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Abstract

In this paper, we develop new algorithms for parameter estimation in the case of models type
Input/Output in order to represent and to characterize a phenomenon Y . From experimental
data Y1, ..., Yn supposed to be i.i.d from Y , we prove a risk bound qualifying the proposed
procedures in terms of the number of experimental data n, computing budget m and model
complexity. The methods we present are general enough which should cover a wide range of
applications.

1 Introduction

As in many statistical problems, we are interested to investigate the stochastic behavior of a
random variable Y . We have at disposal an i.i.d sample Y1, ..., Yn. These data come from ex-
periments that could be real or the result of a computer code. In an industrial context, it is not
rare that the size of the available set of data is small. This is due either to the cost of each real
experiment or to the very long time needed for each run of a simulation code. It is encountered
in various �eld of industry: meteorology, oil extraction, nuclear security, aeronautic, mechanical
engineering etc...
Besides these costly experiments or codes, various reduced models are available. Even if they
still are complicated, one can use them to simulate in a reasonable computing time and obtain
large samples from simulations. Of course, these reduced models depend on parameters that
are not well known and need to be estimated. So that the reduced models take the following
form: (x,θ) ∈ X × Θ 7→ h(x,θ). It is important to note that when the model h varies, the
set of input variables X and parameters Θ may change too. Moreover, theses variables are not
directly related to the "conditions" leading to the "experimental" data Y1, ..., Yn. Indeed, in
our study, we don't suppose having the data (x1, Y1), ..., (xn, Yn) which di�ers our framework
from the classical regression one. That's why we assume that the available data reduced to
Y1, ..., Yn: this includes the cases where the experimental conditions are not available or where
the input of the complex code, modeling the phenomenon, are not clearly related to the input
of the reduced models.
Let us take an example of particular interest coming from EADS 4 Research department: the

1Institut de Mathématiques de Toulouse - EADS Innovation Works, 12 rue Pasteur, 92152 Suresnes
2Université Paris Descartes, 45 rue des saints pères, 75006 Paris
3Institut de Mathématiques de Toulouse, 118 route de Narbonne F-31062 Toulouse
4EADS : European Aeronautic Defense and Space Company

1



e�ect of an electromagnetic �eld on the behavior of an aircraft. When lightning or an electro-
magnetic �eld strike an aircraft, sensors measure data corresponding to the intensity of such
�eld in various part of the aircraft. The data recorded are dispersed due to the intrinsic vari-
ability of the phenomenon. In our framework, information of one sensor is represented by the
sample Y1, ..., Yn. On another side, we dispose of several computer codes h modeling the elec-
tromagnetic �eld in function of input variables z. These input variables take the following form,
z = (x,θ), where x represents variables not well controlled and θ a vector of parameters to
be estimated, corresponding to the �eld properties (angles, atmospheric conditions etc...). The
uncontrolled variables x will be modeled by a random variable X with distribution Px. This
distribution may be known or not, we suppose at least having at disposal a sample X1, ...,Xm

where m >> n .
The computer code are complex systems, i.e the result of interconnected disciplines providing a
granular modeling. Actually, one disposes of a set of models H covering all available models:
from the simplest to the most complicated. Hence, another important issue would be to "select"
a model among the set H for a speci�c use. We don't treat this aspect in this paper, we work
with one model h only.
So, shortly speaking, our goal is to construct a Random Simulator, X 7→ ĥ(X, θ̂) with X some
random variable, predicting as well as possible the observed data Y1, ..., Yn. In this setting,
it may be non-signi�cant to talk about function approximation. For instance, suppose that
Y ∼ U([0, 1]) (uniform distribution on [0, 1]) and consider the model h(X,θ) = θ1 + θ2 X where
θ = (θ1, θ2) and X ∼ U([0, 1]). The cases θ1 = (0, 1) and θ2 = (1,−1), corresponding to
models h(x,θ1) = x and h(x,θ2) = 1− x respectively, produce the (same) Random Simulator
h(X, θ̂) ∼ U([0, 1]) (θ̂ = θ1 or θ2). Hence, this Random Simulator predicts like the variable of
interest Y but with two di�erent models (the models or the parameters are not identi�able).
Thus, the function approximation approach can be meaningless without preliminary precau-
tions.
This paper is the theoretical part of a work on industrial applications in the �eld of "Uncertainty
Management" [2]. We aim at constructing a data-dependent model which outputs are "close
to" some observed data (experimental data). The results we present are theoretical in that the
estimation and selection algorithms we propose don't include practical implementations. The
same is true for the modeling aspect: we deal with (input/output) models without specifying
what can be done in practice. For instance, we do not deal with the pertinence of the possible
metamodels (see [10, 24, 17, 19]). Here, we don't talk about the impact of modeling technics,
this is let for a forthcoming paper where we will apply some results obtained in this study in
an industrial context.
The main tool of our development is the empirical processes theory. This theory constitutes
the mathematical toolbox of asymptotics statistics and was �rst explored in the 1950's by the
work on Functional Central Limit Theorem [4]. Along the years, the development of empirical
processes theory increased successfully thanks to work of many contributors, R.M. Dudley [5],
D. Pollard [16], P. Gaenssler [6], Galen R. Shorack and Jon A. Wellner [18] and others. More
recently, many references give a general overview of this theory with its applications to statis-
tics, for example [23, 21, 12]. Empirical processes give power tools for evaluating statistical
estimation and inference problems. In particular, we use concentration inequalities to derive
risk bounds following the work of [20], [15] and [11] among others.
Estimation based on minimizing a function was introduced by Huber in 1964 [8] where he
proposed generalizing maximum likelihood estimation. The estimators resulting are called M-
estimator ("M" for minimizing or maximizing ) [9]. The class of M-estimators is a broad class
because many estimation procedure can be viewed as M-estimation, maximum likelihood and
least-squares estimators are some of the most important examples. Asymptotic properties of
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these estimators were widely studied in a general context, and many authors like [21] or [22]
used empirical processes theory which turn out to be a very valuable tool.
We present a general method where the criterion to minimize depends on both experimental
and simulated data. This paper is divided into �ve parts. In Section 2 we describe our general
framework. In Section 3 we establish Theorem 4.1 providing a risk bound for inverse problems
based on both experimental and simulated data. In Section 6 we discuss about constants in
Theorem 4.1.

2 General setting

2.1 The model

- Probabilistic modeling.
Let (Ω,A,P) be a probability space. We assume that all random variables are de�ned on this
probability space.
Let a complex phenomenon modeled by a random real valued variable Y ∈ Y, with dis-
tribution unknown Q and f the associated (Lebesgue) density function. Let assume that
Y ⊂ [−M,M ], M > 0.
Suppose that a n-sample Y1, ..., Yn is available: we call experimental data.
Next, we suppose that this complex phenomenon can be represented by the outputs h(x,θ)
given by models h which belong to a set H

h : X ×Θ −→ Y
(x,θ) 7−→ h(x,θ)

where X ⊂ Rd (input space), Θ ⊂ Rk compact (parameters space).
We equip the input space X with a probability measure Px which forms a probability space
(X ,B,Px). The probability measure Px is not supposed to be known, we will only dispose
of a sample drawn from this distribution. In the case where Px is known, without loss of
generality, one can simply consider the uniform distribution on [0, 1] provided to apply a well
known probabilistic transformation.
The input vector is a random vector X de�ned on this space, and so, the output vector h(X,θ)
is a random real valued variable, for each θ ∈ Θ.
The space Y is equipped with a σ-algebra E so as to ensure the measurability of the functions

h(·,θ) : (X ,B,Px) −→ (Y, E)

X 7−→ h(X,θ)

Moreover, we suppose given m realizations of the input random vector X,

X1, ...,Xm

which provides m output simulated data

h(X1,θ), ..., h(Xm,θ) for all θ ∈ Θ.

Remark 2.1. In practice, the data X1, ...,Xm may either arise from a data base (from experi-
ments etc...) or simply arise from simulations of the random variableX with known distribution
Px.
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Figure 1: Example of model outputs with 2 di�erent parameters.

In this paper, we develop a general method for estimating the parameter θ based on the training
data

Y1, ..., Yn;X1, ...,Xm .

The method we propose is general enough to include some speci�c problems met in practice.
Indeed, two kinds of statistical analysis involving inverse problems can be considered: Identi�-
cation and Prediction.

- Identi�cation.
This analysis consists in estimating the "true" parameter θ?. It aims at estimating "physical"
parameters having a real signi�cation like dimensions or material properties for instance.

- Prediction.
In prediction, one wants to estimate a parameter θ? (not necessarily unique) in order to predict
the random phenomenon Y . Informally, one hopes that

h?(X,θ?) ≈ Y .

Here, the parameter θ? may have no real signi�cation. It is the case in model calibration for
example.

2.2 Model performance

2.2.1 Tools for evaluating the model performance

Let introduce some tools to evaluate the quality of a model h ∈ H parameterized by θ ∈ Θ.

- Feature of probability measure, model, contrast and Risk function.

A feature of the distribution µ is de�ned following the De�nition ?? in Chapter ??, that is,
as a quantity ρF (µ) ∈ F where F is called the feature space.

Notice that the feature space F can be either a scalar space (mean, threshold probability, etc...)
or a functional space (density distribution, cumulative distribution function).
We equip the feature space F with the norm || · ||F which can be either the absolute value norm
| · | when F ⊂ R, or a Lr-norm (r ≥ 1) when F is a functional space (with functions de�ne on
Y).
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In all what follows, we denote by ρh(θ) a feature of the distribution of the random model output
h(X,θ). In the previous chapter, we used the notation ρF (θ), but especially in this chapter,
we will use the writing ρh(θ) in order to emphasize the fact that the quantities of interest we
deal with are relative to the numerical model h .

We call model (feature space) a subset F ⊂ F . In particular, we will deal with a model
induced by h given by

Fh,θ = {ρh(θ) , θ ∈ Θ} ⊂ F .(1)

De�nition 2.1. Contrast and risk function.

A contrast function (with value in L1(Q)) is any function

Ψ : F −→ L1(Q)(2)

ρ 7−→ Ψ(ρ, ·) : y ∈ Y 7−→ Ψ(ρ, y) ,

such that
ρ∗ = Argmin

ρ∈F
EY Ψ (ρ, Y )

is unique.
We call risk function the application

∀ ρ ∈ F , RΨ(ρ) := EY Ψ (ρ, Y ) .

On the model Fh,θ ⊂ F , we denote the risk by

RΨ(h,θ) := EY Ψ (ρh(θ) , Y ) .(3)

Next, for a random variable ξ, we use the notation Eξ for the expectation under the variable ξ.

Example 2.1. Some classical features and associated contrasts.

- F = R : we may consider ρ(µ) =
∫
uµ(du) = Eµ(ξ) (mean), ρ(µ) =

∫
1 [s,+∞[(u)µ(du) =

µ(ξ > s) (exceeding probability), etc...

Mean-contrast

Ψ (ρ, y) = (y − ρ)2

- F = {set of density functions}

log-contrast
Ψ (ρ, y) = − log ρ(y)

L2−contrast
Ψ (ρ, y) = ||ρ||22 − 2 ρ(y)

- etc...

See Table 1, page 11.
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Example 2.2. Some classical risk functions.

By elementary calculus, we see that

- the mean-contrast gives a distance between means (up to a constant term)

RΨ(h,θ) = (E(Y )− ρh(θ))2 + V ar(Y )

- the log-contrast gives the Kullbach-Leibler divergence (up to a constant term)

RΨ(h,θ) = KL(f, ρh(θ))− E(log(Y )) ,

where KL(g1, g2) =
∫

log(g1

g2
)(y) g1(y) dy,

- the L2−contrast gives a L2 distance between density functions (up to a constant term)

RΨ(h,θ) = ‖ρh(θ)− f‖22 − ‖f‖22 .

In view of that examples, it make sense to investigate models h or/and parameters θ pro-
viding small risk values.

Let precise what we mean by complex models in view of statistical using.

- Complex models.

For θ ∈ Θ, let consider a feature ρh(θ) of the random model output h(X,θ).
We say that h is complex if the feature ρh(θ) is analytically unreachable in θ.
For instance, if ρh(θ) =

∫
X h(x,θ)Px(dx) , this integral is not necessarily tractable, even if the

probability measure Px is known.
Complex models can arise from several ways. For example, the function h(·,θ) can have a
complicated form due to the high complexity of the modeling, or the function can be a black
box function input/output and so, not with an analytical form.
This situation is very common in engineering, where complex models exist and are only known
through simulations

(X1, h(X1,θ)) , ..., (Xm, h(Xm,θ)) for all θ ∈ Θ .

This aspect is the principal motivation of our work.

3 Inverse Problem.

Our goal is to compute a parameter θ ∈ Θ making the risk function RΨ(h,θ) as small as
possible.

- Oracle.

We want to estimate a parameter θ? minimizing the risk (3), i.e

θ? ∈ Argmin
θ∈Θ

RΨ(h,θ) .(4)

In the literature, the parameter θ? is also called the oracle. This term was introduce by Donoho
and Johnstone [3].
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Notice that it may exist more than one parameter minimizing the risk RΨ(h,θ). The minimal
risk we can reach is RΨ(h,θ?), also called ideal risk.

However, the risk function RΨ(h,θ) is uncomputable (hence θ?) for two reasons. First, the
measure Q is unknown, and second, because we are dealing with complex models.

We aim at computing a parameter θ̂ that performs as well as the oracle θ?, that is

RΨ(h, θ̂) ≈ RΨ(h,θ?) .

In what follows, we establish a risk bound of the form

RΨ(h, θ̂) ≤ CRΨ(h,θ?) + ∆ .

We propose the following estimation procedure to built θ̂.

As Q is unknown, we replace it by its empirical version

Qn :=
1

n

n∑
i=1

δYi

based on Y1, ..., Yn. The approximation of the risk becomes

1

n

n∑
i=1

Ψ (ρh(θ) , Yi) .

Then, it remains the feature ρh(θ) which is supposed analytically intractable (for each θ). We
propose to estimate the feature as follows.

- Plug-in estimator.

We denote by ρmh (θ) a plug-in estimator of ρh(θ) based on h(X1,θ), ..., h(Xm,θ). We
suppose that ρmh (θ) takes the following form

ρmh (θ) :=
1

m

m∑
j=1

ρ̃(h(Xj ,θ))(5)

where 1
m ρ̃ : Y → F is a weight function depending on the contrast Ψ considered.

For simplicity, we may also call ρ̃ weight function.

Example 3.1. Examples of weight functions.

- mean-contrast
1

m
ρ̃(y) =

y

m

- log-contrast or L2-contrast

1

m
ρ̃(y)(·) =

1

m
Kb( · − y)

where Kb( · − y) = 1
bK( · −yb ) for a kernel K() and a bandwidth b.
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Figure 2: Example of weight function in the case of the mean (top) and the case of the density
(bottom).

See Figure (2) for an illustration.

Remark 3.1. The weight function 1
m ρ̃(y) evaluated at y ∈ Y can be either a scalar value ( 1

m
for the mean) or a function (a kernel for the density), see Figure (2).
Without loss of generality, one can see the weight function 1

m ρ̃(y) at a point y ∈ Y as a function,

ρ̃(y) : λ ∈ Y 7−→ ρ̃(y)(λ) .

For instance, in the case where 1
m ρ̃(y) = y

m , the function ρ̃(y)(λ) is constant in λ.

For notation convenience, we may use the notation ξ1..l for a sample ξ1, ..., ξl of random variables,
and Eξ1..l will be the expectation under the joint law of (ξ1, ..., ξl).

De�nition 3.1. We denote by σmh (θ), called simulation error, the error committed estimating
the feature ρh(θ) by the estimator ρmh (θ),

σmh (θ) := ||ρmh (θ)− ρh(θ)||F .

By triangular inequality and the fact that EXρ̃(h(X,θ)) = EX1..mρ
m
h (θ) , it holds

σmh (θ) = ||ρmh (θ)− ρh(θ)||F
= ||ρmh (θ)− EX1..mρ

m
h (θ) + EX1..mρ

m
h (θ)− ρh(θ)||F

= ||ρmh (θ)− EXρ̃(h(X,θ)) + EXρ̃(h(X,θ))− ρh(θ)||F
≤ ||ρmh (θ)− EXρ̃(h(X,θ))||F + ||EXρ̃(h(X,θ))− ρh(θ)||F

≤

∣∣∣∣∣∣
∣∣∣∣∣∣ 1

m

m∑
j=1

[ρ̃(h(Xj ,θ))− EXρ̃(h(X,θ))]

∣∣∣∣∣∣
∣∣∣∣∣∣
F

+ bmh (θ)(6)

with

bmh (θ) := ||EXρ̃(h(X,θ))− ρh(θ)||F(7)
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the bias error. For example, in the case where ρ̃(y)(·) = Kb( · − y), the bandwidth will depend
on m (bm).

The �rst term in the right hand side of inequality (6) is a variance (random) term, and the
second is a bias (deterministic) term.
For our statistical analysis, the variability term∣∣∣∣∣∣

∣∣∣∣∣∣ 1

m

m∑
j=1

[ρ̃(h(Xj ,θ))− EXρ̃(h(X,θ))]

∣∣∣∣∣∣
∣∣∣∣∣∣
F

will play a crucial role.

Assumption 3.1. We assume that the plug-in estimator ρmh (θ) (5) is uniformly asymptotically
unbiased, i.e it exists some constant bh(m) depending on h and m such that the bias error (7)
satis�es

sup
θ∈Θ

bmh (θ) < bh(m) <∞ ,

and bh(m)→ 0 with m.

For instance, in the case where ρh(θ) is the density (of h(X,θ)), the quantity EXρ̃(h(X,θ)) =
EXKb( · −h(X,θ)) may be choose to be the expectation of a kernelKb with bandwidth b. Under
right conditions on the set of densities {ρh(θ), θ ∈ Θ}, one can hope that

sup
θ∈Θ

bmh (θ) −→
b→0

0

See the example given in Subsection 6.2.

Finally, the criterion we propose to minimize has the form

1

n

n∑
i=1

Ψ

 1

m

m∑
j=1

ρ̃(h(Xj ,θ)) , Yi

 ,

which provides the estimator

θ̂ = Argmin
θ∈Θ

1

n

n∑
i=1

Ψ

 1

m

m∑
j=1

ρ̃(h(Xj ,θ)) , Yi

 ,(8)

or

θ̂ = Argmin
θ∈Θ

n∑
i=1

Ψ

 1

m

m∑
j=1

ρ̃(h(Xj ,θ)) , Yi

 .

We give some examples of estimators θ̂.

Example 3.2. Examples of estimators.

- mean-contrast

θ̂M = Argmin
θ∈Θ

n∑
i=1

 m∑
j=1

(Yi − h(Xj ,θ))

2
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- log-contrast

θ̂log = Argmin
θ∈Θ

−
n∑
i=1

log

 m∑
j=1

Kb(Yi − h(Xj ,θ))


- L2-contrast

θ̂L2 = Argmin
θ∈Θ


∥∥∥∥∥∥
m∑
j=1

Kb( · − h(Xj ,θ))

∥∥∥∥∥∥
2

2

− 2m

n

n∑
i=1

m∑
j=1

Kb(Yi − h(Xj ,θ))

 .

Remark 3.2. 1. The estimator θ̂ depends on the model h, the number of experimental data
n and the number of simulation data m .
2. The number of simulations m have to be thought greater than n (number of experimental
data). It appears natural to think that experimental data are di�cult to obtain whereas simu-
lated data are more reachable.

We recall that the issue is the statistical properties of this procedure taking into account the
two kinds of data: experimental and simulated data, which is non classical in statistics. Indeed,
once we de�ne the procedure for computing θ̂, we have to qualify the quality of this procedure.
It's the topic of the following section.

4 Main Result

In this section, we aim at establishing a risk bound which provides a quali�cation of the esti-
mation procedure previously de�ned.
We recall that

RΨ(h,θ) = EY Ψ (ρh(θ), Y ) ,

θ? ∈ Argmin
θ∈Θ

RΨ(h,θ) ,

and

θ̂ = Argmin
θ∈Θ

1

n

n∑
i=1

Ψ

 1

m

m∑
j=1

ρ̃(h(Xj ,θ)) , Yi

 .

Now, we give some de�nitions and notations useful for setting the Theorem 4.1.

Denote by
Gn =

√
n(Qn −Q)

and
Kx
m =

√
m(Px

m − Px) ,

the Q-empirical process (based on Y1, ..., Yn) and Px-empirical process (based on X1, ...,Xm),
respectively.
Let the classes of functions

W(ρ̃,Ψ) = {y ∈ Y 7→ Ψ(ρ̃(λ) , y) , λ ∈ Y} ,(9)

P(ρ̃,h) = {x ∈ X 7→ ρ̃(h(x,θ))(λ) , (θ, λ) ∈ Θ× Y} .(10)
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W(ρ̃,Ψ) P(ρ̃,h) AΨ

mean-contrast y 7→ (y − λ)2, x 7→ h(x,θ), 4M
λ ∈ Y θ ∈ Θ

log-contrast y 7→ − log (Kb(y − λ)) , x 7→ Kb(λ− h(x,θ)), ‖f‖2/η
λ ∈ Y (λ,θ) ∈ Θ× Y

L2-contrast y 7→ ||Kb( · − λ)||2 − 2Kb(y − λ), idem 2 (‖f‖2 +B)
λ ∈ Y

Table 1: Example of classes of functions and constant AΨ (see section (6.1)).

Next, we use the following notation: let P be some measure and G a class of real valued
functions. We denote by

P g :=

∫
g(u)P (du) g ∈ G

and
‖P‖G := sup

g∈G
|P g| .

With this notation, for a class of functions GY , : Y → R we have

Gn g =

∫
Y
g(u)Gn(du)

=
√
n

∫
Y
g(u)(Qn −Q)(du)

=
1√
n

n∑
i=1

(g(Yi)− E(g(Y ))) .

Also, for a class of functions GX , : X → R

Kx
m g =

1√
m

m∑
j=1

(g(Xj)− E(g(X))) .

Remark 4.1. The quantities ‖Gn‖GY and ‖Kx
m‖GX are nonnegative real valued random vari-

ables.

In our applications, the class of functions GY is W(ρ̃,Ψ) and GX is P(ρ̃,h), respectively de�ned in
(9) and (10).

De�nition 4.1. Tightness.

Let (ξl)l≥1 be a sequence of real value random variables de�ned on the probability space
(Ω,A,P).
This sequence is tight if for all ε > 0, it exists some compact Kε ⊂ R such that

∀ l ≥ 1 , P (ξl ∈ Kε) ≥ 1− ε .

In particular, if the ξl are nonnegative, the sequence is tight if for all ε > 0 it exists some
constant K̄ε ≥ 0 such that

∀ l ≥ 1 , P
(
ξl ≤ K̄ε

)
≥ 1− ε .

We make the following assumption.
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Assumption 4.1. We assume that the contrast Ψ satis�es

- for all y ∈ Y, the function ρ 7→ Ψ(ρ, y) is convex ,

- for all y ∈ Y and ρ1, ρ2 ∈ F

|Ψ(ρ1, y)−Ψ(ρ2, y)| ≤ LΨ(y) ||ρ1 − ρ2||F

with LΨ : Y → R satisfying AΨ := EY LΨ(Y ) < ∞ .

The function LΨ (hence the constant AΨ) doesn't depend on ρ1 and ρ2.

The contrasts given in Example 2.1 satisfy this assumption under right conditions on the
distribution of Y .

Theorem 4.1. Risk bound for Parameter Estimation.

Under the Assumptions (4.1) and (3.1), suppose that the sequences of random variables ||Gn||W(ρ̃,Ψ)

and ||Kx
m||P(ρ̃,h)

are tight. Denote by K̄ε
(ρ̃,Ψ) and K̄ε

(ρ̃,h) the associated constants, uniform (or

decreasing) in n and m, respectively.
Let the feature space F equipped with either the absolute value norm, or some Lr norm.
Then, for all ε > 0, with probability at least 1− 2ε it holds

RΨ(h, θ̂) ≤ inf
θ∈Θ

(RΨ(h,θ)) +
Kε

(ρ̃,Ψ)√
n

(
1 +

√
n

m
(Kε

(ρ̃,h) +Bm)

)
where the constants Kε

(ρ̃,Ψ), K
ε
(ρ̃,h) depend on K̄ε

(ρ̃,Ψ), K̄
ε
(ρ̃,h), AΨ, M and r. Bm is a bias factor

depending on bh(m).

5 Some comments

It is of interest to compare the methodology we develop with the classical framework where the
feature ρh(θ) of the random model output h(X,θ) is analytically tractable. In this case, the
estimation procedure (8) is classically

θ̂n = Argmin
θ∈Θ

1

n

n∑
i=1

Ψ (ρh(θ) , Yi) ,

and we can derive immediately a risk bound.

Proposition 5.1. Basic risk bound.

It holds that

RΨ(h, θ̂n) ≤ inf
θ∈Θ

(RΨ(h,θ)) +
2√
n
‖Gn‖W̃Ψ

,(11)

where
W̃Ψ = {y ∈ Y 7→ Ψ(ρh(θ) , y) , θ ∈ Θ} .

12



Proof. The proof comes from a classical calculus in M-estimation, see for example [22] (p. 46)
.

Most of statistical procedures, as likelihood, regression, classi�cation etc... can be written
like (11). Such procedures have been widely studied with a large literature available. Recently,
authors use the Empirical Processes theory (see [21, 22, 23, 12] among others) to derive limit
theorems. Indeed, the asymptotic (and non-asymptotic) properties of the estimator θ̂n can
be given from the behavior of the residual term 2√

n
‖Gn‖W̃Ψ

. In particular, for identi�cation

problem (i.e θ? is unique), consistency and rate of convergence are derived from the �uctuations
of the random variable ‖Gn‖W̃Ψ

, see for example [21].
Suppose for a moment that it exists some constant (uniform in n) such that with high probability

‖Gn‖W̃Ψ
≤ K

2
,

then by inequality (11), with high probability

RΨ(h, θ̂n) ≤ inf
θ∈Θ

(RΨ(h,θ)) +
K√
n
.(12)

Thus, depending on whether the constant K is sharp or not, one can bound properly the es-
timation error. To compute such (sharp) constant K is di�cult in general, we can refer to
[13, 20, 23, 14].

Inequality (11) can not be applied to our framework because the induced procedure θ̂n involves
the quantity ρh(θ) intractable for complex models.
The result of Theorem 4.1 is non-asymptotic, i.e valid for all n ≥ 1 and m ≥ 1 under mentioned
assumptions. The fundamental point of this theorem is the "concentration of the measure
phenomenon" (Ledoux [13], Billingsley [1]) presents in the assumptions, more precisely, when
we supposed the tightness of the sequences of the random variables ‖Gn‖W(ρ̃,Ψ)

(Y1..n-dependent)
and ‖Kx

m‖P(ρ̃,h)
(X1..m-dependent). Moreover, we insist on the fact that the constants K̄ε

(ρ̃,Ψ)

(that bounds ‖Gn‖W(ρ̃,Ψ)
) and K̄ε

(ρ̃,h) (that bounds ‖K
x
m‖P(ρ̃,h)

) are uniform (or decreasing) in n
and m, respectively. The advantage of this uniformity is the explicit expression of the residual
term

Kε
(ρ̃,Ψ)√
n

(
1 +

√
n

m
(Kε

(ρ̃,h) +Bm)

)
(13)

depending on the data (n and m) on one hand, and on the constants K̄ε
(ρ̃,Ψ), K̄

ε
(ρ̃,h) and Bm

on the other hand. However, although the existence of such constants are proved or supposed,
their computation is more tedious. Indeed, we need results about tail bounds for Gaussian and
Empirical Processes. We will discuss in Section 6.3 how to compute properly such constants
using concentration inequalities. Let assume for a moment the existence of these constants.
We showed that the estimation procedure θ̂ de�ned in (8) "mimic" the ideal risk RΨ(h,θ?) =
infθ∈Θ (RΨ(h,θ)) up to the residual term (13). Making m −→ +∞ , this residual becomes

simply
Kε

(ρ̃,Ψ)√
n

which has the same form as those found in classical cases (12). We �nd the usual

rate of convergence
√
n.

In our purpose, the factor (
1 +

√
n

m
(Kε

(ρ̃,h) +Bm)

)
> 1

we call simulation factor, is due to simulation used estimating the feature ρh(θ) of the random
output h(X,θ) by a plug-in estimator ρmh (θ) we de�ned in (5).
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Example 5.1. For unbiased plug-in estimator ρmh (θ) we have Bm = 0, so the simulation factor
is simply (

1 +

√
n

m
Kε

(ρ̃,h)

)
.

It appears that for �xed n, one should have a number of simulation data m greater than n.
For instance, for some β > 1, if we have

m = nβ or n (log(n))β ,

we can make the simulation factor close to 1.

Remark 5.1. The term infθ∈Θ (RΨ(h,θ)) in Theorem 4.1 appears as the best (smaller) error
one can make. This kind of error is commonly called approximation error or systematic error. It
can be understood as the "distance" between the a priori knowledge one has with the observed
phenomenon.

By Examples (2.2) and (3.2), we can write the risk bound in Theorem 4.1 in speci�c cases
as follows.

Example 5.2. Risk bounds in speci�c cases.

- mean-contrast(
E(Y )− ρh(θ̂M )

)2
≤ inf

θ∈Θ

(
(E(Y )− ρh(θ))2

)
+
Kε

(ρ̃,M)√
n

(
1 +

√
n

m
(Kε

(ρ̃,h) +Bm)

)
In practice, Bm = 0.

- log-contrast

KL(ρh(θ̂log), f) ≤ inf
θ∈Θ

(KL(ρh(θ), f)) +
Kε

(ρ̃,log)√
n

(
1 +

√
n

m
(Kε

(ρ̃,h) +Bm)

)
- L2-contrast

‖ρh(θ̂L2)− f‖22 ≤ inf
θ∈Θ

(
‖ρh(θ)− f‖22

)
+
Kε

(ρ̃,L2)√
n

(
1 +

√
n

m
(Kε

(ρ̃,h) +Bm)

)
.

The terms infθ∈Θ

(
(E(Y )− ρh(θ))2

)
, infθ∈Θ (KL(ρh(θ), f)) and infθ∈Θ

(
‖ρh(θ)− f‖22

)
are the

ideal risks infθ∈Θ (RΨ(h,θ)) in di�erent situations. These examples show clearly that these
terms represent a "distance" between the "target" and the "best" information available, see
Remark 5.1. If these terms are supposed equal to zero, it means that we believe that for
instance the density f belongs to the family of densities {ρh(θ), θ ∈ Θ}. In this case we obtain
for example (L2-contrast)

‖ρh(θ̂L2)− f‖22 ≤
Kε

(ρ̃,L2)√
n

(
1 +

√
n

m
(Kε

(ρ̃,h) +Bm)

)
.

However, such a priori has to be made with precautions.
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6 About the constants in Theorem 4.1

6.1 Constant AΨ

We will show how we obtain the constants AΨ in Table (1). Let recall that Y ∈ [−M,M ].

- mean-contrast.
Let y ∈ Y, ρ1, ρ2 ∈ F ⊂ Y. We have∣∣(y − ρ1)2 − (y − ρ2)2

∣∣ = |ρ1 − ρ2| |2y − (ρ1 − ρ2)|
≤ |ρ1 − ρ2| 4M .

- log-contrast.
Let y ∈ Y, ρ1, ρ2 ∈ F , with F some set of density functions.
Moreover, suppose that it exists some η > 0 such that

∀ ρ ∈ F ρ > η

By Taylor Lagrange formula, it exists some τ ∈ (ρ1(y), ρ2(y)) such that

|log (ρ1(y))− log (ρ2(y))| =
1

τ
|ρ1(y)− ρ2(y)|

≤ 1

η
|ρ1(y)− ρ2(y)|

since ρ > η for all ρ ∈ F and τ > η.
Taking the expectation under the measure Q (with Lebesgue density f) involves the quantity
EY (|ρ1(Y )− ρ2(Y )|) in the right member. By Cauchy-Schwarz inequality

EY (|ρ1(Y )− ρ2(Y )|) ≤ ‖ρ1 − ρ2‖2 ‖f‖2 ,

so

EY |log (ρ1(Y ))− log (ρ2(Y ))| ≤ ‖f‖2
η
‖ρ1 − ρ2‖2 .

- L2-contrast.
Let y ∈ Y, ρ1, ρ2 ∈ F , with F some set of density functions.
Suppose that it exists some B > 0 such that

sup
ρ∈F
‖ρ‖2 < B .

By triangular inequality∣∣(‖ρ1‖22 − 2 ρ1(y))− (‖ρ2‖22 − 2 ρ2(y))
∣∣ ≤ ∣∣‖ρ1‖22 − ‖ρ2‖22

∣∣+ 2 |ρ2(y)− ρ2(y)|
≤ ‖ρ1 − ρ2‖22 + 2 |ρ2(y)− ρ2(y)| .

Taking the expectation under Q and by Cauchy-Schwarz inequality (as before) yields

EY
∣∣(‖ρ1‖22 − 2 ρ1(Y ))− (‖ρ2‖22 − 2 ρ2(Y ))

∣∣ ≤ ‖ρ1 − ρ2‖22 + 2 ‖ρ1 − ρ2‖2 ‖f‖2
≤ ‖ρ1 − ρ2‖2 (‖ρ1 − ρ2‖2 + 2 ‖f‖2)

≤ 2 (B + ‖f‖2) ‖ρ1 − ρ2‖2
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6.2 Constant bh(m)

When the plug-in estimator ρmh (θ) is unbiased, the bias term bmh (θ) de�ned in (7) is zero for all
θ ∈ Θ and m > 0, hence bh(m) = 0 too.
We study the example of the kernel estimator (biased), i.e when the weight function ρ̃ is a
function of the form

ρ̃(y)(·) = Kb( · − y)

where Kb( · − y) = 1
bK( · −yb ) for some kernel K() and some bandwidth b.

Consider that ‖ · ‖F = ‖ · ‖2, then for all θ ∈ Θ we have

bmh (θ) = ‖EX(Kb( · − h(X,θ)))− ρh(θ)‖2

=

(∫
Y

(∫
X

(Kb( y − h(x,θ))− ρh(θ))Px(dx)

)2

dy

)1/2

.

Theorem (24.1) in [22] (p. 345) gives the following result.

Theorem 6.1. Let ξ1, ..., ξm ∈ Y an i.i.d sample drawn from a probability density function g
and K : Y → R+ some function (kernel). Denote by

ĝ(y) =
1

m

m∑
j=1

1

b
K

(
y − ξm
b

)
.

If the following assumptions are valid

• ‖g′′‖2 < +∞

•
∫
y K(y) dy = 0

• I =
∫
y2K(y) dy < +∞ ,

then it exists a constant Cg such that for all b > 0

Eξ1..m‖ĝ − g‖22 ≤ Cg
(

1

mb
+ b4

)
.

In particular, the bias term ‖Eξ1..m ĝ − g‖2 is bounded above by

I ‖g′′‖2√
3

b2 .

In our context, take g = ρh(θ) and suppose that the assumptions of this Theorem are
satis�ed, then

bmh (θ) ≤
I ‖ρ′′h(θ)‖2√

3
b2 .

Moreover, if supθ∈Θ ‖ρ
′′
h(θ)‖2 is �nite, it justi�es the existence of bh(m) = supθ∈Θ b

m
h (θ) .
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6.3 Constants K̄ε
(ρ̃,Ψ) and K̄ε

(ρ̃,h)

We detail the arguments for computing the constants K̄ε
(ρ̃,Ψ) and K̄

ε
(ρ̃,h). Since these constants

are tightness constants relative to some empirical processes (see the assumptions of Theorem
4.1), we will give arguments with a generic empirical process Wp =

√
p(Wp −W ) indexed by a

generic class of functions G .
Now, the goal is to compute some constant K(ε) such that

P(‖Wp‖G ≤ K(ε)) ≥ 1− ε for small ε > 0 .(14)

For this, we propose to use the work of T. Klein and E. Rio [11], in particular Theorem 1.1, that
deal with right hand side deviations of the empirical process. They show that for an empirical
process Wp indexed by a countable class of functions G with values in [−1, 1]

P

(
sup
g∈G

Wp(g) ≥ E(sup
g∈G

Wp(g)) + t

)
≤ exp

(
− t2

2v + 3x/
√
p

)
,(15)

for all positive t and some constant v . They also give left hand side deviations.
In our purpose, we don't really work with supg∈GWp(g) but rather with supg∈G |Wp(g)| =
‖Wp‖G corresponding to a two-side control. Hence, according to the work of T. Klein and E.
Rio [11], it exists some function ϕG : R+ → [0, 1] decreasing to zero such that for all positive t

P (‖Wp‖G ≥ E(‖Wp‖G) + t) ≤ ϕG(t) .(16)

Another point is missing before we apply this result in our context, it is the fact that the
result is valid for countable classes of functions, and so, we need to extend the Theorem 1.1 in
[11]. We prove the following proposition.

Proposition 6.1. LetWp be an empirical process indexed by a class of functions G taking values
in [−1, 1] and parameterized by a compact set C of Rl, l ≥ 1 . Suppose that the application

λ ∈ C 7−→ gλ ∈ G ⊂ L2(17)

is continuous.
Then, it exists a function ϕG decreasing to zero (given by [11]) such that for all t ≥ 0

P (‖Wp‖G ≥ E(‖Wp‖G) + t) ≤ ϕG(t) .(18)

Proof. For simplicity, we prove the proposition with G =W(ρ̃,Ψ) where

W(ρ̃,Ψ) = {y ∈ Y 7→ Ψ(ρ̃(λ) , y) , λ ∈ Y}

(in fact we consider Wp = Gp) and take Y = [−M,M ]. Moreover, without loss of generality,
suppose that the functions in W(ρ̃,Ψ) take values in [−1, 1] .
We de�ne the sets Ys = {ys1, ..., ysis} for s ≥ 1 recursively, as follows:

• Y1 = {−M, 0,M} .
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• Assume that the set Ys = {ys1, ..., ysis} is construct with increasing elements, i.e ys1 < ... <
ysis .
For j = 1, ..., is − 1, let

ỹsj =
ysj + ysj+1

2

and
Ỹs = {ỹsj , i = 1, ..., is−1 − 1} .

• De�ne
Ys+1 = Ys ∪ Ỹs

with increasing elements.

Remark 6.1. One can verify that

Card(Ys) = 2s + 1 .

Now, de�ne the classes of functions

Ws
(ρ̃,Ψ) = {y ∈ Y 7→ Ψ(ρ̃(λ) , y) , λ ∈ Ys}

and notice that for all s ≥ 1,

Ws−1
(ρ̃,Ψ)  W

s
(ρ̃,Ψ)  W(ρ̃,Ψ) .(19)

By this previous display and the fact that
⋃
s≥1

Ys is dense in [−M,M ] and by the continuous

assumption (17) , we have

lim
s→∞

Ws
(ρ̃,Ψ) =

⋃
s≥1

Ws
(ρ̃,Ψ) =W(ρ̃,Ψ).(20)

The classes of functions Ws
(ρ̃,Ψ), s ≥ 1 are countable (2s + 1 elements) with values in [−1, 1].

Finally, we apply the inequality (16) to the classes Ws
(ρ̃,Ψ), we get for all t ≥ 0 and s ≥ 1

P
(
‖Wp‖Ws

(ρ̃,Ψ)
≥ E(‖Wp‖Ws

(ρ̃,Ψ)
) + t

)
≤ ϕs(t) .(21)

We wish to prove that the left and right member of this last inequality converge when s→∞.
Write the left member as follows

P
(
‖Wp‖Ws

(ρ̃,Ψ)
≥ E(‖Wp‖Ws

(ρ̃,Ψ)
) + t

)
= E

(
1 ‖Wp‖Ws

(ρ̃,Ψ)
≥E(‖Wp‖Ws

(ρ̃,Ψ)
)+t

)
= E

(
1 ‖Wp‖Ws

(ρ̃,Ψ)
−E(‖Wp‖Ws

(ρ̃,Ψ)
)≥ t

)
.(22)

The inclusions (19) yields

‖Wp‖Ws−1
(ρ̃,Ψ)
≤ ‖Wp‖Ws

(ρ̃,Ψ)
≤ ‖Wp‖W(ρ̃,Ψ)

∀s ≥ 1 ,
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so the sequence
(
‖Wp‖Ws

(ρ̃,Ψ)

)
s≥1

is increasing and bounded, thus it converges. By monotone

convergence, we obtain that the sequence
(
E
(
‖Wp‖Ws

(ρ̃,Ψ)

))
s≥1

converges too provided that

E(‖Wp‖W(ρ̃,Ψ)
) < ∞ . Thus, the sequence

(
‖Wp‖Ws

(ρ̃,Ψ)
− E

(
‖Wp‖Ws

(ρ̃,Ψ)

))
s≥1

converges too,

and by dominated convergence the quantity (22) converges to the wanted limit

E
(

1 ‖Wp‖W(ρ̃,Ψ)
−E(‖Wp‖W(ρ̃,Ψ)

)≥ t

)
= P

(
‖Wp‖W(ρ̃,Ψ)

≥ E(‖Wp‖W(ρ̃,Ψ)
) + t

)
.

For the right member of (21), by similar arguments, it can be shown that ϕs(t)→ ϕ(t) = ϕG(t) .
That concludes the proof.

Next, since the function t 7→ ϕG(t) is decreasing from R+ into [0, 1], then it exists a unique
function κG : [0, 1]→ R+ such that

∀ t ≥ 0 κ−1
G (t) = ϕG(t) .(23)

Then, we can write (18) as follows, for all ε ∈]0, 1[

P (‖Wp‖G ≥ E(‖Wp‖G) + κG(ε)) ≤ ε

or equivalently
P (‖Wp‖G ≤ E(‖Wp‖G) + κG(ε)) ≥ 1− ε .

Thus, for a constant K(ε) that should satisfy (14), i.e

P(‖Wp‖G ≤ K(ε)) ≥ 1− ε ,

one can take K(ε) equal to
E(‖Wp‖G) + κG(ε) .

But, the quantity E(‖Wp‖G) remains not tractable. We propose to bound it.
Indeed, maximal inequalities allow to bound such quantities in terms of entropy integrals we
will de�ne. Although these methods are known to be not sharp, the bounds we will obtain are
of interest for our purpose. Before, let recall some useful de�nitions.

Let G be a class of functions and W some probability measure.
An envelope function of the class G is a function G : y 7→ G(y) such that |g(y)| ≤ G(y), for all
y and g ∈ G.
Denote by

‖g‖2,W =

(∫
g2(y)W (dy)

)1/2

.

The three following de�nitions are from [23] (p. 83-85).

De�nition 6.1. L2(W ) Covering numbers and Entropy.

The covering number N(ε, G, L2(W )) is the minimal number of balls {j , ‖j − g‖2,W < ε} of
radius ε needed to cover the class G. The centers of the balls need not belong to G, but they
should have �nite norm. The entropy is the logarithm of the covering number.

De�nition 6.2. L2(W ) Bracketing numbers and Entropy with bracketing.

Given two functions l, u, the bracket [l, u] is the set of all functions g with l ≤ g ≤ u. An
ε-bracket is a bracket [l, u] with ||u − l||2,W < ε. The bracketing number N[ ](ε, G, L2(W )) is
the minimum number of ε-brackets needed to cover the class of functions G.
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The entropy with bracketing is the logarithm of the bracketing number.

The bracketing numbers measure the "size", the complexity of a class of functions. We also
dispose of a de�nition providing at which "speed" the classes grow.

De�nition 6.3. L2(W ) Bracketing integral.

The bracketing integral is de�ned as

J[ ] (δ, G, L2(W )) :=

∫ δ

0

√
log N[ ](ε, G, L2(W ))dε .

Now we apply Corollary 19.35 of [22] (p. 288), it holds that

E(‖Wp‖G) ≤ aG J[ ] (‖G‖2,W , G, L2(W )) ,(24)

where

• aG is some universal constant

• G is an envelop function of G and

‖G‖2,W =

(∫
G2W (dy)

)1/2

.

Remark 6.2. The quantity J[ ] (‖G‖2,W , G, L2(W )) is computable if one has the bracketing
numbers N[ ](ε, G, L2(W )) (∀ ε > 0), see examples in Section 7 below.

Finally, setting

K(ε) = aG J[ ]

(
‖G‖2,Q, G(ρ̃,Ψ), L2(W )

)
+ κG(ε)(25)

provides the claimed constant. In particular, we should take G = W(ρ̃,Ψ) (W = Q) and G =
P(ρ̃,h) (W = Px) in order to compute K̄ε

(ρ̃,Ψ) and K̄
ε
(ρ̃,h), respectively.

7 Constants K̄ε
(ρ̃,Ψ) and K̄ε

(ρ̃,h) in particular cases

7.1 K̄ε
(ρ̃,Ψ) for the Mean-contrast

Recall that in this case
W(ρ̃,Ψ) = {y 7→ (y − λ)2 , λ ∈ Y} .

This class is uniformly bounded by 4M2, we take the envelop function G = 4M2. Then, we
have

|(y − λ1)2 − (y − λ2)2| ≤ |λ1 − λ2|F (y) ,

with F (y) = |2y + 2M |, and by Theorem (2.7.11) in [23] (p. 164) it holds that

N[ ](ε, W(ρ̃,Ψ), L2(Q)) ≤ N
(

ε

2 ‖F‖2,Q
,Y, | · |

)
Notice that ‖F‖2,Q ≤ 4M . Since Y ⊂ [−M,M ], we have

N

(
ε

2 ‖F‖2,Q
,Y, | · |

)
≤ N

( ε

8M
, [−M,M ], | · |

)
.
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The covering number in the right member is bounded by 16M2/ε, so that we �nally get

N[ ](ε, W(ρ̃,Ψ), L2(Q)) ≤ 16M2

ε
.

Now, we compute the bracketing integral

J[ ]

(
‖G‖2,Q, W(ρ̃,Ψ), L2(Q)

)
=

∫ ‖G‖2,Q
0

√
log
(
N[ ](ε, W(ρ̃,Ψ), L2(Q))

)
dε

≤
∫ 4M2

0

√
log

(
16M2

ε

)
dε ,

and with the variable substitution u = 2 log(16M2/ε), this integral becomes

4
√

2M2

∫ +∞

log(16)

√
u e−u/2 du .

Moreover, since
∫ +∞

0

√
u e−u/2 du =

√
2π, the bracketing integral is bounded by

J[ ]

(
‖G‖2,Q, W(ρ̃,Ψ), L2(Q)

)
≤ 8
√
πM2 .

Finally, we obtain the following constant

K̄ε
(ρ̃,Ψ) = 8 a1

√
πM2 + κ1(ε) .(26)

7.2 K̄ε
(ρ̃,h) with the weight function ρ̃(y) = y

In this case, the class of functions P(ρ̃,h) is

P(ρ̃,h) = {x ∈ X 7→ h(x,θ) , θ ∈ Θ} (X ⊂ Rd) .

We assumed in the introduction that the models x 7→ h(x,θ), θ ∈ Θ are uniformly bounded by
M , thus denote by P an envelop of P(ρ̃,h), take P = M .
Moreover, let suppose that the models x 7→ h(x,θ), θ ∈ Θ belong to the Hölder spaceH(X , α, L)
(α,L > 0) de�ned as

H(X , α, L) = {g : X → R continuous, ‖g‖α ≤ L}

where

‖g‖α = max
|ν|≤bαc

sup
x∈X
|Dνg(x)|+ max

ν:|ν|=bαc
sup

x,x′∈X

|Dνg(x)−Dνg(x
′
)|

‖x− x′‖α−bαc

with bαc the largest integer smaller than α, and the di�erential operator Dν is de�ned as,
for ν = (ν1, ..., νd) ∈ Nd

Dν =
∂|ν|

∂νν1
1 ...∂ννdd

, and |ν| =
d∑
i=1

νi .

We aim at computing the entropy integral J[ ]

(
‖P‖2,Q, P(ρ̃,h), L2(Q)

)
by integrating the entropy

log N[ ](ε, P(ρ̃,h), L2(Q)).
Corollary 2.7.2 in [23] (p. 157) gives an entropy bound for the Hölder space H(X , α, 1):

log N[ ](ε, H(X , α, 1), L2(Q)) ≤ K
(

1

ε

)d/α
∀ ε > 0 ,(27)
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where K depends on α, diam(X ) and d.
We supposed that P(ρ̃,h) ⊂ H(X , α, L), and one can easily check that

H(X , α, L) = L ·H(X , α, 1) .(28)

where L ·H(X , α, 1) = {Lg : g ∈ H(X , α, 1)} .

Remark 7.1. If P(ρ̃,h) ⊂ H(X , α, L), then necessarily L ≥ M . It comes from the fact that
‖g‖α ≥ ‖g‖∞ for all α > 0.

Next, we will use the following lemma.

Lemma 7.1.

N[ ](ε, H(X , α, L), L2(Q)) = N[ ](ε, L ·H(X , α, 1), L2(Q))

= N[ ](ε/L, H(X , α, 1), L2(Q)) .

Proof. The �rst equality is clear by (28). Let ([li, ui])i=1...N be a set of ε-brackets covering
H(X , α, 1). Then the brackets ([L li, L ui])i=1...N cover L ·H(X , α, 1) since for g ∈ H(X , α, 1)

l ≤ g ≤ u =⇒ L l ≤ Lg ≤ Lu .

Finally, the brackets [L li, L ui] are of size L ε, and the result follows.

Using (27), Lemma 7.1 and the inequality

J[ ]

(
‖P‖2,Q, P(ρ̃,h), L2(Q)

)
≤ J[ ] (‖P‖2,Q, H(X , α, L), L2(Q)) ,

it holds for d < 2α

J[ ]

(
‖P‖2,Q, P(ρ̃,h), L2(Q)

)
≤
√
K

∫ M

0

(
L

ε

)d/2α
dε ,

hence

J[ ]

(
‖P‖2,Q, P(ρ̃,h), L2(Q)

)
≤M

√
K

(
L

M

)d/2α 1

1− d/2α
.

Finally, under the condition d < 2α, we get the constant

K̄ε
(ρ̃,h) = a2M

√
K

(
L

M

)d/2α 1

1− d/2α
+ κ2(ε) .

Remark 7.2. The condition d < 2α above, means that the dimension of the random input X
(equal to d) is limited by the "smoothness" of the models x 7→ h(x,θ), θ ∈ Θ. The smoother
the models are (i.e α large), the larger the dimension d can be.

Remark 7.3. The computation of the constants K̄ε
(ρ̃,Ψ) and K̄ε

(ρ̃,h) are di�cult enough to
obtain, as we saw. However, we adopt a nonasymptotic point of view and so such computations
are crucial in order to give sense to the risk bounds.

8 Proofs

In order to to prove the risk bound of Theorem (4.1), we need the following lemmas.
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8.1 Preliminary lemmas

Lemma 8.1. Consider the random functions

y 7→ Ψ(ρ̃(h(X,θ)) , y) , θ ∈ Θ .

We have (a.s.)
sup
θ∈Θ
|Gn (Ψ (ρ̃(h(X,θ))))| ≤ ||Gn||W(ρ̃,Ψ)

,

where W(ρ̃,Ψ) is de�ned in (9).

Proof. The key ingredient is re-parametrization.
Since for all x ∈ X and θ ∈ Θ, h(x,θ) ∈ Y, conditionally to X = x0

sup
θ∈Θ
|Gn (Ψ (ρ̃(h(x0,θ))))| ≤ sup

λ∈Y
|Gn (Ψ (ρ̃(λ)))|

= ||Gn||W(ρ̃,Ψ)
.

The right member does not depend on x0, and the result follows.

Remark 8.1. The left member of the inequality in the lemma (8.1) depends on the model h,
contrary to the right member. Indeed, this last term depends only on the weight function with
the associated contrast, and on n.

Lemma 8.2. Consider the Px-empirical process Kx
m and let ‖ · ‖F = | · | or ‖ · ‖r and de�ne

c =

{
1 if ρ̃(y) is constant, ∀y ∈ Y ,
(2M)1/r else

.

We have
sup
θ∈Θ
||Kx

m ρ̃(h(·,θ))||F ≤ c ||Kx
m‖|P(ρ̃,h)

,

where P(ρ̃,h) is de�ned in (10).

Proof. Let notice that the quantity

Kx
m ρ̃(h(·,θ)) =

1√
m

m∑
j=1

[ρ̃(h(Xj ,θ))− EXρ̃(h(X,θ))]

can be (up to a factor) either a sum of independent random real variables or a sum of indepen-
dent random functions.

- If ρ̃(y) ∈ R for all y ∈ Y (we have a sum of random variables).

Taking ‖ · ‖F = | · | the absolute value norm, it comes directly that

sup
θ∈Θ
||Kx

m ρ̃(h(·,θ))||F = sup
θ∈Θ

∣∣∣∣∣∣ 1√
m

m∑
j=1

[ρ̃(h(Xj ,θ))− EXρ̃(h(X,θ))]

∣∣∣∣∣∣
= ‖Kx

m‖P(ρ̃,h)
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Remark 8.2. In this case, ρ̃(y)(λ) = ρ̃(y) for all y and λ in Y.
- If, for all y ∈ Y, ρ̃(y) is a real valued function de�ned on Y.

Take ‖ · ‖F = ‖ · ‖r, r ≥ 1, the Lr norm. By integration properties and the fact that

sup
z≥0

zr = (sup
z≥0

z)r ,

we have

sup
θ∈Θ
||Kx

m ρ̃(h(·,θ))||r = sup
θ∈Θ

∣∣∣∣∣∣
∣∣∣∣∣∣ 1√
m

m∑
j=1

[ρ̃(h(Xj ,θ))− EXρ̃(h(X,θ))]

∣∣∣∣∣∣
∣∣∣∣∣∣
r

= sup
θ∈Θ

∫
Y

∣∣∣∣∣∣ 1√
m

m∑
j=1

[ρ̃(h(Xj ,θ))(λ)− EXρ̃(h(X,θ))(λ)]

∣∣∣∣∣∣
r

dλ

1/r

≤ sup
θ∈Θ

∫
Y

sup
λ∈Y

∣∣∣∣∣∣ 1√
m

m∑
j=1

[ρ̃(h(Xj ,θ))(λ)− EXρ̃(h(X,θ))(λ)]

∣∣∣∣∣∣
r

dλ

1/r

= sup
θ∈Θ

sup
λ∈Y

∣∣∣∣∣∣ 1√
m

m∑
j=1

[ρ̃(h(Xj ,θ))(λ)− EXρ̃(h(X,θ))(λ)]

∣∣∣∣∣∣
(∫
Y
dλ

)1/r

= (2M)1/r sup
(θ,λ)∈Θ×Y

∣∣∣∣∣∣ 1√
m

m∑
j=1

[ρ̃(h(Xj ,θ))(λ)− EXρ̃(h(X,θ))(λ)]

∣∣∣∣∣∣ .
Finally, notice that

sup
(θ,y)∈Θ×Y

∣∣∣∣∣∣ 1√
m

m∑
j=1

[ρ̃(h(Xj ,θ))(y)− EXρ̃(h(X,θ))(y)]

∣∣∣∣∣∣ = ||Kx
m‖|P(ρ̃,h)

and the result follows.

Remark 8.3. In the case where the weight function is a kernel Kb(· − ·), the quantity

Kx
mρ̃(h(·,θ)) =

1√
m

m∑
j=1

[Kb( · − h(Xj ,θ))− EXKb( · − h(X,θ))]

is treated as a sum of independent random functions in the recent work of A. Goldenshluger and
O. Lepski [7]. Here we have made the restrictive assumption that Y ⊂ [−M,M ]. A valuable
challenge would be to extend our results to the unbounded case using [7].

8.2 Proof of Theorem (4.1)

Proof. We denote by

- M(h,θ) = RΨ(h,θ) = EY Ψ (ρh(θ), Y )

- Mn,(h,θ) =
1

n

n∑
i=1

Ψ (ρh(θ), Yi)
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- M,m(h,θ) = EY Ψ (ρmh (θ), Y )

- Mn,m(h,θ) =
1

n

n∑
i=1

Ψ (ρmh (θ), Yi)

- GnΨ (ρmh (θ)) =
√
n (Mn,m(h,θ)−Mm(h,θ))

where ρmh (θ) =
1

m

m∑
j=1

ρ̃(h(Xj ,θ)) and recall that

θ̂ = Argmin
θ∈Θ

Mn,m(h,θ) and θ? = Argmin
θ∈Θ

M(h,θ) .(29)

We have,

RΨ(h, θ̂)

= M(h, θ̂)−Mm(h, θ̂) +Mm(h, θ̂)−Mn,m(h, θ̂) +Mn,m(h, θ̂)

= −
(
Mm(h, θ̂)−M(h, θ̂)

)
− 1√

n
GnΨ

(
ρmh (θ̂n,m)

)
+Mn,m(h, θ̂)−Mn,m(h,θ?)︸ ︷︷ ︸

≤0 (29)

+Mn,m(h,θ?)

≤ −
(
Mm(h, θ̂)−M(h, θ̂)

)
− 1√

n
GnΨ

(
ρmh (θ̂)

)
+Mn,m(h,θ?)−Mm(h,θ?) +Mm(h,θ?)

≤ −
(
Mm(h, θ̂)−M(h, θ̂)

)
− 1√

n
GnΨ

(
ρmh (θ̂)

)
+

1√
n
GnΨ (ρmh (θ?)) +Mm(h,θ?)

≤ −
(
Mm(h, θ̂)−M(h, θ̂)

)
+

1√
n
Gn
(

Ψ (ρmh (θ?))−Ψ
(
ρmh (θ̂)

))
+Mm(h,θ?)−M(h,θ?) +M(h,θ?)

≤ 1√
n
Gn
(

Ψ (ρmh (θ?))−Ψ
(
ρmh (θ̂)

))
+
(
Mm(h,θ?)−M(h,θ?)

)
−
(
Mm(h, θ̂)−M(h, θ̂)

)
+M(h,θ?)

≤ inf
θ∈Θ

(RΨ(h,θ)) +
2√
n

sup
θ∈Θ
|Gn (Ψ (ρmh (θ)))|+ 2 sup

θ∈Θ
|Mm(h,θ)−M(h,θ)|

since M(h,θ?) = RΨ(h,θ?) = infθ∈Θ (RΨ(h,θ)).

Now, we want to bound the second and third terms in the right member of the last inequality.

Second term. Since ρmh (θ) =
1

m

m∑
j=1

ρ̃(h(Xj ,θ)) and ρ 7−→ Ψ(ρ, y) is convex by Assumption

(4.1), we have the inequality
for all y ∈ Y,

Ψ (ρmh (θ) , y) = Ψ

 1

m

m∑
j=1

ρ̃(h(Xj ,θ)) , y


≤ 1

m

m∑
j=1

Ψ (ρ̃(h(Xj ,θ)) , y) .

Then, by the linearity of the measure Gn, it yields

Gn (Ψ (ρmh (θ))) ≤ 1

m

m∑
j=1

GnΨ (ρ̃(h(Xj ,θ))) .(30)
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By Lemma 8.1 we have (a.s)

sup
θ∈Θ
|Gn (Ψ (ρ̃(h(Xj ,θ))))| ≤ ||Gn||W(ρ̃,Ψ)

where W(ρ̃,Ψ) = {Ψ(ρ̃(λ) , ·) , λ ∈ Y} , then (a.s)

sup
θ∈Θ
|Gn (Ψ (ρmh (θ)))| ≤ ||Gn||W(ρ̃,Ψ)

.

Third term. We have

|Mm(h,θ)−M(h,θ)| = |EY (Ψ (ρmh (θ), Y )−Ψ (ρh(θ), Y ))|
≤ EY |Ψ (ρmh (θ), Y )−Ψ (ρh(θ), Y )| .

By Assumption (4.1)

|Ψ (ρmh (θ), Y )−Ψ (ρh(θ), Y )| ≤ LΨ(Y ) ||ρmh (θ)− ρh(θ)||F ,

then

|Mm(h,θ)−M(h,θ)| ≤ ||ρmh (θ)− ρh(θ)||F EY LΨ(Y ) .(31)

Let AΨ = EY LΨ(Y ) .
Moreover, the inequality (6) yields

||ρmh (θ)− ρh(θ)||F ≤

∣∣∣∣∣∣
∣∣∣∣∣∣ 1

m

m∑
j=1

[ρ̃(h(Xj ,θ))− EXρ̃(h(X,θ))]

∣∣∣∣∣∣
∣∣∣∣∣∣
F

+ bmh (θ) .(32)

Equivalently, by considering the empirical process Kx
m =

√
m(Pxm − Px), we obtain

||ρmh (θ)− ρh(θ)||F ≤ 1√
m
||Kx

m ρ̃(h(·,θ))||F + bmh (θ)(33)

≤ 1√
m

(
||Kx

m ρ̃(h(·,θ))||F +
√
mbmh (θ)

)
.(34)

Taking the supremum over Θ and combining the Lemma (8.2) and the Assumption (3.1) gives

sup
θ∈Θ
||ρmh (θ)− ρh(θ)||F ≤

1√
m

(
c ‖Kx

m‖P(ρ̃,h)
+
√
mbh(m)

)
.

Hence, in (31) we obtain

sup
θ∈Θ
|Mm(h,θ)−M(h,θ)| ≤ AΨ√

m

(
c ‖Kx

m‖P(ρ̃,h)
+
√
mbh(m)

)
.

Finally, the following bound holds for the procedure risk

RΨ(h, θ̂) ≤ inf
θ∈Θ

(RΨ(h,θ)) +
2√
n
||Gn||W(ρ̃,Ψ)

+ 2
AΨ√
m

(
c ‖Kx

m‖P(ρ̃,h)
+
√
mbh(m)

)
.

Now, let notice that for any 3 events E1, E2, E3 we have by elementary probability calculus

P(E1) ≤ P(E1 ∩ E2 ∩ E3) + P(Ec2) + P(Ec3) .(35)

26



Take the following events

E1 =

{
RΨ(h, θ̂) ≤ inf

θ∈Θ
(RΨ(h,θ)) +

2√
n
‖Gn‖W(ρ̃,Ψ)

+ 2
AΨ√
m

(
c ‖Kx

m‖P(ρ̃,h)
+
√
mbh(m)

)}

E2 =

{
inf
θ∈Θ

(RΨ(h,θ)) +
2√
n
‖Gn‖W(ρ̃,Ψ)

≤ inf
θ∈Θ

(RΨ(h,θ)) +
2√
n
K̄ε

(ρ̃,Ψ)

}
and

E3 =

{
2
AΨ√
m

(
c ‖Kx

m‖P(ρ̃,h)
+
√
mbh(m)

)
≤ 2

AΨ√
m

(
c K̄ε

(ρ̃,h) +
√
mbh(m)

)}
,

where K̄ε
(ρ̃,Ψ) and K̄

ε
(ρ̃,h) are such that

PY1...n(‖Gn‖W(ρ̃,Ψ)
≤ K̄ε

(ρ̃,Ψ)) ≥ 1− ε

and
PX1...m(‖Kx

m‖P(ρ̃,h)
≤ K̄ε

(ρ̃,h)) ≥ 1− ε

respectively (for all ε > 0).
Using the inequality (35) with the fact that P(E2) = PY1...n(‖Gn‖W(ρ̃,Ψ)

≤ K̄ε
(ρ̃,Ψ)) and P(E3) =

PX1...m(‖Kx
m‖P(ρ̃,h)

≤ K̄ε
(ρ̃,h)) , we obtain

P(E1) ≤ PY1...n,X1,...,m

(
RΨ(h, θ̂) ≤ inf

θ∈Θ
(RΨ(h,θ)) +

2√
n
K̄ε

(ρ̃,Ψ) + 2
AΨ√
m

(
c K̄ε

(ρ̃,h) +
√
mbh(m)

))
+2 ε .

But note that P(E1) = 1, so

PY1...n,X1,...,m

(
RΨ(h, θ̂) ≤ inf

θ∈Θ
(RΨ(h,θ)) +

2√
n
K̄ε

(ρ̃,Ψ) + 2
AΨ√
m

(
c K̄ε

(ρ̃,h) +
√
mbh(m)

))
≥ 1−2 ε .

Equivalently, we have with probability at least 1− 2 ε

RΨ(h, θ̂) ≤ inf
θ∈Θ

(RΨ(h,θ)) +
Kε

(ρ̃,Ψ)√
n

(
1 +

√
n

m
(Kε

(ρ̃,h) +Bm)

)
where

Kε
(ρ̃,Ψ) = 2 K̄ε

(ρ̃,Ψ) ,

Kε
(ρ̃,h) = AΨ c

K̄ε
(ρ̃,h)

K̄ε
(ρ̃,Ψ)

and

Bm =
√
m

AΨ

K̄ε
(ρ̃,Ψ)

bh(m) .

That concludes the proof.
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