following holds.

(i) For all t in [0, T ), t → u(t, .) is continuous with respect to the L 1 norm.

(ii) For all functions ϕ in C 1 c ([0, T ) × R → R) with compact support contained in u -1 (Ω f ): T 0 R (u(t, x) ∂ t ϕ(t, x) + Q f (u(t, x))∂ x ϕ(t, x)) dxdt + R u 0 (x) ϕ(0, x)dx = 0. (iii) For all functions ϕ in C 1 c ([0, T ) × R → R 2 ) with compact support contained in u -1 (Ω c ): T 0 R (u(t, x) ∂ t ϕ(t, x) + Q c (u(t, x))∂ x ϕ(t, x)) dxdt + R u 0 (x) ϕ(0, x)dx = 0.
(iv) The set of points (t, x) for which there is a change of phase is the union of a finite number of Lipschitz curves p i : [0, T ) → R such that if ∃i = j and ∃τ ∈ [0, T ] such that p i (τ ) = p j (τ ) then ∀t ∈ [τ, T ] we have p i (t) = p j (t).

(v) For all points (t, x) where there is a change of phase, let Λ = ṗi (t + ), and introducing the left and right flow at (t, x):

F l = ρ(t, x -) v f (ρ(t, x -)) if ρ(t, x -) ∈ Ω f ρ(t, x -) v c (ρ(t, x -), q(t, x -)) if ρ(t, x -) ∈ Ω c F r = ρ(t, x + ) v f (ρ(t, x + )) if ρ(t, x + ) ∈ Ω f ρ(t, x + ) v c (ρ(t, x + ), q(t, x + )) if ρ(t, x + ) ∈ Ω c
the following relation must be satisfied:

Λ • (ρ(t, x + ) -ρ(t, x -)) = F r -F l .
(3.9)

Remark 3.15. This definition of solution matches the standard Lax solution for an initial condition with values in Ω f or Ω c . Equation (3.9) is a Rankine-Hugoniot relation needed to ensure mass conservation at the phase transition. A Lax-entropy condition is added at the phase transition to ensure uniqueness. This will be used for the definition of the Riemann solver in the following sections.

Theorem 3.16. For all u 0 in BV with values in

Ω f Ω c , the problem (3.3) admits a solution u : [0, +∞) × R → Ω f Ω c such that u(0, x) = u 0 (x).
The interested reader is referred to [START_REF]Hyperbolic phase transitions in traffic flow[END_REF][START_REF] Colombo | Global well-posedness of traffic flow models with phase transitions[END_REF] for a proof.

Remark 3.17. For the initial-boundary value problem, the same result holds with an appropriate formulation of the boundary conditions [START_REF] Bardos | First order quasilinear equations with boundary conditions[END_REF][START_REF] Floch | Explicit formula for scalar non-linear conservation laws with boundary conditions[END_REF][START_REF] Strub | Weak formulation of boundary conditions for scalar conservation laws: an application to highway traffic modelling[END_REF]. (v) The critical density for the upper bound of the diagram σ + . These parameters can be identified from experimental data, and enable the definition of the parameters q -and q+. Figure 3.4 graphically summarizes the definition of the parameters chosen. However one must note that the constraints on q -, q + detailed in (3.6)-(3.7)-(3.8) translate into constraints on σ -, σ + , which can not be freely chosen.

Numerics.

3.5.1. Modified Godunov scheme. Because of the non-convexity of the domain Ω f ∪ Ω c (illustrated in figure 3.4), using the classical Godunov scheme [START_REF] Leveque | Finite volume methods for hyperbolic problems[END_REF] is not feasible due to the projection step of the scheme. As detailed in [START_REF] Chalons | Godunov scheme and sampling technique for computing phase transitions in traffic flow modeling[END_REF], we use a modified version of the scheme which mimics the two steps of the classical Godunov scheme and adds a final sampling step.

(i) The Riemann problems are solved on a regular time space mesh. When two space-consecutive cells do not belong to the same phase, the position of the phase transition at the next time step is computed.

(ii) The solutions are averaged on the domains defined by the position of the phase transitions issued from Riemann problems from neighboring cells (figure 3.5 and 3.6).

(iii) A sampling method is used to determine the value of the solution in each cell of the regular mesh. This process answers the issues of the classical Godunov scheme with non-convex domains. Numerical results have shown that it gives accurate results on benchmark tests (we refer to [START_REF] Chalons | Godunov scheme and sampling technique for computing phase transitions in traffic flow modeling[END_REF] for more details on the test cases used).

3.5.2. Detail of the numerical scheme. In order to discretize time and space, we introduce a time step ∆t and a space step ∆x, both assumed to be constant. Let N, M ∈ N, we call x j = j ∆x for j ∈ Z and t n = n ∆t for n ∈ N. We call x j-1/2 = x j -∆x/2 and we define a cell C n j = {t n } × [x j-1/2 , x j+1/2 [ which has a length ∆x. We call u n j the value of u := (ρ, q) at (t n , x j ), and, by extension, in C n j . At each time step, the speed ν n j+1/2 of the phase transition between each pair of cells (C n j , C n j+1 ) is computed, by computing the solution of the Riemann problem between these two cells (ν n j+1/2 equals zero if u n j and u n j+1 belongs to the same phase). If we call

x n+1 j-1/2 = x j-1/2 + ν n j-1/2 ∆t we can define cell C n+1 j as C n+1 j = t n+1 × [x n+1 j-1/2 , x n+1 j+1/2 [ which has a length ∆x n j = x n+1 j+1/2 -xn+1 j-1/2
, as shown in figure 3.5 and 3.5. The solution to the Riemann problem between cells C n j is averaged on cells

t n+1 t n x j x j-1 x n+1 j-1/2 x n+1 j+1/2
x j+1 Fig. 3.5. Phase transitions enter cell C n j from both sides. , which by construction enclose states which are either free-flowing or congested, according to the modified Godunov scheme. We define:

t n+1 t n x j x j-1 x n+1 j-1/2 x n+1 j+1/2 x j+1
(i) g ν n,- j+1/2 , u n j , u n j+1 as the numerical flux between cells C n j and C n j+1 , at

x-x j+1/2 t-t n = ν n j+1/2 , and calculated at the left of the discontinuity. (ii) u R (ν n,+ j-1/2 , u n j-1 , u n j ) as the solution of the Riemann problem between u n j-1 and u n j , at

x-x j-1/2 t-t n = ν n j-1/2 , and calculated at the right of the discontinuity. The averaging step of the modified Godunov scheme reads:

∆x n j u n+1 j = ∆x u n j -∆t g ν n,- j+1/2 , u n j , u n j+1 -ν n j+1/2 u R ν n,- j+1/2 , u n j , u n j+1 +∆t g ν n,+ j-1/2 , u n j-1 , u n j -ν n j-1/2 u R ν n,+ j-1/2 , u n j-1 , u n j .
One can notice that when there is no phase transition, ν n j-1/2 = ν n j+1/2 = 0, ∆x = ∆x n j and we obtain the classical Godunov scheme. The last step is the sampling phase to define the solutions on the cells C n+1 j

. Following [START_REF] Chalons | Godunov scheme and sampling technique for computing phase transitions in traffic flow modeling[END_REF], for cell C n+1 j we randomly pick a value between u n+1 j-1 , u n+1 j and u n+1 j+1 according to their rate of presence in cell C n+1 j . This is done using the Van der Corput sequence (a n ) n∈N (3.10) which is a low-discrepancy sequence in the interval [0, 1] (used in context of Glimm's scheme [START_REF] Collela | Glimm method for gas dynamics[END_REF]).

u n+1 j =        u n+1 j-1 if a n ∈]0, max( ∆t ∆x n j ν n j-1/2 , 0)] u n+1 j if a n ∈] max( ∆t ∆x n j ν n j-1/2 , 0), 1 + min( ∆t ∆x n j ν n j+1/2 , 0)[ u n+1 j+1 if a n ∈ [1 + min( ∆t ∆x n j ν n j+1/2 , 0), 1[ (3.10)
Remark 3.18. In the general case the congested domain Ω c is not convex in (ρ, q) coordinates due to the convexity of the metastable border of the domain as illustrated on figure 3.4. It is therefore needed to add a projection step as a fourth step of the modified Godunov scheme, which does not affect its accuracy at the first order.

3.6. Error metric. The error metric chosen to assess the numerical accuracy of the scheme is the L 1 (R, L 1 (R, R 2 )) relative error between the computed solution and a wavefront tracking solution [START_REF] Bressan | Hyperbolic systems of conservation laws: the one-dimensional Cauchy problem[END_REF], which we assume to be the exact solution. We call u and u c the exact and computed solutions respectively. For the computational domain [x 0 , x 1 ] , the error at T is computed as follows:

E(T ) = T 0 x1 x0 u(t, x) -u c (t, x) 1 dxdt T 0 x1 x0 u(t, x) 1 dxdt .
Following [START_REF] Bretti | Fast algorithms for the approximation of a traffic flow model on networks[END_REF], we compute the value of a formal order of convergence γ as:

γ(M ) = log 2 e(1, M ) e(2, M ) with e(p, M ) = h p i=1...pM u h p c (p N, i) -u h 2 p c (2 p N -1, 2 i -1) 1
where u h c is the computed solution for a space step h, and the value of N is determined from the value of M by the Courant-Friedrichs-Lewy (CFL) condition [START_REF] Leveque | Finite volume methods for hyperbolic problems[END_REF].

4. The Newell-Daganzo model. In this section, we use a Newell-Daganzo velocity function for congestion, i.e. a velocity function for which the flux is affine with respect to the density. We instantiate the corresponding (ρ, q) model for this flux function and derive a corresponding Riemann solver, which we implement and test on benchmark cases.

Analysis of the equilibrium.

According to the requirements detailed in § 3.1, we propose to use the following equilibrium function, which is the only function satisfying all these requirements, and yielding a flux affine with the density:

v eq c (ρ) = V σ R -σ R ρ -1 .
This velocity function yields an affine flux, and the requirements on the vanishing point, trend, continuity and concavity property of the equilibrium flux are satisfied.

4.2. Analysis of the perturbation. In the general case, the velocity function reads:

v f (ρ) = V for (ρ, q) ∈ Ω f v c (ρ, q) = V σ R-σ ( R ρ -1) (1 + q) for (ρ, q) ∈ Ω c (4.1)
where Ω f and Ω c are defined by (3.5). The corresponding fundamental diagram is shown in figure 3.4. The equilibrium flux is affine with the density, but the 1-Lax curves outside the equilibrium are either convex or concave in (ρ, ρ v) coordinates depending on the sign of the perturbation. Remark 4.1. Note that the expression of the velocity in figure 3.4 is given by (4.1), depends on the phase, and is therefore set-valued for ρ > σ -which is the lowest value of density for which congestion can arise. The conditions from § 3.2.2 to have positive speed and strict hyperbolicity of the congested part of the system (3.3) reduce to:

q -> -1.
Remark 4.2. As in the original Colombo phase transition model [START_REF]Hyperbolic phase transitions in traffic flow[END_REF], the 1-Lax curves are LD for q = 0, and the direction of the rarefaction waves change according to the sign of q. This yields interesting physical interpretations, but makes the Riemann solver derived more complex than the the one derived for the model presented in the following section, as it can be seen by comparing § 4.3 and § 5.3.

Remark 4.3.

As illustrated on figure 3.4 the flux is linear in congestion at equilibrium as per the Newell-Daganzo flux function. In remark 3.2 we stated that this shape models neutral drivers (aggressivity-wise). When the traffic is above equilibrium, meaning that the velocity is higher that what it is for the same density at equilibrium, then the 1-Lax curves are concave in (ρ, ρ v) coordinates, meaning that the drivers are more aggressive. So such a fundamental diagram shape seems to be in accordance with the intuition, that for a given density, if a set of speeds exists on the highway, the most aggressive drivers tend to be above the equilibrium velocity. This is symmetrically true for less aggressive drivers.

Remark 4.4. It is also in accordance with the intuition that the lowest density for which congestion can arise is due to non-aggressive drivers (convex 1-Lax curves in ρ = σ -). Indeed, the flux starts to decrease because some drivers are too careful and tend to drive not fast enough, which is not 'necessary' for an average driver.

Solution of the Riemann problem.

Following [START_REF] Colombo | Global well-posedness of traffic flow models with phase transitions[END_REF],we construct the solution of the Riemann problem for the system (3.3) with the velocity function defined by (4.1) and the initial datum:

(ρ, q)(0, x) = (ρ l , q l ) if x < 0 (ρ r , q r ) if x > 0.
We note u the vector (ρ, q). We define u m by the solution in Ω c of the system:

qm ρm = q l ρ l v c (u m ) = v c (u r ) (4.2)
which yields a quadratic polynomial in ρ m . We address the general case where the solution u m of system (4.2) can coincide with u l or u r . 4.1 L 1 relative error between exact solution and the modified Godunov scheme solution for the test cases explicitly described above, and formal order of convergence, for different discretization.

5. The Greenshields model. In this section we use a Greenshields model to describe the velocity function in congestion, i.e. we use a concave quadratic flux function. First we study the equilibrium flux function, then we present the associated perturbed model, and finally we derive the corresponding Riemann solver which we test on a benchmark case.

5.1. Analysis of the equilibrium. We use a quadratic relation to describe the congestion equilibrium, which because of physical considerations needs to satisfy the requirements from § 3.1. This leads us to choose the flux as a quadratic function of the form:

ρ v eq c (ρ) = (ρ -R) (a ρ + b) such that the vanishing condition at ρ = R is satisfied. Continuity at the critical density σ yields: b = σ V σ -R -a σ
so the flux at equilibrium reads:

ρ v eq c (ρ) = (ρ -R) a (ρ -σ) + σ V σ -R
with a variation interval for a defined by the second and third conditions of § 3.1 as:

a ∈ - σ V (σ -R) 2 , 0 .
Note that for the specific case in which R = 2 σ and a is defined by the fact that the derivative of the flux equals zero at σ (which reads a = -σ V /(σ -R) 2 ), we obtain the classical Greenshields flux.

Analysis of the perturbation.

In this section, we analyze a flux function which is a Newell-Daganzo function in free-flow and a Grenshields function at the equilibrium in congestion. In agreement with the expression of the equilibrium obtained in § 5.1, and following the general form given in system (3.4), we write the perturbed velocity as:

v f (ρ) = V for (ρ, q) ∈ Ω f v c (ρ, q) = 1 -R ρ a (ρ -σ) + σ V σ-R (1 + q) for (ρ, q) ∈ Ω c (5.1)
with a ∈ -σ V (σ-R) 2 , 0 , and where Ω f and Ω c are defined by (3.5). The corresponding fundamental diagram is presented in figure 5.1. Remark 5.1. The expression of the velocity function given by system (5.1) enables a set-valued velocity function for ρ > σ -. For a given density the variable velocity can take several values. The lower bound of congestion is concave, unlike for the model presented in § 4. This feature may be more appropriate for usual experimental datasets.

0 -1 0 σ -σ σ + ρ q R q + q - 0 0 σ -σ σ + R ρ ρ v
Remark 5.2. Since all the 1-Lax curves are concave in (ρ, ρ v) coordinates, unlike for the original phase transition model, the rarefactions always go left in (ρ, ρ v) coordinates as it is the case for concave fluxes usually used in traffic [START_REF] Greenshields | A study of traffic capacity[END_REF][START_REF] Newell | A simplified theory of kinematic waves in highway traffic ii: Queueing at freeway bottlenecks[END_REF]. Another consequence of the constant concavity of the 1-Lax curves is that the Riemann solver is much simpler than in the Newell-Daganzo case, as detailed in § 5. The requirements from § 3.2.2 here reduce to:

q -> - a R σ V σ-R + a (2 R -σ) . Remark 5.4.
It is interesting to note that while before the bound on the perturbation was given by the fact that the speed had to be positive, here the bound is tighter because we want also to have all the 1-Lax curves with constant concavity.

Remark 5.5. The lower bound on the perturbation is an increasing function of the parameter a, so this parameter should be chosen as small as possible to allow for more liberty, namely a min = -σ V /(σ -R) 2 which yields the lowest bound on q min -= R/(2 σ -3 R).

5.3. Solution of the Riemann problem. We consider the Riemann problem for system (3.3) with the velocity function from equation (5.1) and the initial datum:

(ρ, q)(0, x) = (ρ l , q l ) if x < 0 (ρ r , q r ) if x > 0. (5.2)
We follow the method used in [START_REF] Colombo | Global well-posedness of traffic flow models with phase transitions[END_REF] to construct the solution. We define u m by the solution in Ω c of the system:

qm ρm = q l ρ l v c (u m ) = v c (u r ) (5.3)
which yields a quadratic polynomial in ρ m with one root in [0, R]. In the general case, the solution u m of the system (5.3) can be equal to u l or u r . Case 1: u l ∈ Ω f and u r ∈ Ω f For all values of (ρ l , ρ r ) the solution consists of a contact discontinuity from u l to u r . Case 2:

u l ∈ Ω c and u r ∈ Ω c (i) If v c (u r ) ≥ v c (u l
) the solution consists of a 1-rarefaction wave from u l to u m and a 2-contact discontinuity from u m to u r .

(ii) If v c (u l ) > v c (u r ) the solution consists of a shock wave from u l to u m and a 2-contact discontinuity from u m to u r . Case 3: u l ∈ Ω c and u r ∈ Ω f The solution consists of a 1-rarefaction wave from u l to u m and of a contact-discontinuity from u m to u r . Case 4: u l ∈ Ω f and u r ∈ Ω c Let u m-be defined by the solution in Ω c of the system:

qm- ρm-= q- R v c (u m-) = v c (u r )
and let Λ(u l , u m-) be the Rankine-Hugoniot phase transition speed between u l and u m-defined by equation (3.9). The solution consists of a phase transition from u l to u m-and of a 2-contact discontinuity from u m-to u r .

Remark 5.6.

One can note that in this case, the Riemann problem is particularly simple, with only five different types of solutions, compared to the Newell-Daganzo case which has eleven different types of solutions.

Remark 5.7. The analysis in the case of a convex equilibrium flux function, which we do not address in this article is closely related to this case, modulo the sign of the parameter a and the concavity of the 1-Lax curves.

5.4. Benchmark test. In this section we compare the numerical results given by the modified Godunov scheme on a benchmark test considering a wavefront tracking solution [START_REF] Bressan | Hyperbolic systems of conservation laws: the one-dimensional Cauchy problem[END_REF] to be the exact solution. We use the phase transition model (3.3) in the Greenshields case (5.1) with the following choice of parameters: V = 45, R = 1000, σ -= 188, σ = 200, σ + = 215. We also choose a = -0.01. The resulting values for the extrema of the perturbation are q -= -0.34 and q + = 0.38. The benchmark test is a phase transition from free-flow to congestion, with the following parameters:

(i) u l = (150, -0.26) which corresponds to ρ = 150 and v = 45.

(ii) u r = (300, -0.02) which corresponds to a congested situation under equilibrium with ρ = 300 and v = 28. This configuration gives rise to a phase transition between u l and a congested state u m followed by a 2-contact discontinuity between u m and u r (Riemann case 4) which is illustrated in figure 5.2. Table 5.1 summarizes the values of the error E(T ), and the 5.1 L 1 relative error between exact solution and the modified Godunov scheme solution for the test cases explicitly described above, and for different number of space cells.

Conclusion.

This article reminded the fundamental features of the Colombo phase transition model, which were extended to construct a class of models in which the fundamental diagram is set-valued in the congested regime. The notion of equilibrium which provides the basis for the construction of the 2 × 2 phase transition models was introduced. General conditions which enable the extension of the original Colombo phase transition model to this new class of 2 × 2 phase transition models were investigated. A modified Godunov scheme which can be applied to models with non-convex state-space was used to solve these equations numerically. The model was instantiated for two specific flux functions, which include the Newell-Daganzo flux function (affine) and the Greenshields flux function (quadratic concave). A discussion of the choice of parameters needed for each of the models was conducted. The solution of the Riemann problem was derived, and a validation of the numerical results using benchmark tests was conducted. Wavefront tracking methods were assumed to provide an almost exact solution, which was used for comparison with the numerical solution. Open questions for this model include the capability of the model to accurately reproduce traffic features experimentally measured on highways, which is the focus of ongoing work. Experimental validations of the model should reveal its capabilities of reproducing traffic flow more accurately than existing models. In addition, the specific potential of the model to integrate velocity measurements (through proper treatment of the second state variable of the problem) is a significant advantage of this model over any first order model for which the density-flux relation is single valued. The proper use of this key feature for data assimilation is also an open problem, which could have very promising outcomes for highway traffic state estimation.
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 21 Fig. 2.1. Colombo phase transition model. Left: Fundamental diagram in state space coordinates (ρ, q). Right: Fundamental diagram in density flux coordinates (ρ, ρ v).
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 331 Fig. 3.1. Fundamental diagram in density flux coordinates from a street in Rome.In congestion (high densities) the flux is multi-valued. Count C and velocity v were recorded every minute during one week. Flux Q was computed from the count. Density ρ was computed from flux and velocity according to the expression Q = ρ v (see[START_REF] Blandin | Numerical simulations of traffic data via fluid dynamic approach[END_REF] for an extensive analysis of this dataset).
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 32 Fig. 3.2. Different free-flow phases. Left: Fundamental diagram from the original Colombo phase transition model. Right: Fundamental diagram of the model derived in the present article in the particular case of a Newell-Daganzo flux-density relation for congestion at equilibrium.

  1) is the classical LWR equation. In traffic theory, a triangular flux function Q(•) is called Newell-Daganzo flux [12, 34] and yields the fundamental diagram drawn in figure 3.3 (left), whereas a parabolic flux function is called a Greenshields flux [23] and yields the fundamental diagram shown in figure 3.3 (right).
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 233 Fig. 3.3. Fundamental diagram at equilibrium in density flux coordinates. Left: Newell-Daganzo flux. Right: Greenshields flux.

. 4 )

 4 The perturbed velocity function defines the velocity in congestion whereas a Newell-Daganzo function describes the velocity in free-flow. The system (3.3)-(3.4) differs from the one used by Colombo on three points: (i) We set the equilibrium to be at q * = 0. (ii) We use a Newell-Daganzo flux function in free-flow. (iii) We do not further specify the expression of the function v c at this point. Definition 3.5. The flux in congestion on
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 34 Fig. 3.4. Newell-Daganzo equilibrium flux function. Left: Fundamental diagram in state space coordinates. Right: Fundamental diagram in flux-density coordinates. The equilibrium is the usual triangular diagram as in figure 3.3. A two-dimensional off-equilibrium set of parameters (striped domain) is modeled in congestion.
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 4 Definition of parameters. Several parameters are used in the proposed model, which we summarize below: (i) The free-flow speed V . (ii) The maximal density R. (iii) The critical density at equilibrium σ. (iv) The critical density for the lower bound of the diagram σ -.
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 36 Fig. 3.6. Phase transitions exit cell C n j from both sides.
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 51 Fig. 5.1. Phase transition model with a Greenshields equilibrium. Left: State-space coordinates. Right: Flux-density coordinates. Thin solid line: Free-flow. Bold solid line: Congestion equilibrium. Thin dashed line: Upper bound of congestion. Thin dot-dashed line: Lower bound of congestion. The equilibrium flux is concave, and all the 1-Lax curves are concave in (ρ, ρ v) coordinates.
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 353 Remark According to remark 3.2 this flux function models aggressive drivers only. It is able to model a class of cloud of points observed experimentally where the congested domain has a concave lower border in (ρ, ρ, v) coordinates.

Fig. 5 . 2 .

 52 Scheme solution Exact solution

Density for which the flux is maximal in scalar models. At this density the system switches between free-flow and congestion.

Case 1: u l ∈ Ω f and u r ∈ Ω f For all values of (ρ l , ρ r ) the solution consists of a contact discontinuity from u l to u r . Case 2: u l ∈ Ω c and u r ∈ Ω c (i) If q l > 0 and v c (u r ) ≥ v c (u l ) the solution consists of a 1-rarefaction wave from u l to u m and a 2-contact discontinuity from u m to u r .

(ii) If q l > 0 and v c (u l ) > v c (u r ) the solution consists of a shock wave from u l to u m and a 2-contact discontinuity from u m to u r .

(iii) If q l = 0 the solution consists of a 1-contact discontinuity from u l to u m and a 2-contact discontinuity from u m to u r .

(iv) If 0 > q l and v c (u r ) > v c (u l ) the solution consists of a shock wave from u l to u m and a 2-contact discontinuity from u m to u r .

(v) If 0 > q l and v c (u l ) ≥ v c (u r ) the solution consists of a 1-rarefaction wave from u l to u m and a 2-contact discontinuity from u m to u r . Case 3: u l ∈ Ω c and u r ∈ Ω f (i) If 0 > q l the solution consists of a shock wave from u l to u m and of a contact-discontinuity from u m to u r .

(ii) If q l = 0 the solution consists of a 1-contact discontinuity from u l to u m and of a contact-discontinuity from u m to u r .

(iii) If q l > 0 the solution consists of a 1-rarefaction wave from u l to u m and of a contact-discontinuity from u m to u r . Case 4: u l ∈ Ω f and u r ∈ Ω c Let u m-be defined by the solution in Ω c of the system:

and let Λ(u l , u m-) be the Rankine-Hugoniot phase transition speed between u l and u m-defined by equation (3.9).

(i) If Λ(u l , u m-) ≥ λ 1 (u m-) the solution consists of a phase transition from u l to u m-and of a 2-contact discontinuity from u m-to u r .

(ii) If Λ(u l , u m-) < λ 1 (u m-) let u p be defined by the solution in Ω c of the system:

The solution consists of a phase transition from u l to u p , of a 1-rarefaction wave from u p to u m-, and of a 2-contact discontinuity from u m-to u r .

Benchmark test.

In this section we compare the numerical results given by the modified Godunov scheme on a benchmark test in which the exact solution can be approximated almost exactly using wavefront tracking [START_REF] Bressan | Hyperbolic systems of conservation laws: the one-dimensional Cauchy problem[END_REF]. We use the phase transition model (3.3) in the Newell-Daganzo case (4.1) with the following choice of parameters: V = 45, R = 1000, σ -= 190, σ = 220, σ + = 270. The benchmark test is a phase transition from free-flow to congestion (FF-C) with the following parameters:

(i) u l = (100, -0.6) which corresponds to free-flow with ρ = 100 and v = 45.

(ii) u r = (700, 0.5) which corresponds to a congested situation above equilibrium with ρ = 700 and v = 8.2. This configuration gives rise to a phase transition between u l and a congested state u m followed by a 2-contact discontinuity between u m and u r (Riemann case 4, first