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On the law of the supremum of Lévy processes

November 17, 2010

L. Chaumont1

Abstract

We show that the law of the overall supremum Xt = sups≤tXs of a Lévy
process X before the deterministic time t is equivalent to the average occupation
measure µt(dx) =

∫ t
0 P(Xs ∈ dx) ds, whenever 0 is regular for both open halflines

(−∞, 0) and (0,∞). In this case, P(Xt ∈ dx) is absolutely continuous for some
(and hence for all) t > 0, if and only if the resolvent measure of X is absolutely
continuous. We also study the cases where 0 is not regular for one of the halflines
(−∞, 0) or (0,∞). Then we give absolute continuity criterions for the laws of
(X t,Xt), (gt,X t) and (gt,Xt,Xt), where gt is the time at which the supremum
occurs before t. The proofs of these results use an expression of the joint law
P(gt ∈ ds,Xt ∈ dx,X t ∈ dy) in terms of the entrance law of the excursion mea-
sure of the reflected process at the supremum and that of the reflected process
at the infimum. As an application, this law is made (partly) explicit in some
particular instances.

Key words and phrases: Past supremum, equivalent measures, absolute con-
tinuity, expected occupation time, excursion measure, reflected process.

MSC 2000 subject classifications: 60 G 51.

1 Introduction

The law of the past supremum X t = sups≤tXs of Lévy processes before a deterministic
time t > 0 presents some major interest in stochastic modeling such as queuing and
risk theories as it is related to the law of the first passage time Tx above any positive
level x through the relation P(Xt ≥ x) = P(Tx ≤ t). The importance of knowing
features of this law for some domains of application mainly explains the abundance of
the literature on this topic. From the works of P. Lévy on Brownian motion [14] to
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the recent developments of A. Kuznetsov [12] for a very large class of stable Lévy pro-
cesses, an important number of papers have appeared. Most of them concern explicit
computations for stable processes and basic features, such as tail behavior of this law,
are still unknown in the general case.

The present work is mainly concerned with the study of the nature of the law
of the overall supremum X t and more specifically, with the existence of a density
for this distribution. In a recent paper, N. Bouleau and L. Denis [3] have proved
that the law of X t is absolutely continuous whenever the Lévy measure of X is itself
absolutely continuous and satisfies some additional conditions, see Proposition 3 in
[3]. This result has raised our interest on the subject and we proposed to determine
’exploitable’ necessary and sufficient conditions under which the law of X t is absolutely
continuous. Doing so, we also obtained conditions for the absolute continuity of the
random vectors (gt, X t), (X t, Xt) and (gt, Xt, Xt), where gt is the time at which the
maximum of X occurs on [0, t]. The proofs are based on two main ingredients. The
first one is the equivalence between the law of Xt in R+ and the entrance law of the
excursions of the reflected process at its minimum, see Lemma 1. The second argument
is an expression of the law of (gt, X t, Xt) in terms of the entrance laws of the excursions
of both reflected processes. From this expression, we may in addition recover the law
of (gt, X t, Xt) for Brownian motion with drift and derive an explicit form of this law
for the symmetric Cauchy process. The law of (gt, Xt), may also be computed in some
instances of spectrally negative Lévy processes.

The remainder of this paper is organized as follows. In Section 2, we give some
definitions and we recall some basic elements of excursion theory and fluctuation theory
for Lévy processes, which are necessary for the proofs. The main results of the paper
are stated in Sections 3 and 4. In Section 3, we state continuity properties of the triples
(gt, X t, Xt) and (g∗t , Xt, Xt), whereas Section 4 is devoted to some representations and
explicit expressions for the law of (gt, X t, Xt). Then except for corollaries, proofs of
the results are postponed to Section 5.

2 Preliminaries

We denote by D the space of càdlàg paths ω : [0,∞) → R ∪ {∞} with lifetime ζ(ω) =
inf{t ≥ 0 : ωt = ωs, ∀s ≥ t}, with the usual convention that inf{∅} = +∞. The
space D is equipped with the Skorokhod topology, its Borel σ-algebra F , and the usual
completed filtration (Fs, s ≥ 0) generated by the coordinate process X = (Xt, t ≥ 0)
on the space D. We write X and X for the supremum and infimum processes:

X t = sup{Xs : 0 ≤ s ≤ t} and X t = inf{Xs : 0 ≤ s ≤ t} .
For t > 0, the last passage times by X at its supremum and at its infimum before t are
respectively defined by:

gt = sup{s ≤ t : Xs = X t or Xs− = X t} and g∗t = sup{s ≤ t : Xs = X t or Xs− = Xt} .
We also define the first passage time by X in the open halfline (0,∞) by:

τ+0 = inf{t ≥ 0 : Xt > 0} .
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For each x ∈ R, we denote by Px the law on D of a Lévy process starting from x, and
we write P0 = P. We assume throughout the sequel that (X,P) is not a compound
Poisson process and that |X| is not a subordinator.

Note that under our assumptions, 0 is always regular for (−∞, 0) or/and (0,∞).
It is well known that the reflected processes X − X and X − X are strong Markov
processes. Under P, the state 0 is regular for (0,∞) (resp. for (−∞, 0)) if and only
if it is regular for {0}, for the reflected process X − X (resp. for X − X). If 0 is
regular for (0,∞), then the local time at 0 of the reflected process X−X is the unique
continuous, increasing, additive functional L with L0 = 0, a.s., such that the support

of the measure dLt is the set {t : X t = Xt} and which is normalized by

E

(
∫ ∞

0

e−t dLt

)

= 1 . (2.1)

Let G be the set of left end points of the excursions away from 0 of X − X and for
each s ∈ G, call ǫs the excursion which starts at s. Denote by E the set of excursions,
i.e. E = {ω ∈ D : ωt > 0, for all 0 < t < ζ(ω)} and let E be the Borel σ-algebra which
is the trace of F on the subset E of D. The Itô measure n of the excursions away from
0 of the process X −X is characterized by the so-called compensation formula:

E

(

∑

s∈G

F (s, ω, ǫs)

)

= E

(
∫ ∞

0

dLs

(
∫

F (s, ω, ǫ)n(dǫ)

))

, (2.2)

which is valid whenever F is a positive and predictable process, i.e. P(Fs) ⊗ E-
measurable, where P(Fs) is the predictable σ-algebra associated to the filtration (Fs).
We refer to [2], Chap. IV, [13], Chap. 6 and [9] for more detailed definitions and some
constructions of L and n.

If 0 is not regular for (0,∞), then the set {t : (X−X)t = 0} is discrete and following
[2] and [13], we define the local time L of X −X at 0 by

Lt =

Nt
∑

k=0

e(k) , (2.3)

where Nt = Card{s ∈ (0, t] : Xs = Xs}, and e(k), k = 0, 1, . . . is a sequence of
independent and exponentially distributed random variables with parameter

γ =
(

1− E(e−τ
+
0 )
)−1

. (2.4)

In this case, the measure n of the excursions away from 0 is proportional to the dis-
tribution of the process X under the law P, returned at its first passage time in the
positive halfline. More formally, let us define ǫτ

+
0 = (Xτ+0

−X(τ+0 −s)−, 0 ≤ s < τ+0 ), then
for any bounded Borel functional K on E ,

∫

E

K(ǫ)n(dε) = γ E[K(ǫτ
+
0 )] . (2.5)
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Define G and ǫs as in the regular case, then from definitions (2.3), (2.5) and an appli-
cation of the strong Markov property, we may check that the normalization (2.1) and
the compensation formula (2.2) are still valid in this case.

The local time at 0 of the reflected process at its infimum X −X and the measure
of its excursions away from 0 are defined in the same way as for X − X . They are
respectively denoted by L∗ and n∗. Then the ladder time processes τ and τ ∗, and the
ladder height processes H and H∗ are the following subordinators:

τt = inf{s : Ls > t} , τ ∗t = inf{s : L∗
s > t} , Ht = Xτt , H∗

t = Xτ∗
t
, t ≥ 0 ,

where τt = Ht = +∞, for t ≥ ζ(τ) = ζ(H) and τ ∗t = H∗
t = +∞, for t ≥ ζ(τ ∗) = ζ(H∗).

The ladder processes (τ,H) and (τ ∗, H∗) are (possibly killed) Lévy processes whose
characteristic exponents κ and κ∗ are given by

E
(

e−ατ1−βH1
)

= e−κ(α,β) and E
(

e−ατ
∗

1 −βH
∗

1
)

= e−κ
∗(α,β) . (2.6)

From (2.1), we derive that κ(1, 0) = κ∗(1, 0) = 1, so that Wiener-Hopf factorization in
time which is stated in [2], p. 166 and in [13], p. 166 is normalized as follows

κ(α, 0)κ∗(α, 0) = α , for all α ≥ 0. (2.7)

Recall also that the drifts d and d∗ of the subordinators τ and τ ∗ satisfy d = 0 (resp.
d∗ = 0) if and only if 0 is regular for (−∞, 0), (resp. for (0,∞)) and that:

∫ t

0

1I{Xs=Xs}
ds = dLt and

∫ t

0

1I{Xs=Xs
} ds = d∗L∗

t . (2.8)

Suppose that 0 is not regular for (0,∞) and let e be an independent exponential time
with mean 1, then from (2.1) and (2.8), P((X−X)e = 0) = d∗. From the time reversal
property of Lévy processes, P((X − X)e = 0) = P(Xe = 0) = P(τ+0 ≥ e) = γ−1, so
that d∗ = γ−1.

We will denote by q∗t and qt the entrance laws of the reflected excursions at the
maximum and at the minimum, i.e. for t > 0,

qt(dx) = n(Xt ∈ dx, t < ζ) and q∗t (dx) = n∗(Xt ∈ dx, t < ζ) .

They will be considered as measures on R+ = [0,∞). Recall that the law of the lifetime
of the reflected excursions is related to the Lévy measure of the ladder time processes,
through the equalities:

qt(R+) = n(t < ζ) = π(t) + a and q∗t (R+) = n∗(t < ζ) = π∗(t) + a∗ , (2.9)

where π(t) = π(t,∞) and π∗(t) = π∗(t,∞) and a, a∗ are the killing rates of the
subordinators τ and τ ∗.

In this paper, we will sometimes write µ≪ ν, when µ is absolutely continuous with
respect to ν. We will say that µ and ν are equivalent if µ ≪ ν and ν ≪ µ. We will
denote by λ the Lebesgue measure on R. A measure which is absolutely continuous
with respect to the Lebesgue measure will sometimes be called absolutely continuous.
A measure which has no atoms will be called continuous.
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3 Continuity properties of the law of (gt, X t, Xt)

For t > 0 and q > 0, we will denote respectively by pt(dx) and Uq(dx) the semigroup
and the resolvent measure of X , i.e. for any positive Borel function f ,

E(f(Xt)) =

∫ ∞

0

f(x)pt(dx) and

∫ ∞

0

f(x)Uq(dx) = E

(
∫ ∞

0

e−qtf(Xt) dt

)

.

It is clear that for all q and q′ the resolvent measures Uq(dx) and Uq′(dx) are equivalent.
Moreover, each measure Uq is equivalent to the potential measure U0(dx) =

∫∞

0
P(Xt ∈

dx) dt. In what follows, when comparing the law of X t to the measures Uq, q ≥ 0, we

will take U(dx)
(def)
= U1(dx) as a reference measure. We will say that a Lévy process X

is of

· type 1 if 0 is regular for both (−∞, 0) and (0,∞),
· type 2 if 0 is not regular for (−∞, 0),
· type 3 if 0 is not regular for (0,∞).

Note that since X is not a compound Poisson process, types 1, 2 and 3 define three
exhaustive cases. Recall that R+ = [0,∞) and let BR+ be the Borel σ-field on R+. For
t > 0, let µ+

t be the restriction to (R+,BR+) of the average occupation measure of X ,
on the time interval [0, t), i.e.

∫

[0,∞)

f(x)µ+
t (dx) = E

(
∫ t

0

f(Xs) ds

)

,

for every positive Borel function f on (R+,BR+). Moreover, we will denote by p+t (dx)
the restriction of the semigroup pt(dx) to (R+,BR+). In particular, we have µ+

t =
∫ t

0
p+s ds. The law of X t will be considered as a measure on (R+,BR+). In all the

remainder of this article, we assume that the time t is deterministic and finite.

Theorem 1. For t > 0, the law of the past supremum X t can be compared to the

occupation measure µ+
t as follows.

1. If X is of type 1, then for all t > 0, the law of Xt is equivalent to µ
+
t .

2. If X is of type 2, then for all t > 0, the law of X t is equivalent to p
+
t (dx)+µ

+
t (dx).

3. If X is of type 3, then for all t > 0, the law of X t has an atom at 0 and

its restriction to the open halfline (0,∞) is equivalent to the restriction of the

measure µ+
t (dx) to (0,∞).

It appears clearly from this theorem that the law of Xt is absolutely continuous for
all t > 0, whenever 0 is regular for (0,∞) and pt is absolutely continuous, for all
t > 0. We will see in Theorem 3 that a stronger result actually holds. Let U+(dx)
be the restriction to (R+,BR+) of the resolvent measure U(dx). Since µt is absolutely
continuous with respect to U+ for all t > 0, the law of the past supremum before t can
be compared to U+ as follows.
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Corollary 1. Under the same assumptions as above:

1. If X is of type 1, then for any t > 0, the law of X t is absolutely continuous with

respect to the resolvent measure U+(dx).

2. If X is of type 2, then for any t > 0, the law of X t is absolutely continuous with

respect to the measure p+t (dx) + U+(dx).

3. If X is of type 3, then the same conclusions as in 1. hold for the measures re-

stricted to (0,∞).

Under our assumption, the resolvent measure U+(dx) is always continuous, see Propo-
sition I.15 in [2]. Moreover, the measure p+t (dx) is also continuous for all t > 0, see
Theorem 27.4 in Sato [19]. Hence from Corollary 1, for all t > 0, when X is of type 1
or 2, the law of X t is continuous and when it is of type 3, this law has only one atom
at 0. This fact has already been observed in [18], Lemma 1.

It is known that for a Lévy process X , the law of Xt may be absolutely continuous
for all t > t0, whereas it is continuous singular for t ∈ (0, t0), see Theorem 27.23
and Remark 27.24 in [19]. The following theorem shows that when X is of type 1, this
phenomenon cannot happen for the law of the supremum, i.e. either absolute continuity
of the law of X t holds at any time t or it never holds. We denote by V (dt, dx) the
potential measure of the ladder process (τ,H) and by V (dx) the potential measure of
the ladder height process H , i.e.

V (dt, dx) =

∫ ∞

0

P(τs ∈ dt,Hs ∈ dx) ds and V (dx) =

∫ ∞

0

P(Hs ∈ dx) ds .

Then let λ+ be the Lebesgue measure on R+.

Theorem 2. Suppose that X is of type 1. The following assertions are equivalent:

1. The law of X t is absolutely continuous with respect to λ+, for some t > 0.

2. The resolvent measure U+(dx) is absolutely continuous with respect to λ+.

3. The resolvent measure U(dx) is absolutely continuous with respect to λ.

4. The potential measure V (dx) is absolutely continuous with respect to λ+.

As a consequence, if 1. holds for some t > 0, then it holds for all t > 0. Moreover

assertions 1 – 4 are equivalent to the same assertions formulated for the dual process

−X. In particular, 1 – 4 hold if and only if the law of −X t is absolutely continuous

with respect to λ+, for all t > 0.

Condition 4 of the above theorem is satisfied whenever the drift coefficient of the
subordinator H is positive, see Theorem II.16 and Corollary II.20 in [2]. Let us also
mention that necessary and sufficient conditions for U(dx) to be absolutely continuous
may be found in Theorem 41.15 of [19], and in Proposition 10, Chap. I of [2]. Formally,
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U ≪ λ if and only if for some q > 0 and for all bounded Borel function f , the function
x 7→ Ex

(∫∞

0
f(Xt)e

−qt dt
)

is continuous. However, we do not know any necessary and
sufficient conditions bearing directly on the characteristic exponent ψ of X . Let us
simply recall the following sufficient condition. From Theorem II.16 in [2], if

∫ ∞

−∞

ℜ
(

1

1 + ψ(x)

)

dx <∞ , (3.1)

then U(dx) ≪ λ, with a bounded density. Therefore, if X is of type 1, then from
Theorem 2, condition (3.1) implies that both the laws of X t and Xt are absolutely
continuous for all t > 0.

A famous result from [10] asserts that when X is a symmetric process, condition
U ≪ λ implies that pt ≪ λ, for all t > 0. Then it follows from Theorem 2 that in this
particular case, absolute continuity of the law of X t, for all t > 0 is equivalent to the
absolute continuity of the semigroup pt, for all t > 0.

Theorem 3. If 0 is regular for (0,∞), then the following assertions are equivalent:

1. The measures p+t are absolutely continuous with respect to λ+, for all t > 0.

2. The measures pt are absolutely continuous with respect to λ, for all t > 0.

3. The potential measure V (dt, dx) is absolutely continuous with respect to the Lebesgue

measure on R
2
+.

If moreover X is of type 1, then each of the following assertions is equivalent to 1 – 3:

4. The law of (gt, Xt) is absolutely continuous with respect to the Lebesgue measure

on [0, t]× R+, for all t > 0.

5. The law of (gt, Xt, Xt) is absolutely continuous with respect to the Lebesgue mea-

sure on [0, t]× R+ × R, for all t > 0.

When X is of type 1, it is plain that for all t > 0, gt > 0 and X t > 0, a.s., hence
absolute continuity in assertion 1 of Theorem 2 and in assertion 4 of Theorem 3 is
actually an equivalence with respect to the Lebesgue measure.

We may wonder if the equivalence between assertions 1 and 2 of Theorem 3 still
holds when t is fixed, i.e. when 0 is regular for (0,∞), does the condition p+t ≪ λ+,
imply that pt ≪ λ ? A counterexample in the case where 0 is not regular for (−∞, 0)
may easily be found. Take for instance, Xt = Yt − St, where Y is a compound Poisson
process with absolutely continuous Lévy measure and S is a subordinator independent
of Y , whose law at time t > 0 is continuous singular. Then clearly p+t ≪ λ+, and
there exists a Borel set A ⊂ (−∞, 0) such that λ(A) = 0 and P(−St ∈ A) > 0, so that
pt(A) > P(Yt = 0)P(St ∈ A) > 0.

Let Y be a càdlàg stochastic process such that Y0 = 0, a.s. We say that Y is
an elementary process if there is an increasing sequence (Tn) of nonnegative random
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variables such that T0 = 0 and limn→+∞ Tn = +∞, a.s. and two sequences of finite
real-valued random variables (an, n ≥ 0) and (bn, n ≥ 0) such that b0 = 0 and

Yt = ant + bn if t ∈ [Tn, Tn+1) . (3.2)

We say that Y is a step process if it is an elementary process with an = 0, for all n in
the above definition.

Proposition 1. Suppose that 0 is regular for (0,∞).

1. If 0 is regular for (−∞, 0) and if the law of X t is absolutely continuous for

some t > 0, then for any step process Y which is independent of X, the law of

sups≤t(X + Y )s is absolutely continuous for all t > 0.

2. If p+t ≪ λ+, for all t > 0, or if X has unbounded variation and if at least one of

the ladder height processes H and H∗ has a positive drift, then for any elementary

stochastic process Y which is independent of X, the law of sups≤t(X + Y )s is

absolutely continuous for all t > 0.

Sufficient conditions for the absolute continuity of the semigroup may be found in
Chapter 5 of [19] and in Section 5 of [11]. In particular if Π(R) = ∞ and Π ≪ λ,
then pt ≪ λ for all t > 0. Proposition 20 in Bouleau and Denis [3] asserts that under
a slight reinforcement of this condition, for any independent càdlàg process Y , the
law of sups≤t(X + Y )s is absolutely continuous provided it has no atom at 0. In the
particular case where Y is an elementary process, this result is a consequence of part
2 of Proposition 1.

In view of Theorems 2 and 3, it is natural to look for instances of Lévy processes
of type 1 such that the law of Xt is absolutely continuous whereas pt(dx) is not, as
well as instances of Lévy processes of type 1 such that the law of Xt is not absolutely
continuous. The following corollary is inspired from Orey’s example [17], see also [19],
Exercise 29.12 and Example 41.23.

Corollary 2. Let X be a Lévy process whose characteristic exponent ψ, i.e. E(eiλXt) =
e−tψ(λ) is given by:

ψ(λ) =

∫

R

(1− eiλx + iλx1I{|x|<1})Π(dx) .

Let α ∈ (1, 2) and c be an integer such that c > 2/(2− α) and set an = 2−c
n

.

1. If Π(dx) =
∑∞

n=1 a
−α
n δ−an(dx), then X is of type 1 and for all t > 0, the law of

X t is absolutely continuous whereas pt(dx) is continuous singular.

2. If Π(dx) =
∑∞

n=1 a
−α
n (δ−an(dx) + δan(dx)), then X is of type 1 and for all t > 0,

the law X t is not absolutely continuous.
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Proof. We may check that
∫

(0,1)
xΠ(dx) = ∞ in both cases 1 and 2, so that X has

unbounded variation and it is of type 1, from Rogozin’s criterion, see [2] p. 167.
On the one hand, in part 1, since X has no positive jumps, the ladder height process

H is a pure drift, so it follows from Theorem 2 and the remark thereafter that the law
of Xt is absolutely continuous for all t > 0. On the other hand, following [17], we see
that − log |ψ(λ)| does not tend to +∞ as |λ| → ∞, so that from the Riemann-Lebesgue
Theorem, pt(dx) is not absolutely continuous. But since Π(dx) is discrete with infinite
mass, it follows from the Hartman-Wintner Theorem, see Theorem 27.16 in [19], that
pt(dx) is continuous singular.

Then it is proved in Example 41.23 of [19] that the resolvent measure U(dx) of X
is not absolutely continuous, so part 2 follows from Theorem 2.

4 An expression for the joint law of (gt, Xt, Xt)

The following theorem presents a path decomposition of the Lévy process X , over the
interval [0,t], at time gt. Actually, we will essentially focus on its corollaries which
provide some representations of the joint law of gt, X t and Xt at a fixed time t, in
terms of the entrance laws (qs) and (q∗s). Besides they will be applied in Section 5 for
the proofs of the results of Section 3.

For ω ∈ D and s ≥ 0, we set ∆±
s (ω) = (ωs − ωs−)

±, where ω0− = ω0. Then we
define the (special) shift operator by

θs(ω) = (ωs− − ωs+u +∆+
s (ω), u ≥ 0) .

The killing operator and the return operator are respectively defined as follows:

ks(ω) =

{

ωu, 0 ≤ u < s
ωs, u ≥ s

, rs(ω) =

{

ωs − ω(s−u)− −∆−
s (ω), 0 ≤ u < s

ωs − ω0 −∆−
s (ω), u ≥ s

.

We also denote by ω0 the path which is identically equal to 0.

Theorem 4. Fix t > 0, let f be any bounded Borel function and let F and K be any

bounded Borel functionals which are defined on the space D.

1. If X is of type 1, then

E(f(gt) · F ◦ rgt ·K ◦ kt−gt ◦ θgt) =
∫ t

0

f(s)n∗(F ◦ ks, s < ζ)n(K ◦ kt−s, t− s < ζ) ds .

2. If X is of type 2, then

E(f(gt) · F ◦ rgt ·K ◦ kt−gt ◦ θgt) =
∫ t

0

f(s)n∗(F ◦ ks, s < ζ)n(K ◦ kt−s, t− s < ζ) ds

+d f(t)n∗(F ◦ kt, t < ζ)K(ω0) .
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3. If X is of type 3, then

E(f(gt) · F ◦ rgt ·K ◦ kt−gt ◦ θgt) =
∫ t

0

f(s)n∗(F ◦ ks, s < ζ)n(K ◦ kt−s, t− s < ζ) ds

+d∗f(0)F (ω0)n(K ◦ kt, t < ζ) .

Simultaneously to our work, a similar path decomposition has been obtained in [20],
when X is of type 1. In the later work, the post-gt part of (Xs, 0 ≤ s ≤ t) is expressed
in terms of the meander M(t) = n( · | t < ζ)/n(t < ζ), see Theorem 5.1.

By applying Theorem 4 to the joint law of gt together with the terminal values of the
pre-gt and the post-gt parts of (Xs, 0 ≤ s ≤ t), we obtain the following representation
for the law of the triple (gt, X t, Xt). Moreover, when limt→∞Xt = −∞, a.s., we define
X∞ = suptXt, the overall supremum of X and g∞ = sup{t : Xt = X∞}, the location
of this supremum. Then we obtain the same kind of representation for (g∞, X∞). We
emphasize that in the next result, as well as in Corollaries 4 and 5, at least one of the
drift coefficients d and d∗ is zero.

Corollary 3. The law of (gt, Xt, Xt) fulfills the following representation:

P(gt ∈ ds ,Xt ∈ dx,X t −Xt ∈ dy) = q∗s(dx)qt−s(dy)1I[0,t](s) ds (4.1)

+d δ{t}(ds)q
∗
t (dx)δ{0}(dy)

+d∗δ{0}(ds)δ{0}(dx)qt(dy) .

If moreover limt→∞Xt = −∞, a.s., then

P(g∞ ∈ ds ,X∞ ∈ dx) = a q∗s(dx) ds+ d∗aδ{(0,0)}(ds, dx) , (4.2)

where a is the killing rate of the ladder time process τ .

Proof. Let g and h be two bounded Borel functions on R+ and define the functionals
K and F on D by F (ω) = g(ωζ) and K(ω) = h(ωζ). Then we may check that for ǫ ∈ E
and t < ζ(ǫ), F ◦ kt(ǫ) = g(ǫt) and K ◦ kt(ǫ) = h(ǫt). We also have F ◦ rgt ◦X = g(Xt)
and K ◦ kt−gt ◦ θgt ◦X = h(X t−Xt), so that by applying Theorem 4 to the functionals
F and K, we obtain (4.1).

To prove (4.2), we first note that limt→∞(gt, Xt) = (g∞, X∞), a.s. Then let f be a
bounded and continuous function which is defined on R

2
+. We have from (4.1):

E(f(gt, X t)) =

∫ t

0

f(s, x)n(t−s < ζ) q∗s(dx) ds+d

∫ ∞

0

f(t, x)q∗t (dx)+d∗n(t < ζ)f(0, 0) .

On the one hand, we see from (2.9) that limt→∞ n(t < ζ) = n(ζ = ∞) = a > 0. On the
other hand, limt→∞ n∗(t < ζ) = 0, and since the term d

∫∞

0
f(t, x)q∗t (dx) is bounded

by Cn∗(t < ζ), where |f(s, x)| ≤ C, for all s, x, it converges to 0 as t tends to ∞. This
allows us to conclude.
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We derive from Corollary 3 that when X is of type 1, the law of the time gt is equivalent
to the Lebesgue measure, with density s 7→ n∗(s < ζ)n(t− s < ζ)1I[0,t](s). This corol-
lary illustrates the importance of the entrance laws qt and q∗t for the computation of
some distributions involved in fluctuation theory. We give below a couple of examples
where some explicit forms can be obtained for qt, q

∗
t and the law of (gt, X t, Xt). When

qt(dx) ≪ λ+ (resp. q∗t (dx) ≪ λ+), we will denote by qt(x) (resp. q
∗
t (x)) the density of

qt(dx) (resp. q
∗
t (dx)).

Example 1: Suppose that X is a Brownian motion with drift, i.e. Xt = Bt + ct, where
B is the standard Brownian motion and c ∈ R. We derive for instance from Lemma 1
in Section 5 that

qt(dx) =
x√
πt3

e−(x−c)2/2t dx and q∗t (dx) =
x√
πt3

e−(x+c)2/2t dx .

Then expression (4.1) in Corollary 3 allows us to compute the law of the triple (gt, X t, Xt).

Example 2: Recently, the density of the measure qt(dx) for the symmetric Cauchy
process has been computed in [15]:

qt(x) = q∗t (x) =
√
2
sin
(

π
8
+ 3

2
arctan

(

x
t

))

(t2 + x2)3/4

− 1

2π

∫ ∞

0

y

(1 + y2)(xy + t)3/2
exp

(

−1

π

∫ ∞

0

log(y + s)

1 + s2
ds

)

dy .

As far as we know, this example together with the case of Brownian motion with drift
(Example 1) are the only instances of Lévy processes where the measures qt(dx), q

∗
t (dx)

and the law of the triplet (gt, X t, Xt) can be computed explicitly.

Example 3: Recall from (2.9) that
∫∞

0
qt(dx) = n(t < ζ) and

∫∞

0
q∗t (dx) = n∗(t < ζ), so

that we can derive from Theorem 3, all possible marginal laws in the triplet (gt, X t, Xt).
In particular, when X is stable, the ladder time process τ also satisfies the scaling
property with index ρ = P(X1 ≥ 0), so we derive from the normalization κ(1, 0) = 1
and (2.9) that n(t < ζ) = t−ρ/Γ(1− ρ). Moreover q∗t and qt are absolutely continuous
in this case (it can be derived for instance from part 4 of Lemma 1 in the next section).
Then a consequence of (4.1) is the following form of the joint law of (gt, X t):

P(gt ∈ ds ,Xt ∈ dx) =
(t− s)−ρ

Γ(1− ρ)
1I[0,t](s) q

∗
s(x) ds dx . (4.3)

Note that this computation is implicit in [1], see Corollary 3 and Theorem 5. A more
explicit form is given in (4.10), after Proposition 2 in the case where the process has
no positive jumps. Note also that when X is stable, the densities qt and q

∗
t satisfy the

scaling properties

qt(y) = t−ρ−1/αq1(t
−1/αy) and q∗t (x) = tρ−1−1/αq∗1(t

−1/αx) .

11



These properties together with Corollary 3 imply that the three r.v.’s gt, X t/g
1/α
t and

(X t −Xt)/(t− gt)
1/α are independent and have for densities

sin(πρ)

π
sρ−1(t− s)−ρ1I[0,t](s) , Γ(ρ)q∗1(x) and Γ(1− ρ)q1(y) ,

respectively. The independence between gt, Xt/g
1/α
t and (X t − Xt)/(t − gt)

1/α has
recently been proved in Proposition 2.39 of [6].

It is clear that an expression for the law of X t follows directly from Corollary 3 by
integrating (4.1) over t and y. However, for convenience in the proofs of Section 5, we
write it here in a proper statement. An equivalent version of Corollary 4 may also be
found in [8], Lemma 6.

Corollary 4. The law of X t fulfills the following representation:

P(X t ∈ dx) =

∫ t

0

n(t− s < ζ)q∗s(dx) ds+ d q∗t (dx) + d∗n(t < ζ)δ{0}(dx) . (4.4)

Another remarkable, and later useful, direct consequence of Corollary 3 is the following
representation of the semigroup of X in terms of the entrance laws (qs) and (q∗s).

Corollary 5. Let us denote the measure qt(−dx) by qt(dx). We extend the measures

qt(dx) and q
∗
t (dx) to R by setting qt(A) = qt(A∩R−) and q

∗
t (A) = q∗t (A∩R+), for any

Borel set A ⊂ R. Then we have the following identity between measures on R:

pt =

∫ t

0

qs ∗ q∗t−s ds+ d q∗t + d∗qt . (4.5)

Now we turn to the particular case where X has no positive jumps. Then, 0 is
always regular for (0,∞). When moreover 0 is regular for (−∞, 0), since Ht ≡ t, it
follows from Theorem 2 and the remark thereafter that the law of (gt, Xt) is absolutely
continuous. In the next result, we present an explicit form of this law. We set c = Φ(1),
where Φ is the Laplace exponent of the first passage process Tx = inf{t : Xt > x},
which in this case is related to the ladder time process by Tx = τcx.

Proposition 2. Suppose that the Lévy process X has no positive jumps.

1. If 0 is regular for (−∞, 0), then for t > 0, the couple (gt, X t) has law:

P(gt ∈ ds,Xt ∈ dx) = cxp+s (dx)n(t− s < ζ)s−11I(0,t](s) ds (4.6)

= cn(t− s < ζ)1I(0,t](s)P(τcx ∈ ds) dx . (4.7)

In particular, the density of the law of X t is given by the function:

x 7→
∫ t

0

cn(t− s < ζ)P(τcx ∈ ds) .

12



2. If 0 is not regular for (−∞, 0), then for all t > 0,

P(gt ∈ ds,Xt ∈ dx) = cxn(t− s < ζ)s−11I(0,t](s)p
+
s (dx) ds+

dcxt−1p+t (dx)δ{t}(ds) . (4.8)

Moreover, we have the following identity between measures on [0,∞)3:

P(gt ∈ ds,Xt ∈ dx) dt = cn(t− s < ζ)1I(0,t](s)P(τcx ∈ ds) dx dt+

dcP(τcx ∈ dt)δ{t}(ds) dx . (4.9)

Example 4: Using the series development (14.30), p.88 in [19] for p+s (dx), we derive
from (4.6) in Proposition 2, the following reinforcement of expression (4.3). When X
is stable and spectrally negative, the density of (gt, Xt) is given by:

c

πΓ
(

α−1
α

)

(t− s)1/α

∞
∑

n=1

(−1)n−1Γ(1 + n/α)

n!
sin

(

πn
α− 1

α

)

s−
n+α

α xn , s ∈ [0, t] , x ≥ 0 ,

(4.10)
which completes Proposition 1, p.282 in [5].

We end this section with a remark on the existence of a density with respect to the
Lebesgue measure, for the law of the local time of general Markov processes. From (4.8),
we derive that P(τx ≥ t) dt =

∫ x

0

∫

(0,t]
n∗(t − s < ζ)P(τy ∈ ds) dy dt + dP(τx ∈ dt) dt.

Actually, this identity may be generalized to any subordinator S with drift b, killing
rate k and Lévy measure ν. Set ν̄(t) = ν(t,∞) + k, then the characteristic exponent
Φ of S is given by

Φ(α) = αb+ α

∫ ∞

0

e−αtν̄(t) dt ,

from which and Fubini Theorem, we derive that for all x ≥ 0 and α > 0:

1

α
E(1− e−αSx) =

(

b+

∫ ∞

0

e−αtν̄(t) dt

)

E(1− e−αSx)

Φ(α)
,

∫ ∞

0

e−αtP(Sx > t) dt =

(

b+

∫ ∞

0

e−αtν̄(t) dt

)
∫ ∞

0

e−αt
∫ x

0

P(Sy ∈ dt) dy .

Inverting the Laplace transforms on both sides of this identity gives for all x ≥ 0, the
following identity between measures,

P(Sx > t) dt =

∫ x

0

∫

(0,t]

ν̄(t− s)P(Sy ∈ ds) dy dt+ b

∫ x

0

P(Sy ∈ dt) dy .

In particular, if S has no drift coefficient, then the law of Lt
(def)
= inf{u : Su > t} has

density:
P(Lt ∈ dx)

dx
=

∫

(0,t]

ν̄(t− s)P(Sx ∈ ds) .

This shows that if a ∈ R is a regular state of any real Markov process M such that
∫ t

0
1I{Ms=a} ds = 0, a.s. for all t, then the law of the local time of M at level a is
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absolutely continuous, for any time t > 0. This last result is actually a particular case
of [7], where it is proved that for any non creeping Lévy process, the law of the first
passage time over x > 0 is always absolutely continuous.

5 Proofs and further results

Proof. of Theorem 4. Let e be an exponential time with parameter ε > 0 which
is independent of (X,P). Recall the notations of Section 2 and for ω ∈ D, define
ds = inf{u > s : ωu = 0}. From the independence of e and Fubini Theorem, we have
for all bounded function f on R+ and for all bounded Borel functionals F and K on D,

E(f(ge)F ◦ rgeK ◦ ke−ge ◦ θge) = E

(
∫ ∞

0

εe−εtf(gt)F ◦ rgtK ◦ kt−gt ◦ θgt dt
)

= E

(

∑

s∈G

εe−εsf(s)F ◦ rs
∫ ds

s

e−ε(u−s)K ◦ ku−s ◦ θs du
)

+E

(
∫ ∞

0

εe−εtf(t)F ◦ rt1I{gt=t} dt
)

K(ω0) .

Recall from Section 2 that ǫs denotes the excursion starting at s. Then

E(f(ge)F ◦ rgeK ◦ ke−ge ◦ θge) = E

(

∑

s∈G

εe−εsf(s)F ◦ rs
∫ ds−s

0

e−εuK(ǫs ◦ ku) du
)

+ E

(
∫ ∞

0

εe−εtf(t)F ◦ rt1I{Xt=Xt}
dt

)

K(ω0) . (5.1)

The process

(s, ω, ǫ) 7→ e−εsf(s)F ◦ rs(ω)
∫ ζ(ǫ)

0

e−εuK ◦ ku(ǫ) du

is P(Fs) ⊗ E-measurable, so that by applying (2.2) and (2.8) to equality (5.1), we
obtain

1

ε
E(f(ge)F ◦ rgeK ◦ ke−ge ◦ θge) = E

(
∫ ∞

0

dLse
−εsf(s)F ◦ rs

)

n

(
∫ ζ

0

e−εuK ◦ ku du
)

+dE

(
∫ ∞

0

dLse
−εsf(s)F ◦ rs

)

K(ω0) . (5.2)

From the time reversal property of Lévy processes, see Lemma 2, p.45 in [2], under P

we have X ◦ ke
(d)
= X ◦ re, so that

E(f(ge)F ◦ rgeK ◦ ke−ge ◦ θge) = E(f(e− g∗
e
)K ◦ rg∗

e

F ◦ ke−g∗
e

◦ θg∗
e

) . (5.3)
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Doing the same calculation as in (5.2) for the reflected process at its minimum X−X ,
we get

1

ε
E(f(e− g∗

e
)K ◦ rg∗

e

F ◦ ke−g∗
e

◦ θg∗
e

)

= E

(
∫ ∞

0

dL∗
se

−εsK ◦ rs
)

n∗

(
∫ ζ

0

e−εuf(u)F ◦ ku du
)

(5.4)

+d∗ E

(
∫ ∞

0

dL∗
se

−εsK ◦ rs
)

f(0)F (ω0) .

Then we derive from (5.2), (5.3) and (5.4), the following equality

E

(
∫ ∞

0

dLse
−εsf(s)F ◦ rs

)

n

(
∫ ζ

0

e−εuK ◦ ku du
)

+dE

(
∫ ∞

0

dLse
−εsf(s)F ◦ rs

)

K(ω0)

= E

(
∫ ∞

0

dL∗
se

−εsK ◦ rs
)

n∗

(
∫ ζ

0

e−εuf(u)F ◦ ku du
)

+d∗ E

(
∫ ∞

0

dL∗
se

−εsK ◦ rs
)

f(0)F (ω0) . (5.5)

Then by taking f ≡ 1, F ≡ 1 and K ≡ 1, we derive from (5.2) that

κ(ε, 0) = n(1− e−εζ) + εd . (5.6)

Now suppose that X is of type 1 or 2, so that d∗ = 0, from what has been recalled in
Section 2. Hence with K ≡ 1 in (5.5) and using (5.6), we have

E

(
∫ ∞

0

dLse
−εsf(s)F ◦ rs

)

κ(ε, 0)κ∗(ε, 0) = εn∗

(
∫ ζ

0

e−εuf(u)F ◦ ku du
)

. (5.7)

But using (2.7) and plunging (5.7) into (5.2) gives

E

(
∫ ∞

0

e−εtf(gt)F ◦ rgtK ◦ kt−gt ◦ θgt dt
)

= n∗

(
∫ ζ

0

e−εuf(u)F ◦ ku du
)

×

n

(
∫ ζ

0

e−εuK ◦ ku du
)

+ dn∗

(
∫ ζ

0

e−εuf(u)F ◦ ku du
)

K(ω0) ,

so that part 1 and part 2 of the theorem follow for λ-almost every t > 0 by inverting the
Laplace transforms in this equality. We easily check that for all t > 0, gt is continuous
at time t. Hence for any bounded and continuous functions f , K and F , both sides of
these identities are continuous in t, hence they coincide for all t > 0. Then we extend
this result to any bounded Borel functions f , H and F through a classical density
argument. Finally, part 3 is obtained in the same way as parts 1 and 2.
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Recall that the definition of the ladder height process (Ht) has been given in Sec-
tion 2. Then define (ℓx, x ≥ 0) as the right continuous inverse of H , i.e.

ℓx = inf{t : Ht > x} .

Note that for types 1 and 2, since H is a strictly increasing subordinator, the process
(ℓx, x ≥ 0) is continuous, whereas in type 3, since H is a compound Poisson process,
then ℓ is a càdlàg jump process. Parts 1 and 2 of the following lemma are reinforcements
of Theorems 3 and 5 in [1]. Recall that V (dt, dx) denotes the potential measure of the
ladder process (τ,H).

Lemma 1. Let X be a Lévy process which is not a compound Poisson process and such

that |X| is not a subordinator.

1. The following identity between measures holds on R
3
+:

uP(Xt ∈ dx, ℓx ∈ du) dt = tP(τu ∈ dt,Hu ∈ dx) du . (5.8)

2. The following identity between measures holds on R
2
+:

d∗δ{(0,0)}(dt, dx) + q∗t (dx) dt = V (dt, dx) , (5.9)

moreover for all t > 0, and for all Borel sets B ∈ BR+ , we have,

q∗t (B) = t−1
E
(

ℓ(Xt)1I{Xt∈B}

)

. (5.10)

3. For all t > 0, the measures q∗t (dx) and p
+
t (dx) are equivalent on R+.

Proof. When 0 is regular for (−∞, 0), part 1. is proved in Theorem 3 of [1] and when 0
is regular for both (−∞, 0) and (0,∞), part 2. is proved in Theorem 5 of [1]. Although
the proofs of parts 1 and 2 follow about the same scheme as in [1], it is necessary to
check some details.

First recall the so-called Fristedt identity which is established in all the cases con-
cerned by this lemma, in [13], see Theorem 6.16. For all α ≥ 0 and β ≥ 0,

κ(α, β) = exp

(
∫ ∞

0

dt

∫

[0,∞)

(e−t − e−αt−βx)t−1
P(Xt ∈ dx)

)

. (5.11)

Note that the constant k which appears in this theorem is equal to 1, according to
our normalization, see Section 1. Then recall (2.6): E

(

e−ατu−βHu

)

= e−uκ(α,β). This
expression is differentiable, in α > 0 and in u > 0 and using (5.11), we obtain:

E(τue
−ατu−βHu) = uE(e−ατu−βHu)

∂

∂α
κ(α, β)

= −u
∫ ∞

0

e−αtE
(

e−βXt1I{Xt≥0}

)

dt
∂

∂u
E(e−ατu−βHu)

= −u ∂
∂u

E

(
∫ ∞

0

exp(−α(t+ τu)− β(X̃t +Hu))1I{X̃t≥0} dt

)

,
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where X̃ is a copy of X which is independent of (τu, Hu). We may take for instance
X̃ = (Xτu+t−Xτu , t ≥ 0), so that it follows from a change of variables and the definition
of (ℓx, x ≥ 0),

E(τue
−ατu−βHu) = −u ∂

∂u
E

(
∫ ∞

0

exp(−α(t+ τu)− βXτu+t)1I{Xτu+t≥Hu} dt

)

= −u ∂
∂u

E

(
∫ ∞

0

exp(−αt− βXt)1I{Xt≥Hu, τu≤t} dt

)

= −u ∂
∂u

∫ ∞

0

dte−αt
∫

[0,∞)

e−βxP(Xt ∈ dx, ℓx > u) ,

from which we deduce that
∫

[0,∞)2
e−αt−βxtP(τu ∈ dt,Hu ∈ dx) du =

∫

[0,∞)2
e−αt−βxuP(Xt ∈ dx, ℓx ∈ du) dt ,

and (5.8) follows by inverting the Laplace transforms.
Let e be an exponentially distributed random variable with parameter ε, which is

independent of X . From identity (6.18), p. 159 in [13], we have

E
(

exp(−βXe)
)

= κ(ε, 0)

∫

[0,∞)2
e−εt−βx

∫ ∞

0

P(τs ∈ dt,Hs ∈ dx) ds . (5.12)

Suppose that X is of type 1 or 2. By taking the Laplace transforms in x and t of
identity (4.4) in Corollary 4, we obtain

E
(

exp(−βXe)
)

=
(

εd+ n(1 − e−εζ)
)

n∗

(
∫ ζ

0

e−εse−βǫs ds

)

, (5.13)

and by comparing (5.6), (5.12) and (5.13), it follows

n∗

(
∫ ζ

0

e−εse−βǫs ds

)

=

∫

[0,∞)2
e−εt−βx

∫ ∞

0

P(τs ∈ dt,Hs ∈ dx) ds . (5.14)

Then we derive part 2 from (5.14) and (5.8). If X is of type 3, then taking the Laplace
transforms in x and t of identity (4.4), gives

E
(

exp(−βXe)
)

= n(1− e−εζ)

(

d∗ + n∗

(
∫ ζ

0

e−εte−βǫt dt

))

, (5.15)

so that by comparing (5.6), (5.12) and (5.15), we obtain

d∗ + n∗

(
∫ ζ

0

e−εte−βǫt dt

)

=

∫

[0,∞)2
e−εt−βx

∫ ∞

0

P(τs ∈ dt,Hs ∈ dx) ds , (5.16)

and part 2 follows from (5.16) and (5.8) in this case.
Then we show the third assertion. First note that q∗t is absolutely continuous with

respect to p+t for all t > 0, since from (5.10) we have for any Borel set B ⊂ R+ such
that P(Xt ∈ B) = 0,

q∗t (B) = t−1
E(ℓ(Xt)1I{Xt∈B}) = 0 .
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Conversely, take a Borel set B ⊂ R+, such that P(Xt ∈ B) > 0. Then since P(Xt =
0) = 0, there exists y > 0 such that P(Xt ∈ B, Xt > y) > 0. As the right continuous
inverse of a subordinator, (ℓx) is nondecreasing and we have for all x > 0, P(ℓx > 0) = 1.
Therefore the result follows from the inequality:

0 < E(ℓy1I{Xt∈B,Xt>y}) ≤ E(ℓ(Xt)1I{Xt∈B}) ,

together with identity (5.10).

Recall from Section 2 that π is the Lévy measure of the ladder time process τ and that
π(t) = π(t,∞).

Lemma 2. Under the assumption of Lemma 1, for all t > 0, the following measures

of R+:
∫ t

0

π(t− s)q∗s (dx) ds and

∫ t

0

q∗s (dx) ds

are equivalent.

Proof. For all Borel set B ⊂ R+, we have

π(t)

∫ t

0

q∗s (B) ds ≤
∫ t

0

π(t− s)q∗s(B) ds ,

hence
∫ t

0
q∗s (dx) ds is absolutely continuous with respect to

∫ t

0
π(t− s)q∗s(dx) ds. More-

over, for all ε ∈ (0, t) and all Borel set B ⊂ R+, we may write

∫ t

0

π(t− s)q∗s(B) ds ≤

π(ε)

∫ t

0

q∗s(B) ds+

∫ t

t−ε

π(t− s)q∗s(B) ds <∞ .

Hence if
∫ t

0
q∗s(B) ds = 0, then for all ε ∈ (0, t),

∫ t

0

π(t− s)q∗s(B) ds ≤
∫ t

t−ε

π(t− s)q∗s(B) ds <∞ .

The finiteness of the right hand side of the above inequality can be derived from
Corollary 4. Hence this term tends to 0 as ε tends to 0, so that the equivalence
between the measures

∫ t

0
π(t− s)q∗s(dx) ds and

∫ t

0
q∗s(dx) ds is proved.

Now we are ready to prove all the results of Section 3.

Proof of Theorem 1. When X is of type 1 or 2, it follows from Corollary 4, part 3 of
Lemma 1, relation (2.9) and Lemma 2. When X is of type 3, the arguments are the
same, except that one has to take account of the fact that the law of X t has an atom
at 0, as it is specified in Corollary 4. 2
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Proof of Theorem 2. We first prove that part 1 implies that for all t > 0, the law of X t

is absolutely continuous. To that aim, observe that

X2t = max

{

X t, Xt + sup
0≤s≤t

(Xt+s −Xt)

}

= max

{

X t, Xt + sup
0≤s≤t

X(1)
s

}

,

where X(1) is an independent copy of X . From this independence and the above
expression, we easily deduce that if the law of Xt is absolutely continuous, then so
is this of X2t. Therefore, from Theorem 1, the measure µ+

2t is absolutely continuous.
This clearly implies that for all s ∈ (0, 2t], the measure µ+

s is absolutely continuous.
Applying Theorem 1 again, it follows that the law of Xs is absolutely continuous, for
all s ∈ (0, 2t]. Then we show the desired result by reiterating this argument.

Let us assume that part 1 holds. Then for all t > 0, the law of X t is absolutely
continuous. Therefore the resolvent measure U(dx) is absolutely continuous. Indeed,
let e be an independent exponentially distributed random time with parameter 1, then
the law of Xe admits a density, hence the law of Xe = Xe − Xe + Xe also admits a
density, since the random variables Xe − Xe and Xe are independent, see Chap. VI
in [2]. Since the law of Xe is precisely the measure U(dx), we have proved that part 1
implies part 3. Then part 3 clearly implies part 2 and from Corollary 1, part 2 implies
part 1.

First observe that V (dx) is absolutely continuous if and only if
∫ t

0
q∗s(dx) ds is

absolutely continuous, for all t > 0. Indeed, from part 2 of Lemma 1, we have
V (dx) =

∫∞

0
q∗s(dx) ds, hence if V (dx) is absolutely continuous, then so are the mea-

sures
∫ t

0
q∗s(dx) ds, for all t > 0. Conversely assume that the measures

∫ t

0
q∗s(dx) ds

are absolutely continuous for all t > 0. Let A be a Borel set of R+ such that
λ+(A) = 0. From the assumption, q∗s(A) = 0, for λ-almost every s > 0, hence
V (A) =

∫∞

0
q∗s(A) ds = 0, so that V (dx) is absolutely continuous. Then from Lemma

2 and Corollary 4, for each t, the law of X t is equivalent to the measure
∫ t

0
q∗s(dx) ds.

Therefore part 4 is equivalent to part 1, from the argument of the beginning of this
proof. 2

Proof of Theorem 3. If p+t ≪ λ+ for all t > 0, then from part 3 of Lemma 1, q∗t ≪ λ+,
for all t > 0. Suppose moreover that 0 is regular for (0,∞) and let A be a Borel subset
of R, such that λ(A) = 0. Then from Corollary 5 and Fubini Theorem, we have

pt(A) =

∫ t

0

ds q∗s ∗ q̄t−s(A) + d q∗t (A) ,

where q̄s and q∗s are extended on R, as in this corollary. But from the assumptions,
for all 0 < s < t, q∗s ∗ q̄t−s(A) = 0 and q∗t (A) = 0, hence pt(A) = 0, for all t > 0 and
pt is absolutely continuous, for all t > 0. So part 1 implies part 2 and the converse is
obvious.

Then it readily follows from part 3 of Lemma 1 and identity (5.9) that part 1
implies part 3 (recall that d∗ = 0 in the present case). Now suppose that V (dt, dx) is
absolutely continuous with respect to the Lebesgue measure on R

2
+. Then we derive

from identity (5.9) that the measures q∗t (dx) are absolutely continuous for λ-almost
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every t > 0. From Corollary 5, it means that pt is absolutely continuous for λ-almost
every t > 0. But if the semigroup pt is absolutely continuous for some t, then ps is
absolutely continuous for all s ≥ t. Hence pt is actually absolutely continuous, for all
t > 0 and part 3 implies part 2.

Then suppose that X is of type 1 and recall that d = d∗ = 0 in this case. From
Corollary 3 and part 2 of Lemma 1, we have:

P(gt ∈ ds,Xt ∈ dx) = n(t− s < ζ)V (ds, dx) . (5.17)

Since n(t− s < ζ) > 0, for all s ∈ [0, t], we easily derive from identity (5.17) that part
3 and part 4 are equivalent.

Let us denote by p−t the restriction of pt to R−. If part 2 is satisfied, then p+t and
p−t are absolutely continuous for all t > 0. Then from part 3 of Lemma 1 applied to
X and its dual process −X , it follows that qt and q

∗
t are absolutely continuous for all

t > 0, so that from Corollary 3, the triple (gt, X t, Xt) is absolutely continuous for all
t > 0, hence part 2 implies part 5. Then part 5 clearly implies part 4. 2

Proof of Proposition 1. In this proof, it suffices to assume that Y is a deterministic
process, i.e. (Tn), (an) and (bn) in (3.2) are deterministic sequences.

In order to prove part 1, let us first assume that an = 0, for all n. Then recall that
from Theorem 2, the law ofX t is absolutely continuous, for all t > 0. Fix t > 0 and let n
be such that t ∈ [Tn, Tn+1). Set Zk = YTk+supTk≤s<Tk+1

Xs and Z = YTn+supTn≤s<tXs,
then we have

sup
s≤t

Xs + Ys = max{Z1, Z2, . . . , Zn−1, Z} . (5.18)

But we can write

Zk = YTk +XTk + sup
s≤Tk+1−Tk

X(k)
s and Z = YTn +XTn + sup

s≤t−Tn

X(n)
s , (5.19)

where X(k), k = 1, . . . , n are copies of X such that X,X(k), k = 1, . . . , n are indepen-
dent. From Theorem 2, the laws of sups≤Tk+1−Tk

X
(k)
s and sups≤t−Tn X

(n)
s are absolutely

continuous. From the representation (5.19) and the independence hypothesis, we derive
that the laws of Z1, Z2, . . . , Zk−1 and Z are absolutely continuous. Since the maximum
of any finite sequence of absolutely continuous random variables is itself absolutely
continuous, we conclude that the law of sups≤tXs + Ys is absolutely continuous and
the first part is proved.

Now we assume that (an) is any deterministic sequence. Then we have (5.18) with

Zk = bk +XTk + sup
s≤Tk+1−Tk

X(k)
s + aks and Z = bn +XTn + sup

s≤t−Tn

X(n)
s + ans , (5.20)

where X(k), k = 1, . . . , n are as above. If p+t ≪ λ+ for all t, then this property also
holds for the process X with any drift a, i.e. Xt + at, so from Theorem 1 the laws
of sups≤Tk+1−Tk

X
(k)
s + aks and sups≤t−Tn X

(n)
s + ans are absolutely continuous and we

conclude that the law of sups≤tXs + Ys is absolutely continuous, in the same way as
for the first part.
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Finally, if X has unbounded variations, then it is of type 1. If moreover for in-
stance the ladder height process at the supremum H has a positive drift, then from
Theorem 2 and the remark thereafter, the law of X t is absolutely continuous for all
t > 0. Since X has unbounded variations, it follows from (iv) p. 64 in [9] that for any
a ∈ R, the ladder height process at the supremum of the drifted Lévy process Xt + at
also has a positive drift, and since Xt+ at is also of type 1, the law of sups≤tXs+ as is

absolutely continuous. Then from Theorem 2, the laws of sups≤Tk+1−Tk
X

(k)
s + aks and

sups≤t−Tn X
(n)
s + ans are absolutely continuous and again we conclude that the law of

sups≤tXs + Ys is absolutely continuous, in the same way as for the first part. 2

Proof of Proposition 2: Recall that under the assumption of this proposition, we have
d∗ = 0. So, we derive from Corollary 3, by integrating identity (4.1) over y and from
part 2 of Lemma 1, that

P(gt ∈ ds,Xt ∈ dx) =

s−1n(t− s < ζ)E(ℓ(x)1I{Xs∈dx})1I(0,t](s) ds+ dδ{t}(ds)t
−1
E(ℓ(x)1I{Xs∈dx}) .

Since X has no positive jumps, then X t continuous. Moreover, it is an increasing
additive functional of the reflected process X t −Xt, such that

E

(
∫ ∞

0

e−t dX t

)

= Φ(1)−1 ,

where Φ is the Laplace exponent of the subordinator Tx = inf{t : Xt > x}. Hence we
have Lt = cX t, with c = Φ(1). Then it follows from the definition of H and ℓ, that

Hu = c−1u, on Hu <∞, and ℓx = cx on ℓx <∞.

Besides, from part 1 of Lemma 1, we have by integrating (5.8) over u ∈ [0,∞),

cxp+t (dx) dt = ctP(τcx ∈ dt) dx , (5.21)

as measures on [0,∞)2. This ends the proof of the proposition. 2

Finally note that identity (5.21) may also be derived from Corollary VII.3, p.190 in [2]
or from Theorem 3 in [1]. The constant c appearing in our expression is due to the
choice of the normalization of the local time in (2.1).
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[6] F. Cordero: Sur la théorie des excursions pour des processus de Lévy
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