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A GENERAL PHASE TRANSITION MODEL FOR VEHICULAR

TRAFFIC

S. BLANDIN ∗, D. WORK † , P. GOATIN ‡ , B. PICCOLI § , AND A. BAYEN ¶

Abstract. An extension of the Colombo phase transition model is proposed. The congestion
phase is described by a two-dimensional zone defined around an equilibrium flux known as the
classical fundamental diagram. General criteria to build such a set-valued fundamental diagram
are enumerated, and instantiated on several equilibrium fluxes with different concavity properties.
The solution of the Riemann problem in the presence of phase transitions is obtained through the
construction of a Riemann solver, which enables the definition of the solution of the Cauchy problem
using wavefront tracking. The free-flow phase is described using a Newell-Daganzo fundamental
diagram, which allows for a more tractable definition of phase transition compared to the original
Colombo phase transition model. The accuracy of the numerical solution obtained by a modified
Godunov scheme is assessed on benchmark scenarios for the different flux functions constructed.

Key words. partial differential equations, hyperbolic systems of conservation laws, macroscopic
highway traffic flow model, phase transition, numerical scheme, riemann solver

AMS subject classifications. 35L65, 35F25, 65M12, 90B20, 76T99

1. Introduction. First order scalar models of traffic. Hydrodynamic mod-
els of traffic go back to the 1950’s with the seminal work of Lighthill, Whitham and
Richards [31, 38], who built the first model of the evolution of vehicle density on
the highway using a first order scalar hyperbolic partial differential equation (PDE)
referred to as the LWR PDE. Their model relies on the knowledge of an empiri-
cally measured flux function, also called the fundamental diagram in transportation
engineering, for which measurements go back to 1935 with the pioneering work of
Greenshields [23]. Numerous other flux functions have since been proposed in the
hope of capturing effects of congestion more accurately, in particular: Greenberg [22],
Underwood [43], Newell-Daganzo [12, 34], and Papageorgiou [46]. The existence and
uniqueness of an entropy solution to the Cauchy problem [39] for the class of scalar
conservation laws to which the LWR PDE belong go back to the work of Oleinik [35]
and Kruzhkov [27], (see also the seminal article of Glimm [20]), which was extended
later to the initial-boundary value problem [2], and specifically instantiated for the
scalar case with a concave flux function in [29], in particular for traffic in [40]. Nu-
merical solutions of the LWR PDE go back to the seminal Godunov scheme [21, 30],
which was shown to converge to the entropy solution of the first order hyperbolic
PDE (in particular the LWR PDE). In the transportation engineering community,
the Godunov scheme is known under the name of Cell Transmission Model (CTM),
which was brought to this field by Daganzo in 1995 [12, 13], and is one of the most
used discrete traffic flow models in the literature today [6, 15, 24, 32, 33, 36, 45].
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Set-valued fundamental diagrams. The assumption of a Greenshields fun-
damental diagram or a triangular fundamental diagram, which significantly simplifies
the analysis of the model algebraically, led to the aforementioned theoretical devel-
opments. Yet, experimental data clearly indicates that while the free flow part of a
fundamental diagram can be approximated fairly accurately by a straight line, the
congested regime is set valued, and can hardly be characterized by a single curve [44].
An approach to model the set-valuedness of the congested part of the fundamental
diagram consists in using a second equation coupled with the mass conservation equa-
tion (i.e. the LWR PDE model). Such models go back to Payne [37] and Whitham [47]
and generated significant research efforts, but led to models with inherent weaknesses
pointed out by del Castillo [17] and Daganzo [14]. These weaknesses were ultimately
addressed in several responses [1, 36, 48], leading to sustained research in this field.

Motivation for a new model. Despite the existing research, modeling issues
remain in most 2 × 2 models of traffic available today. For instance, the Aw-Rascle
model [1] raises issues about the validity of the physics of the highway [19], such
as the existence of a zero velocity achieved below jam density. In agreement with
the remarks from Kerner [25, 26] affirming that traffic flow presents three different
behaviors, free-flow, wide moving jams, and synchronized flow, Colombo proposed a
2×2 phase transition model [9, 10] which considers congestion and free-flow in traffic
as two different phases, governed by distinct evolutionary laws. The well-posedness of
this model was proved in [11] using wavefront tracking introduced by Bressan [4]. In
the phase transition model, the evolution of the parameters is governed by two distinct
dynamics; in free-flow, the Colombo phase transition model is a classical first order
model (LWR PDE), whereas in congestion a similar equation governs the evolution
of an additional state variable, the linearized momentum q. The motivation for an
extension of the 2 × 2 phase transition model comes from the following:

(i) Phases gap. The phase transition model introduced by Colombo in [9] uses
a Greenshields flux function to describe congestion, which despite its simple analytical
expression yields a fundamental diagram which is not connected and thus a complex
definition of the solution of the Riemann problem between two different phases. We
solve this problem by introducing a Newell-Daganzo flux function for free-flow, which
creates a non-empty intersection between the congested phase and the free-flow phase,
called metastable phase. It alleviates the inconvenience of having to use a shock-like
phase transition in many cases of the Riemann problem with two different phases.

(ii) Definition of a general class of set-valued fundamental diagrams. The work
achieved in [9] enables the definition of a set-valued fundamental diagram for the
expression of the velocity function introduced. However, experimental data shows
that the fundamental diagram depends on space and time, and the congested domain
changes accordingly. In this article we provide a general method to build an arbitrary
set-valued fundamental diagram which in a special case corresponds to the fundamen-
tal diagram introduced in [9]. This enables one to define a custom-made set-valued
fundamental diagram.

Organization of the article. The rest of the article is organized as follows. Sec-
tion 2 presents the fundamental features of the Colombo phase transition model [10],
which serves as the basis for the present work. In § 3, we introduce the modifica-
tions to the Colombo phase transition model, and introduce the notion of equilibrium
which provides the basis for the construction of a class of 2 × 2 traffic models. We
also assess general conditions which enable us to extend the results obtained for the
original Colombo phase transition model to these new models. Finally, this section
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presents a modified Godunov scheme which can be used to solve the equations nu-
merically. The two following sections instantiate the constructed class of models for
two specific flux functions, which are the Newell-Daganzo (affine) flux function (§ 4)
and the Greenshields (parabolic concave) flux function (§ 5). Each of these sections
includes the discussion of the choice of parameters needed for each of the models,
the solution of the Riemann problem, and a validation of the numerical results us-
ing a benchmark test for which wavefront tracking methods enable an almost exact
solution used for comparison with the numerical solution. Finally, § 6 presents some
concluding remarks.

2. The Colombo phase transition model. The original Colombo phase tran-
sition model [9, 10] is a set of two coupled PDEs respectively valid in a free-flow regime
and congested regime:











∂tρ + ∂x(ρ vf (ρ)) = 0 in free-flow (Ωf )
{

∂tρ + ∂x(ρ vc(ρ, q)) = 0

∂tq + ∂x((q − q∗) vc(ρ, q)) = 0
in congestion (Ωc)

(2.1)

where the states variable ρ and q note respectively the density and the linearized
momentum [10]. Ωf and Ωc are the respective domains of validity of the free-flow
and congested equations of the model and are explicited below. The term q∗ is a
parameter characteristic of the road under consideration. An empirical model must
be used to express the velocity v as a function of density in free-flow: v := vf (ρ),
and as a function of density and linearized momentum in congestion: v := vc(ρ, q).
Following usual choices for traffic applications [18], the functions below are used:

vf (ρ) =
(

1 −
ρ

R

)

V and vc(ρ, q) =
(

1 −
ρ

R

) q

ρ

where R is the maximal density or jam density and V is the maximal free-flow speed.
The relation for free-flow is the Greenshields model [23] mentioned earlier while the
second relation has been introduced in [9]. As Ωc should be an invariant domain [39]
for the congested dynamics from system (2.1), and according to the definition of v,
the free-flow and congested domains are defined as follows:

{

Ωf = {(ρ, q) ∈ [0, R]× [0, +∞[ , vf (ρ) ≥ Vf− , q = ρ V }

Ωc =
{

(ρ, q) ∈ [0, R] × [0, +∞[ , vc(ρ, q) ≤ Vc+ , Q−

−q∗

R ≤ q−q∗

ρ ≤ Q+
−q∗

R

}

where Vf− is the minimal velocity in free-flow and Vc+ is the maximal velocity in
congestion such that Vc+ < Vf− < V . R is the maximal density and Q− and Q+ are
respectively the minimal and maximal value for q. The fundamental diagram in (ρ, q)
coordinates and in (ρ, ρ v) coordinates is presented in figure 2.1.

Remark 2.1. For the system to be strictly hyperbolic, one must have λ1(ρ, q) 6=
λ2(ρ, q) for all (ρ, q) ∈ Ωc.

Remark 2.2. The 1-Lax curves are straight lines going through (0, q∗) in
(ρ, q) coordinates which means along these curves shocks and rarefaction exist and
coincide [41]. One must note that the 1-Lax field is not genuinely non-linear (GNL).
Indeed the 1-Lax curves are linearly degenerate (LD) for q = q∗ and GNL otherwise
with rarefaction waves propagating in different directions relatively to the eigenvector
depending on the sign of q − q∗. The 2-Lax curves which are straight lines going
through the origin in (ρ, ρ v) coordinates, are always LD.
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R

Fig. 2.1. Colombo phase transition model. Left: Fundamental diagram in state space coor-
dinates (ρ, q). Right: Fundamental diagram in density flux coordinates (ρ, ρ v).

3. Extension of the Colombo phase transition model. The approach de-
veloped by Colombo provides a fundamental diagram which is thick in congestion
(figure 2.1), and thus can model clouds of points observed experimentally (figure 3.1).
We propose to extend the Colombo approach by considering the second equation in

0 100 225
0

2000

3600

Q
(veh/hr)

ρ(veh/mile)

Fig. 3.1. Fundamental diagram in density flux coordinates from a street in Rome. In
congestion (high densities) the flux is multi-valued. Count C and velocity v were recorded every
minute during one week. Flux Q was computed from the count. Density ρ was computed from flux
and velocity according to the expression Q = ρ v (see [3] for an extensive analysis of this dataset).

congestion as modeling a perturbation [48, 49]. The equilibrium (Definition 3.1)
would be the usual one-dimensional fundamental diagram, with dynamics described
by the conservation of mass. Perturbations can move the system off equilibrium, lead-
ing the diagram to span a two-dimensional area in congestion. A single-valued map is
able to describe the free-flow mode, which is therefore categorized as an equilibrium.

Definition 3.1. We call equilibrium the set of states for which the perturba-
tion vanishes. In the following we respectively refer to the equilibrium velocity and
equilibrium flux as the velocity and flux at equilibrium.
In this article we present analytical requirements on the velocity function in congestion
which, given the work done in [10], enable us to construct a 2 × 2 phase transition
model. These models provide support for a physically correct, mathematically well-
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posed initial-boundary-value problem which can model a two parameter dependent
congestion on a stretch of highway. To be accurate, the two dimensional zone must be
related to the reality of the local traffic nature, which is not always possible with the
original Colombo phase transition model. Given the requirements described in § 3.1
and § 3.2.2, one is able to build a custom-made phase transition model. Note that
unlike the Colombo phase transition model, the free-flow and congested domain of
the fundamental diagram proposed in the present work are connected, as illustrated
in figure 3.2. This feature enables one to define solutions in a simpler way and leads
to a more straightforward numerical resolution. Moreover, the models derived need
less parameters and thus are easier to calibrate. Finally, it is consistent with the fact
that a gap between phases is not observed in experimental data, see figure 3.1.

Ωf

Ωc

ρ

ρv

Ωf

Ωc

ρ v

ρ

Fig. 3.2. Different free-flow phases. Left: Fundamental diagram from the original Colombo
phase transition model. Right: Fundamental diagram of the model derived in the present article in
the particular case of a Newell-Daganzo flux-density relation for congestion at equilibrium.

3.1. Analysis of the equilibrium. We consider the density variable ρ to belong
to the interval [0, R] where R is the maximal density. Given the critical density 1 σ
in (0, R], we define the equilibrium velocity veq(·) on [0, R] by:

veq(ρ) :=

{

V for ρ ∈ [0, σ]

veq
c (ρ) for ρ ∈ [σ, R]

where V is the free-flow speed and veq
c (·) is in C∞((σ, R),R+). It is important to

note that veq
c (·) is a function of ρ only, as it is the case for the classical fundamental

diagram. The equilibrium flux Qeq(·) is thus defined on [0, R] by:

Qeq(ρ) := ρ veq(ρ) =

{

Qf (ρ) := ρ V for ρ ∈ [0, σ]

Qeq
c (ρ) := ρ veq

c (ρ) for ρ ∈ [σ, R].

In agreement with traffic flow features, the congested equilibrium flux Qeq
c (ρ) must

satisfy the following requirements (which are consistent with the ones given in [16]).
(i) Flux vanishes at the maximal density: Qeq

c (R) = 0.
This condition encodes the physical situation in which the jam density has been
reached. The corresponding velocity and flux of vehicles on the highway is zero.

1Density for which the flux is maximal in scalar models. At this density the system switches
between free-flow and congestion.
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(ii) Flux is a decreasing function of density in congestion: dQeq
c (ρ)/dρ ≤ 0.

This is required as a defining property of congestion. It implies that dveq
c (ρ)/dρ ≤ 0.

(iii) Continuity of the flux at the critical density: Qeq
c (σ) = Qf(σ).

Even if some models account for a discontinuous flux at capacity, the capacity drop
phenomenon [26], we assume as most of the transportation community that the flux
at equilibrium is a continuous function of density.

(iv) Concavity of the flux in congestion: Qeq
c (·).

The flux function at equilibrium Qeq
c (·) must be concave on [σ, σi] and convex on

[σi, R] where σi is in (σ, R]. Given the plots experimentally obtained for congestion
(figure 3.1), it is not clear in practice if the equilibrium flux is concave or convex in
congestion. The assumption made here is detailed in remark 3.2.

Remark 3.2. A physical interpretation can be given to the concavity of the
flux function. In congestion, when the density increases toward the maximal density,
the velocity decreases toward zero. This yields the decreasing slope of the flux in
congestion. The way in which drivers velocity decreases impacts the concavity of the
flux, as per the expression of the second derivative of the equilibrium flux function,
d2Qeq

c (ρ)/dρ2 = ρ d2veq
c (ρ)/dρ2 + 2 dveq

c (ρ)/dρ.

(i) If for a given density increase, the drivers reduce their speed more at high
densities than at low densities (modeling aggressive drivers who wait until high density
to reduce speed), then the velocity function is concave and the flux function is concave.

(ii) If the drivers reduce their speeds less at high densities than at low densities
(modeling careful drivers who have reduced speed at low densities), then the velocity
function is convex, and if its convexity is great enough, the flux function is convex.

(iii) An affine flux is given by a hyperbolic velocity function.

The assumption above that if the flux is convex for a low congested density then it
can not be concave for a higher congested density means that we assume that drivers
tend to be more careful when congestion increases.

Remark 3.3. In this article we instantiate the general model proposed on the
most common equilibrium flux functions, i.e. linear or concave, but the framework
developed here applies to flux functions with changing concavity such as the Li flux
function [28] and yields a significantly more complex analysis.

Example 3.4. Assuming the system is always at equilibrium, we have:

∂tρ + ∂xQ(ρ) = 0 (3.1)

for ρ ∈ [0, R] and with Q(·) ≡ Qf (·) in free-flow and Q(·) ≡ Qeq
c (·) in congestion.

Equation (3.1) is the classical LWR equation. In traffic theory, a triangular flux func-
tion Q(·) is called Newell-Daganzo flux [12, 34] and yields the fundamental diagram
drawn in figure 3.3 (left), whereas a parabolic flux function is called a Greenshields
flux [23] and yields the fundamental diagram shown in figure 3.3 (right).

3.2. Analysis of the perturbation.

3.2.1. Model outline. In this section we introduce a perturbation to the equi-
librium velocity in congestion as follows:

vc(ρ, q) = veq
c (ρ) (1 + q) (3.2)

where ρ ∈ [0, R], and q ∈ [q−, q+] is the perturbation, which can be positive or
negative. The equilibrium corresponds to q = 0, and the evolution of (ρ, q) is described
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ρ

Q(ρ)

σ R
ρ

Q(ρ)

σ = R
2

R

Fig. 3.3. Fundamental diagram at equilibrium in density flux coordinates. Left: Newell-
Daganzo flux. Right: Greenshields flux.

similarly to the classical Colombo phase transition model [10] by:











∂tρ + ∂x(ρ v) = 0 in free-flow
{

∂tρ + ∂x(ρ v) = 0

∂tq + ∂x(q v) = 0
in congestion

(3.3)

with the following expression of the velocity:

v =

{

vf (ρ) := V in free-flow

vc(ρ, q) in congestion.
(3.4)

The perturbed velocity function defines the velocity in congestion whereas a Newell-
Daganzo function describes the velocity in free-flow. The system (3.3)- (3.4) differs
from the one used by Colombo on three points:

(i) We set the equilibrium to be at q∗ = 0.
(ii) We use a Newell-Daganzo flux function in free-flow.
(iii) We do not further specify the expression of the function vc at this point.
Definition 3.5. The flux in congestion on Ωc is Qc(ρ, q) = ρ vc(ρ, q).

The analytical expression of the free-flow and congested domains as explicited in (3.5)
is motivated by the analysis conducted in table 3.1 and the necessity for these domains
to be invariants [39] for the dynamics (3.3) in order to have a well-defined Riemann
solver [42].

{

Ωf = {(ρ, q) | (ρ, q) ∈ [0, R] × [0, +∞[ , vc(ρ, q) = V , 0 ≤ ρ ≤ σ+}

Ωc =
{

(ρ, q) | (ρ, q) ∈ [0, R]× [0, +∞[ , vc(ρ, q) < V , q−

R ≤ q
ρ ≤ q+

R

} (3.5)

σ+ is defined by vc(σ+, σ+ q+/R) = V . A definition of the whole set of parameters
can be found in § 3.4 (See also illustration in figure 3.4 for the Newell-Daganzo case.).

Definition 3.6. We define the set {(ρ, q) | vc(ρ, q) = V , σ− ≤ ρ ≤ σ+} as the
set of metastable states. We choose to place it in the free-flow domain for conve-
nience in the definition of the Riemann solver. However, the states it contains can be
considered to belong to the congestion domain.

Example 3.7. For a Newell-Daganzo flux for both congestion equilibrium and
free-flow, the fundamental diagram obtained has the shape presented in figure 3.4.
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−1

0

σ− σ σ+ ρ

q

R

q+

q−
 

 

σ− σ σ+ R ρ

ρ v

Fig. 3.4. Newell-Daganzo equilibrium flux function. Left: Fundamental diagram in state
space coordinates. Right: Fundamental diagram in flux-density coordinates. The equilibrium is
the usual triangular diagram as in figure 3.3. A two-dimensional off-equilibrium set of parameters
(striped domain) is modeled in congestion.

Remark 3.8. The left boundary of the congested domain is a convex curve in
(ρ, q) coordinates (in figure 2.1 for the Colombo phase transition model as in figure 3.4
for the new model derived). Thus Ωc is not convex in (ρ, q) coordinates.

The analysis of the congestion phase of the model (3.3) is outlined in table 3.1.

Eigenvalues
λ1(ρ, q) = veq

c (ρ) (1 + q) + q veq
c (ρ) +

ρ (1 + q)∂ρveq
c (ρ)

λ2(ρ, q) = veq
c (ρ) (1 + q)

Eigenvectors r1 =

(

ρ
q

)

r2 =

(

veq
c (ρ)

−(1 + q) ∂ρveq
c (ρ)

)

Nature of the
Lax-curves

∇λ1.r1 = ρ2 (1 + q)∂2
ρρveq

c (ρ) +

2 ρ (1 + 2 q) ∂ρveq
c (ρ) + 2 q veq

c (ρ)
∇λ2.r2 = 0

Riemann-
invariants

q/ρ veq
c (ρ) (1 + q)

Table 3.1

Algebraic features of the extended Colombo phase transition model for the congestion phase.

3.2.2. Physical and mathematical considerations. Physical interpretation
and mathematical conditions translate into the following conditions:

Condition 3.9. Positivity of speed In order to maintain positivity of vc(·, ·)
on the congested domain, one must have:

∀ q ∈ [q−, q+] 1 + q > 0 (3.6)

which is satisfied if and only if q− > −1.

Condition 3.10. Strict hyperbolicity of the congested system In order for
the congested part of (3.3) to be strictly hyperbolic, one must have:

∀ (ρ, q) ∈ Ωc λ1(ρ, q), λ2(ρ, q) ∈ R and λ1(ρ, q) 6= λ2(ρ, q).

Given the expression of the eigenvalues outlined in table 3.1, and modulo a rearrange-
ment, this yields:

∀ (ρ, q) ∈ Ωc ρ ∂ρv
eq
c (ρ) + q (veq

c (ρ) + ρ ∂ρv
eq
c (ρ)) 6= 0. (3.7)
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Since veq
c (·) is positive and ρ veq

c (·) is a decreasing function of ρ, this can always be
satisfied for small enough values of q, and when instantiated for specific expressions
of veq

c (·), will result in a bound on the perturbation q.

Condition 3.11. Shape of Lax curves For modeling consistency, we require
the 1-Lax curves to be LD or to have no more than one inflexion point (σi, qi). In
the latter case they should be concave for ρ ≤ σi and convex for ρ ≥ σi. Since the
value of ∇λ1.r1(ρ, q) is the value at (ρ, q) of the concavity of the 1-Lax-curve going
through (ρ, q), the latter is given for any (ρ, q) in the congested domain, by the sign
of the expression:

∇λ1.r1 = ρ (2 ∂ρv
eq
c (ρ) + ρ ∂2

ρρv
eq
c (ρ)) + q (2 veq

c + 4 ρ ∂ρv
eq
c (ρ) + ρ2 ∂2

ρρveq
c (ρ)) (3.8)

which has the sign of the first term for q small enough. So if 2 ∂ρv
eq
c (ρ)+ρ ∂2

ρρv
eq
c (ρ) >

0 the rarefaction waves go right in the (ρ, q) or (ρ, ρ v) plane. When veq
c (·) is such

that 2 ∂ρv
eq
c (ρ) + ρ ∂2

ρρv
eq
c (ρ) = 0 the heading of rarefaction waves changes with the

sign of q (it is the case for the classical Colombo phase transition model [10]), and in
this case the 1-curves are LD for q = 0.
This condition consists in ensuring that expression (3.8) is either identically zero (LD
curve), or has no more than one zero and is an increasing function of the density.

Remark 3.12. One may note that condition 3.10 on the strict hyperbolicity of
the system is satisfied whenever condition 3.9 on the positivity of speed is satisfied.
Indeed equation (3.7) can be re-written as ∀(ρ, q) ∈ Ωc ρ ∂ρv

eq
c (ρ) + q∂ρQ

eq
c (ρ) 6= 0,

which given the first term is negative, is equivalent to ∀(ρ, q) ∈ Ωc ρ ∂ρv
eq
c (ρ) +

q∂ρQ
eq
c (ρ) < 0. For non-zero values of ∂ρQ

eq
c (ρ), it yields q > −ρ ∂ρv

eq
c (ρ)/∂ρQ

eq
c (ρ) =

−1 + veq
c (ρ)/∂ρQ

eq
c (ρ) which is always satisfied when q− > −1, because the second

term of the right hand side is negative.
Remark 3.13. In this model, traffic is anisotropic in the sense that no wave

travels faster than vehicles (λ1(ρ, q) < λ2(ρ, q) = vc(ρ, q)). The speed of vehicles is
always positive and they stop only at maximal density.

3.3. Cauchy problem. In this section we define a solution of the Cauchy prob-
lem for the system (3.3). Following [10], we use a definition derived from [4].

Definition 3.14. Given T in R+, and an initial condition u0 in BV (R), an
admissible solution of problem (3.3) is a function u(·, ·) in BV ([0, T ) × R) such that
the following holds.

(i) For all t in [0, T ), t 7→ u(t, .) is continuous with respect to the L1 norm.
(ii) For all functions ϕ in C1

c ([0, T ) × R 7→ R) with compact support contained
in u−1(Ωf ):

∫ T

0

∫

R

(u(t, x) ∂tϕ(t, x) + Qf(u(t, x))∂xϕ(t, x)) dxdt +

∫

R

u0(x)ϕ(0, x)dx = 0.

(iii) For all functions ϕ in C1
c ([0, T )×R 7→ R2) with compact support contained

in u−1(Ωc):

∫ T

0

∫

R

(u(t, x) ∂tϕ(t, x) + Qc(u(t, x))∂xϕ(t, x)) dxdt +

∫

R

u0(x)ϕ(0, x)dx = 0.

(iv) The set of points (t, x) for which there is a change of phase is the union of
a finite number of Lipschitz curves pi : [0, T ) 7→ R such that if ∃i 6= j and ∃τ ∈ [0, T ]
such that pi(τ) = pj(τ) then ∀t ∈ [τ, T ] we have pi(t) = pj(t).
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(v) For all points (t, x) where there is a change of phase, let Λ = ṗi(t
+), and

introducing the left and right flow at (t, x):

F l =

{

ρ(t, x−) vf (ρ(t, x−)) if ρ(t, x−) ∈ Ωf

ρ(t, x−) vc(ρ(t, x−), q(t, x−)) if ρ(t, x−) ∈ Ωc

F r =

{

ρ(t, x+) vf (ρ(t, x+)) if ρ(t, x+) ∈ Ωf

ρ(t, x+) vc(ρ(t, x+), q(t, x+)) if ρ(t, x+) ∈ Ωc

the following relation must be satisfied:

Λ · (ρ(t, x+) − ρ(t, x−)) = Fr − Fl. (3.9)

Remark 3.15. This definition of solution matches the standard Lax solution
for an initial condition with values in Ωf or Ωc. Equation (3.9) is a Rankine-Hugoniot
relation needed to ensure mass conservation at the phase transition. A Lax-entropy
condition is added at the phase transition to ensure uniqueness. This will be used for
the definition of the Riemann solver in the following sections.

Theorem 3.16. For all u0 in BV with values in Ωf

⋃

Ωc, the problem (3.3)
admits a solution u : [0, +∞) × R 7→ Ωf

⋃

Ωc such that u(0, x) = u0(x). The
interested reader is referred to [10, 11] for a proof.

Remark 3.17. For the initial-boundary value problem, the same result holds
with an appropriate formulation of the boundary conditions [2, 29, 40].

3.4. Definition of parameters. Several parameters are used in the proposed
model, which we summarize below:

(i) The free-flow speed V .
(ii) The maximal density R.
(iii) The critical density at equilibrium σ.
(iv) The critical density for the lower bound of the diagram σ−.
(v) The critical density for the upper bound of the diagram σ+.

These parameters can be identified from experimental data, and enable the definition
of the parameters q− and q+. Figure 3.4 graphically summarizes the definition of the
parameters chosen. However one must note that the constraints on q−, q+ detailed
in (3.6)-(3.7)-(3.8) translate into constraints on σ−, σ+, which can not be freely chosen.

3.5. Numerics.

3.5.1. Modified Godunov scheme. Because of the non-convexity of the do-
main Ωf ∪ Ωc (illustrated in figure 3.4), using the classical Godunov scheme [30] is
not feasible due to the projection step of the scheme. As detailed in [7], we use a
modified version of the scheme which mimics the two steps of the classical Godunov
scheme and adds a final sampling step.

(i) The Riemann problems are solved on a regular time space mesh. When two
space-consecutive cells do not belong to the same phase, the position of the phase
transition at the next time step is computed.

(ii) The solutions are averaged on the domains defined by the position of the
phase transitions issued from Riemann problems from neighboring cells (figure 3.5
and 3.6).
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(iii) A sampling method is used to determine the value of the solution in each
cell of the regular mesh.
This process answers the issues of the classical Godunov scheme with non-convex
domains. Numerical results have shown that it gives accurate results on benchmark
tests (we refer to [7] for more details on the test cases used).

3.5.2. Detail of the numerical scheme. In order to discretize time and space,
we introduce a time step ∆t and a space step ∆x, both assumed to be constant. Let
N, M ∈ N, we call xj = j ∆x for j ∈ Z and tn = n ∆t for n ∈ N. We call
xj−1/2 = xj − ∆x/2 and we define a cell Cn

j = {tn} × [xj−1/2, xj+1/2[ which has a
length ∆x. We call un

j the value of u := (ρ, q) at (tn, xj), and, by extension, in Cn
j .

At each time step, the speed νn
j+1/2 of the phase transition between each pair

of cells (Cn
j , Cn

j+1) is computed, by computing the solution of the Riemann problem
between these two cells (νn

j+1/2 equals zero if un
j and un

j+1 belongs to the same phase).

If we call xn+1
j−1/2 = xj−1/2 + νn

j−1/2 ∆t we can define cell C
n+1

j as C
n+1

j =
{

tn+1
}

×

[xn+1
j−1/2, x

n+1
j+1/2[ which has a length ∆xn

j = xn+1
j+1/2 − x̄n+1

j−1/2, as shown in figure 3.5

and 3.5. The solution to the Riemann problem between cells Cn
j is averaged on cells

t
n+1

t
n

xjxj−1

x
n+1

j−1/2
x

n+1

j+1/2

xj+1

Fig. 3.5. Phase transitions enter cell Cn
j from both sides.

t
n+1

t
n

xjxj−1

x
n+1

j−1/2 x
n+1

j+1/2

xj+1

Fig. 3.6. Phase transitions exit cell Cn
j from both sides.

C
n+1

j , which by construction enclose states which are either free-flowing or congested,
according to the modified Godunov scheme. We define:

(i) g
(

νn,−
j+1/2, u

n
j , un

j+1

)

as the numerical flux between cells Cn
j and Cn

j+1, at
x−xj+1/2

t−tn = νn
j+1/2, and calculated at the left of the discontinuity.

(ii) uR(νn,+
j−1/2, u

n
j−1, u

n
j ) as the solution of the Riemann problem between un

j−1

and un
j , at

x−xj−1/2

t−tn = νn
j−1/2, and calculated at the right of the discontinuity.

The averaging step of the modified Godunov scheme reads:

∆xn
j un+1

j = ∆xun
j − ∆t

(

g
(

νn,−
j+1/2, u

n
j , un

j+1

)

− νn
j+1/2 uR

(

νn,−
j+1/2, u

n
j , un

j+1

))

+∆t
(

g
(

νn,+
j−1/2, u

n
j−1, u

n
j

)

− νn
j−1/2 uR

(

νn,+
j−1/2, u

n
j−1, u

n
j

))

.
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One can notice that when there is no phase transition, νn
j−1/2 = νn

j+1/2 = 0, ∆x = ∆xn
j

and we obtain the classical Godunov scheme. The last step is the sampling phase to
define the solutions on the cells Cn+1

j . Following [7], for cell Cn+1
j we randomly

pick a value between un+1
j−1 , un+1

j and un+1
j+1 according to their rate of presence in

cell Cn+1
j . This is done using the Van der Corput sequence (an)n∈N (3.10) which is a

low-discrepancy sequence in the interval [0, 1] (used in context of Glimm’s scheme [8]).

un+1
j =















un+1
j−1 if an ∈]0, max( ∆t

∆xn
j

νn
j−1/2, 0)]

un+1
j if an ∈] max( ∆t

∆xn
j

νn
j−1/2, 0), 1 + min( ∆t

∆xn
j

νn
j+1/2, 0)[

un+1
j+1 if an ∈ [1 + min( ∆t

∆xn
j

νn
j+1/2, 0), 1[

(3.10)

Remark 3.18. In the general case the congested domain Ωc is not convex in
(ρ, q) coordinates due to the convexity of the metastable border of the domain as
illustrated on figure 3.4. It is therefore needed to add a projection step as a fourth
step of the modified Godunov scheme, which does not affect its accuracy at the first
order.

3.6. Error metric. The error metric chosen to assess the numerical accuracy
of the scheme is the L1(R, L1(R,R2)) relative error between the computed solution
and a wavefront tracking solution [4], which we assume to be the exact solution. We
call u and uc the exact and computed solutions respectively. For the computational
domain [x0, x1] , the error at T is computed as follows:

E(T ) =

∫ T

0

∫ x1

x0
‖u(t, x) − uc(t, x)‖1dxdt

∫ T

0

∫ x1

x0
‖u(t, x)‖1dxdt

.

Following [5], we compute the value of a formal order of convergence γ as:

γ(M) = log
2

(

e(1, M)

e(2, M)

)

with e(p, M) =
h

p

∑

i=1...pM

‖u
h
p
c (p N, i) − u

h
2 p
c (2 p N − 1, 2 i − 1)‖1

where uh
c is the computed solution for a space step h, and the value of N is determined

from the value of M by the Courant-Friedrichs-Lewy (CFL) condition [30].

4. The Newell-Daganzo model. In this section, we use a Newell-Daganzo
velocity function for congestion, i.e. a velocity function for which the flux is affine
with respect to the density. We instantiate the corresponding (ρ, q) model for this
flux function and derive a corresponding Riemann solver, which we implement and
test on benchmark cases.

4.1. Analysis of the equilibrium. According to the requirements detailed in
§ 3.1, we propose to use the following equilibrium function, which is the only function
satisfying all these requirements, and yielding a flux affine with the density:

veq
c (ρ) =

V σ

R − σ

(

R

ρ
− 1

)

.

This velocity function yields an affine flux, and the requirements on the vanishing
point, trend, continuity and concavity property of the equilibrium flux are satisfied.



A GENERAL PHASE TRANS. MODEL FOR VEHICULAR TRAFFIC 13

4.2. Analysis of the perturbation. In the general case, the velocity function
reads:

{

vf (ρ) = V for (ρ, q) ∈ Ωf

vc(ρ, q) = V σ
R−σ (R

ρ − 1) (1 + q) for (ρ, q) ∈ Ωc

(4.1)

where Ωf and Ωc are defined by (3.5). The corresponding fundamental diagram is
shown in figure 3.4. The equilibrium flux is affine with the density, but the 1-Lax
curves outside the equilibrium are either convex or concave in (ρ, ρ v) coordinates
depending on the sign of the perturbation.

Remark 4.1. Note that the expression of the velocity in figure 3.4 is given
by (4.1), depends on the phase, and is therefore set-valued for ρ > σ− which is the
lowest value of density for which congestion can arise. The conditions from § 3.2.2 to
have positive speed and strict hyperbolicity of the congested part of the system (3.3)
reduce to:

q− > −1.

Remark 4.2. As in the original Colombo phase transition model [10], the 1-Lax
curves are LD for q = 0, and the direction of the rarefaction waves change according to
the sign of q. This yields interesting physical interpretations, but makes the Riemann
solver derived more complex than the the one derived for the model presented in the
following section, as it can be seen by comparing § 4.3 and § 5.3.

Remark 4.3. As illustrated on figure 3.4 the flux is linear in congestion at
equilibrium as per the Newell-Daganzo flux function. In remark 3.2 we stated that
this shape models neutral drivers (aggressivity-wise). When the traffic is above equi-
librium, meaning that the velocity is higher that what it is for the same density at
equilibrium, then the 1-Lax curves are concave in (ρ, ρ v) coordinates, meaning that
the drivers are more aggressive. So such a fundamental diagram shape seems to be in
accordance with the intuition, that for a given density, if a set of speeds exists on the
highway, the most aggressive drivers tend to be above the equilibrium velocity. This
is symmetrically true for less aggressive drivers.

Remark 4.4. It is also in accordance with the intuition that the lowest density
for which congestion can arise is due to non-aggressive drivers (convex 1-Lax curves
in ρ = σ−). Indeed, the flux starts to decrease because some drivers are too careful
and tend to drive not fast enough, which is not ‘necessary’ for an average driver.

4.3. Solution of the Riemann problem. Following [11],we construct the so-
lution of the Riemann problem for the system (3.3) with the velocity function defined
by (4.1) and the initial datum:

(ρ, q)(0, x) =

{

(ρl, ql) if x < 0

(ρr, qr) if x > 0.

We note u the vector (ρ, q). We define um by the solution in Ωc of the system:

{

qm

ρm
= ql

ρl

vc(um) = vc(ur)
(4.2)

which yields a quadratic polynomial in ρm. We address the general case where the
solution um of system (4.2) can coincide with ul or ur.
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Case 1: ul ∈ Ωf and ur ∈ Ωf

For all values of (ρl, ρr) the solution consists of a contact discontinuity from ul to ur.
Case 2: ul ∈ Ωc and ur ∈ Ωc

(i) If ql > 0 and vc(ur) ≥ vc(ul) the solution consists of a 1-rarefaction wave
from ul to um and a 2-contact discontinuity from um to ur.

(ii) If ql > 0 and vc(ul) > vc(ur) the solution consists of a shock wave from ul

to um and a 2-contact discontinuity from um to ur.
(iii) If ql = 0 the solution consists of a 1-contact discontinuity from ul to um and

a 2-contact discontinuity from um to ur.
(iv) If 0 > ql and vc(ur) > vc(ul) the solution consists of a shock wave from ul

to um and a 2-contact discontinuity from um to ur.
(v) If 0 > ql and vc(ul) ≥ vc(ur) the solution consists of a 1-rarefaction wave

from ul to um and a 2-contact discontinuity from um to ur.
Case 3: ul ∈ Ωc and ur ∈ Ωf

(i) If 0 > ql the solution consists of a shock wave from ul to um and of a
contact-discontinuity from um to ur.

(ii) If ql = 0 the solution consists of a 1-contact discontinuity from ul to um and
of a contact-discontinuity from um to ur.

(iii) If ql > 0 the solution consists of a 1-rarefaction wave from ul to um and of
a contact-discontinuity from um to ur.
Case 4: ul ∈ Ωf and ur ∈ Ωc Let um− be defined by the solution in Ωc of the

system:

{

qm−

ρm−

= q−
R

vc(um−) = vc(ur)

and let Λ(ul, um−) be the Rankine-Hugoniot phase transition speed between ul and
um− defined by equation (3.9).

(i) If Λ(ul, um−) ≥ λ1(um−) the solution consists of a phase transition from ul

to um− and of a 2-contact discontinuity from um− to ur.
(ii) If Λ(ul, um−) < λ1(um−) let up be defined by the solution in Ωc of the

system:

{

qp

ρp
= q−

R

Λ(ul, up) = λ1(up).

The solution consists of a phase transition from ul to up, of a 1-rarefaction wave from
up to um−, and of a 2-contact discontinuity from um− to ur.

4.4. Benchmark test. In this section we compare the numerical results given
by the modified Godunov scheme on a benchmark test in which the exact solution
can be approximated almost exactly using wavefront tracking [4]. We use the phase
transition model (3.3) in the Newell-Daganzo case (4.1) with the following choice of
parameters: V = 45, R = 1000, σ− = 190, σ = 220, σ+ = 270. The benchmark test is
a phase transition from free-flow to congestion (FF-C) with the following parameters:

(i) ul = (100,−0.6) which corresponds to free-flow with ρ = 100 and v = 45.
(ii) ur = (700, 0.5) which corresponds to a congested situation above equilibrium

with ρ = 700 and v = 8.2.
This configuration gives rise to a phase transition between ul and a congested state
um followed by a 2-contact discontinuity between um and ur (Riemann case 4, first
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Fig. 4.1. Exact solution (continuous line) and computed solution (dashed line) for density (left)
and speed (right). Between the two initial state appears a state um = (474,−0.42) which corresponds
to the intersection of the lower bound of the diagram in congestion (1-Lax curve with q/ρ = q−/R)
with the 2-Lax curve v = vc(ul). In this graph T = 0.55 and ∆x = 0.0013.

subcase), as shown in figure 4.1. The values of the error E(T ) and of the formal
order of convergence γ, as described in § 3.6 for T = 4, (a typical time for which all
interactions have moved out of the computational domain) are outlined in table 4.1.

Cell ♯ E(T ) γ(T )
50 6.0 10−02 4.4 10−01

100 3.8 10−02 5.6 10−01

200 2.5 10−02 5.7 10−01

400 1.6 10−02

Table 4.1

L1 relative error between exact solution and the modified Godunov scheme solution for the test
cases explicitly described above, and formal order of convergence, for different discretization.

5. The Greenshields model. In this section we use a Greenshields model to
describe the velocity function in congestion, i.e. we use a concave quadratic flux
function. First we study the equilibrium flux function, then we present the associated
perturbed model, and finally we derive the corresponding Riemann solver which we
test on a benchmark case.

5.1. Analysis of the equilibrium. We use a quadratic relation to describe the
congestion equilibrium, which because of physical considerations needs to satisfy the
requirements from § 3.1. This leads us to choose the flux as a quadratic function of
the form:

ρ veq
c (ρ) = (ρ − R) (a ρ + b)

such that the vanishing condition at ρ = R is satisfied. Continuity at the critical
density σ yields:

b =
σ V

σ − R
− a σ

so the flux at equilibrium reads:

ρ veq
c (ρ) = (ρ − R)

(

a (ρ − σ) +
σ V

σ − R

)
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with a variation interval for a defined by the second and third conditions of § 3.1 as:

a ∈

[

−
σ V

(σ − R)2
, 0

[

.

Note that for the specific case in which R = 2 σ and a is defined by the fact that the
derivative of the flux equals zero at σ (which reads a = −σ V/(σ − R)2), we obtain
the classical Greenshields flux.

5.2. Analysis of the perturbation. In this section, we analyze a flux func-
tion which is a Newell-Daganzo function in free-flow and a Grenshields function at
the equilibrium in congestion. In agreement with the expression of the equilibrium
obtained in § 5.1, and following the general form given in system (3.4), we write the
perturbed velocity as:

{

vf (ρ) = V for (ρ, q) ∈ Ωf

vc(ρ, q) =
(

1 − R
ρ

) (

a (ρ − σ) + σ V
σ−R

)

(1 + q) for (ρ, q) ∈ Ωc
(5.1)

with a ∈
[

− σ V
(σ−R)2 , 0

[

, and where Ωf and Ωc are defined by (3.5). The corresponding

fundamental diagram is presented in figure 5.1.

0
−1

0

σ− σ σ+ ρ

q

R

q+

q−

0
0

σ− σ σ+ R ρ

ρ v

Fig. 5.1. Phase transition model with a Greenshields equilibrium. Left: State-space coor-
dinates. Right: Flux-density coordinates. Thin solid line: Free-flow. Bold solid line: Congestion
equilibrium. Thin dashed line: Upper bound of congestion. Thin dot-dashed line: Lower bound
of congestion. The equilibrium flux is concave, and all the 1-Lax curves are concave in (ρ, ρ v)
coordinates.

Remark 5.1. The expression of the velocity function given by system (5.1)
enables a set-valued velocity function for ρ > σ−. For a given density the variable
velocity can take several values. The lower bound of congestion is concave, unlike
for the model presented in § 4. This feature may be more appropriate for usual
experimental datasets.

Remark 5.2. Since all the 1-Lax curves are concave in (ρ, ρ v) coordinates,
unlike for the original phase transition model, the rarefactions always go left in (ρ, ρ v)
coordinates as it is the case for concave fluxes usually used in traffic [23, 34]. Another
consequence of the constant concavity of the 1-Lax curves is that the Riemann solver
is much simpler than in the Newell-Daganzo case, as detailed in § 5.3.

Remark 5.3. According to remark 3.2 this flux function models aggressive
drivers only. It is able to model a class of cloud of points observed experimentally
where the congested domain has a concave lower border in (ρ, ρ, v) coordinates.
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The requirements from § 3.2.2 here reduce to:

q− > −
a R

σ V
σ−R + a (2 R − σ)

.

Remark 5.4. It is interesting to note that while before the bound on the
perturbation was given by the fact that the speed had to be positive, here the bound
is tighter because we want also to have all the 1-Lax curves with constant concavity.

Remark 5.5. The lower bound on the perturbation is an increasing function
of the parameter a, so this parameter should be chosen as small as possible to allow
for more liberty, namely amin = −σ V/(σ − R)2 which yields the lowest bound on
qmin
−

= R/(2 σ − 3 R).

5.3. Solution of the Riemann problem. We consider the Riemann problem
for system (3.3) with the velocity function from equation (5.1) and the initial datum:

(ρ, q)(0, x) =

{

(ρl, ql) if x < 0

(ρr, qr) if x > 0.
(5.2)

We follow the method used in [11] to construct the solution. We define um by the
solution in Ωc of the system:

{

qm

ρm
= ql

ρl

vc(um) = vc(ur)
(5.3)

which yields a quadratic polynomial in ρm with one root in [0, R]. In the general case,
the solution um of the system (5.3) can be equal to ul or ur.
Case 1: ul ∈ Ωf and ur ∈ Ωf For all values of (ρl, ρr) the solution consists of a

contact discontinuity from ul to ur.
Case 2: ul ∈ Ωc and ur ∈ Ωc

(i) If vc(ur) ≥ vc(ul) the solution consists of a 1-rarefaction wave from ul to
um and a 2-contact discontinuity from um to ur.

(ii) If vc(ul) > vc(ur) the solution consists of a shock wave from ul to um and a
2-contact discontinuity from um to ur.
Case 3: ul ∈ Ωc and ur ∈ Ωf The solution consists of a 1-rarefaction wave from ul

to um and of a contact-discontinuity from um to ur.
Case 4: ul ∈ Ωf and ur ∈ Ωc Let um− be defined by the solution in Ωc of the

system:
{

qm−

ρm−

= q−
R

vc(um−) = vc(ur)

and let Λ(ul, um−) be the Rankine-Hugoniot phase transition speed between ul and
um− defined by equation (3.9). The solution consists of a phase transition from ul to
um− and of a 2-contact discontinuity from um− to ur.

Remark 5.6. One can note that in this case, the Riemann problem is par-
ticularly simple, with only five different types of solutions, compared to the Newell-
Daganzo case which has eleven different types of solutions.

Remark 5.7. The analysis in the case of a convex equilibrium flux function,
which we do not address in this article is closely related to this case, modulo the sign
of the parameter a and the concavity of the 1-Lax curves.
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5.4. Benchmark test. In this section we compare the numerical results given by
the modified Godunov scheme on a benchmark test considering a wavefront tracking
solution [4] to be the exact solution. We use the phase transition model (3.3) in the
Greenshields case (5.1) with the following choice of parameters: V = 45, R = 1000,
σ− = 188, σ = 200, σ+ = 215. We also choose a = −0.01. The resulting values for
the extrema of the perturbation are q− = −0.34 and q+ = 0.38. The benchmark test
is a phase transition from free-flow to congestion, with the following parameters:

(i) ul = (150,−0.26) which corresponds to ρ = 150 and v = 45.
(ii) ur = (300,−0.02) which corresponds to a congested situation under equilib-

rium with ρ = 300 and v = 28.
This configuration gives rise to a phase transition between ul and a congested state
um followed by a 2-contact discontinuity between um and ur (Riemann case 4) which
is illustrated in figure 5.2. Table 5.1 summarizes the values of the error E(T ), and the
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Fig. 5.2. Exact solution (continuous line) and computed solution (dashed line) for density
(left) and speed (right). Between the two initial state appears a state um = (280.6,−0.094) which
corresponds to the intersection of the lower bound of the diagram in congestion. In this graph
T = 0.37 and ∆x = 0.0025.

formal order of convergence γ, as defined in § 3.6, for different size of the discretization
step, at T = 4.

Cell ♯ E(T ) γ(T )
50 3.5 10−03 3.7
100 1.9 10−03 -1.8
200 1.0 10−03 3.0
400 5.7 10−04

Table 5.1

L1 relative error between exact solution and the modified Godunov scheme solution for the test
cases explicitly described above, and for different number of space cells.

6. Conclusion. This article reminded the fundamental features of the Colombo
phase transition model, which were extended to construct a class of models in which
the fundamental diagram is set-valued in the congested regime. The notion of equi-
librium which provides the basis for the construction of the 2 × 2 phase transition
models was introduced. General conditions which enable the extension of the original
Colombo phase transition model to this new class of 2 × 2 phase transition models
were investigated. A modified Godunov scheme which can be applied to models with
non-convex state-space was used to solve these equations numerically. The model was
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instantiated for two specific flux functions, which include the Newell-Daganzo flux
function (affine) and the Greenshields flux function (quadratic concave). A discussion
of the choice of parameters needed for each of the models was conducted. The solu-
tion of the Riemann problem was derived, and a validation of the numerical results
using benchmark tests was conducted. Wavefront tracking methods were assumed to
provide an almost exact solution, which was used for comparison with the numerical
solution. Open questions for this model include the capability of the model to accu-
rately reproduce traffic features experimentally measured on highways, which is the
focus of ongoing work. Experimental validations of the model should reveal its capa-
bilities of reproducing traffic flow more accurately than existing models. In addition,
the specific potential of the model to integrate velocity measurements (through proper
treatment of the second state variable of the problem) is a significant advantage of
this model over any first order model for which the density-flux relation is single val-
ued. The proper use of this key feature for data assimilation is also an open problem,
which could have very promising outcomes for highway traffic state estimation.
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