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Abstract. In this paper, we present an application of Artificial Neural Networks (ANNs) in the renewable 

energy domain. We particularly look at the Multi-Layer Perceptron (MLP) network which has been the most 

used of ANNs architectures both in the renewable energy domain and in the time series forecasting. We have 

used a MLP and an ad-hoc time series preprocessing to develop a methodology for the daily prediction of 

global solar radiation on a horizontal surface. First results are promising with nRMSE ~ 21% and RMSE ~ 

3.59 MJ/m². The optimized MLP presents predictions similar to or even better than conventional and 

reference methods such as ARIMA techniques, Bayesian inference, Markov chains and k-Nearest-Neighbors. 

Moreover we found that the data preprocessing approach proposed can reduce significantly forecasting errors 

of about 6% compared to conventional prediction methods such as Markov chains or Bayes inferences. The 

simulator proposed has been obtained using 19 years of available data from the meteorological station of 

Ajaccio (Corsica Island, France, 41°55'N, 8°44'E, 4 m above mean sea level). The predicted whole 

methodology has been validated on a 1.175 kWc mono-Si PV power grid. Six prediction methods (ANN, 

clear sky model, combination …) allow to predict the best daily DC PV power production at horizon d+1. 

The cumulated DC PV energy on a 6-months period shows a great agreement between simulated and 

measured data (R² > 0.99 and nRMSE < 2%). 
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Nomenclature: 

x̂ t, x̂ d,y 
Time series model at time t or at day d 

and year y 

dH0
 

Extraterrestrial solar radiation 

coefficient for day d [MJ/m²] 

xt, xd,y 

Time series data at time t or at day d 

and year y 

d

clearskyghH ,

 

clear sky global horizontal 

irradiance [MJ/m²] integrated on  the 

day d 

kp , mq Parameters of ARMA process yd,y 

Moving average of the stationary 

global radiation for the day d and the 

year y 

Kp ,MQ 
Parameters specific to seasonal ARMA 

process 
yd 

Intermediate seasonal factor for day 

d 

d, D Non seasonal and seasonal difference yd* Final seasonal factor for day d 

corr

ydS , ,

tS  

Stationary time series (clearness index) 

for the day d and the year y or for the time 

t 

Epv PV plant power (MJ) 

*

,

corr

ydS ,

*

tS  

Stationary time series (clear sky index) 

for the day d and the year y or for the time 

I 

ηPV PV Plant efficiency (%) 

b 
Fitting parameter of the Solis clear sky 

model 
Iβ 

Daily global radiation (tilt of ) 

[MJ/m²] 

 Global total atmospheric optical depth S Surface of PV wall [m²] 

h Solar elevation angle p,m 
Tendency of prediction and 

tendency of measure [MJ] 

Hgh,clearsk

y 

Clear sky global horizontal irradiance 

[MJ/m²] 
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1 Introduction and Review 

An optimal use of the renewable energy needs its characterization and prediction in order to size detectors or to 

estimate the potential of power plants. In terms of prediction, electricity suppliers are interested in various 

horizons to estimate the fossil fuel saving, to manage and dispatch the power plants installed and to increase the 

integration limit of renewable energy systems on non-interconnected electrical grids. In this study, we focus on 

the prediction of global solar irradiation on a horizontal plane for daily horizon, which might interest electricity 

suppliers. In this way, we have investigated both in time series forecasting, which is a challenge in many fields, 

and in artificial intelligence techniques, which are becoming more and more popular in the renewable energy 

domain [Mellit A., Kalogirou, SA.. 2008. Artificial intelligence techniques for photovoltaic applications: A 

review. Progress in Energy and Combustion Science 1-1, 52-76] and particularly for the prediction of 

meteorological data such as solar radiation [Mubiru, J. 2008. Predicting total solar irradiation values using 

artificial neural networks. Renewable Energy 33-10 2329-2332a ; Mubiru, J., Banda, E., 2008. Estimation of 

monthly average daily global solar irradiation using artificial neural networks. Solar Energy, 82-2, 181-

187Kalogirou, SA., 2001. Artificial neural networks in renewable energy systems applications: a review. 

Renewable and sustainable energy reviews 5, 373-401Hocaoglu, FO., Gerek, ON., Kurban, M., 2008. Hourly 

solar forecasting using optimal coefficient 2-D linear filter and feed-forward neural networks. Solar energy 82-8, 

714-726]. Thereby many research works have shown the ability of Artificial Neural Networks (ANNs) to predict 

time series of meteorological data. Moreover, if we compare to conventional algorithms based on linear models, 

ANNs offer an attractive alternative by providing nonlinear parametric models. Through the proposed study, we 

will particularly look at the Multi-Layer Perceptron (MLP) network which has been the most used of ANN 

architectures in the renewable energy domain [Mellit A., Kalogirou, SA.. 2008. Artificial intelligence techniques 

for photovoltaic applications: A review. Progress in Energy and Combustion Science 1-1, 52-76] and time series 

forecasting [Crone, SF., 2005. Stepwise Selection of Artificial Neural Networks Models for Time Series 

Prediction Journal of Intelligent Systems, Department of Management Science Lancaster University 

Management School Lancaster, United Kingdom Faraway, J., Chatfield, C., 1995. Times series forecasting with 

neural networks: a case study, Research report 95-06 of the statistics group, University of BathHu, Y., Hwang,  

J., 2002. Handbook of neural network signal processing. ISBN 0-8493-2359-2 Jain, K., Jianchang, M., 

Mohiuddin, KM., 1996. Artificial neural networks: A tutorial, IEEE Computer, 29-3, 31–44]. We compare this 



 4 

tool with other classical predictors like ARIMA, Bayesian inference, Markov chains and k-Nearest-Neighbors 

predictors. During this study, we use an ad-hoc time series preprocessing step before using neural networks. 

Indeed, a data preprocessing including seasonal adjustment can improve ANN forecasting performances [Zhang, 

GP., Qi, M., 2005. Neural network forecasting for seasonal and trend time series, European Journal of 

Operational Research 160, 501-514]. Finally we validate the simulator on a 1.175 kWp mono-Si PV power grid 

connected on a wall of our laboratory. This validation step presents both additional difficulties: the PV modules 

are 80° tilted to horizontal and are localized at 10 km from the original station.  

The paper is organized as follow: section 2 describes the context in which this research was done and the data 

we have used and introduces time series forecasting, presents several conventional prediction and modeling 

methods of daily irradiation data including ANNs. All these predictors are then tested and compared with the 

same 19 years data set in the section 3 (data used for training and validation of the ANN comes from the 

meteorological station of Ajaccio airport). At last, the global approach is validated and discussed on real tilted 

PV modules. Section 4 concludes and suggests perspectives.   

2 Methodology 

2.1 Context  

 

In this work, measured global daily radiation data taken from a meteorological ground station are used to 

forecast global solar irradiation for the next day. The global radiation consists of three types of radiation: direct, 

diffuse and ground-reflected [Liu, B.Y.H., Jordan, R.C., 1962. Daily insolation on surfaces tilted towards the 

equator. Trans SHRAE; 67, 526–541]. The ground-reflected radiation does not concern us because we try to 

predict the radiation on a horizontal surface. For clear sky, global radiation is relatively easy to model because it 

is primarily due to the distance from the sun to the sensor [Hay, J.E., Davies, J.A., 1980. Calculation of the solar 

radiation incident on an inclined surface. In: Proc. First Canadian Solar radiation workshop, 59–72 Ineichen, P., 

Guisan, O., Perez, R., 1990. Ground-reflected radiation and albedo. Solar Energy;44-4, 207–214Liu, B.Y.H., 

Jordan, R.C., 1962. Daily insolation on surfaces tilted towards the equator. Trans SHRAE; 67, 526–541 ; Perez, 

R., Ineichen, P., Seals, R., 1990. Modelling daylight availability and irradiance components from direct and 

global irradiance. Solar Energy 44-5, 271–289 ; Reindl, D.T.,  Beckman, W.A., Duffie, J.A., 1990. Evaluation of 
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hourly tilted surface radiation models. Solar Energy; 45-1, 9-17]. With cloudy sky, these are mostly stochastic 

phenomenon, which depend on the local weather.  

The study proposes to analyze the radiation time series (MJ.m
-2

) measured at the meteorological station of 

Ajaccio (Corsica Island, France, 41°55'N, 8°44'E, 4 m above mean sea level) maintained by the French 

meteorological organization (Météo-France). Ajaccio has a 'Mediterranean' climate, hot summers with abundant 

sunshine and mild, dry, clear winters. It is located near the sea but there is also relief nearby (~ 30 km). This 

geographical configuration can make nebulosity difficult to forecast. 

The data used represent the global horizontal solar radiation and are available on an hourly basis for a period 

from January 1971 to December 1989. A compact XARIA-C station (DEGREANE HORIZON), certified by 

Météo-France, is used to record horizontal radiation (Kipp & Zonen CMP6) with a 3 seconds time sampling. The 

sensor works in a range 0 – 90000 J/m² and requires a quality control every year. Only average measures over 

one hour are stored in the national database. These last values are integrated to extract a daily time series of the 

global horizontal radiation.  

2.2 Time series forecasting  

A time series [Faraway, J., Chatfield, C., 1995. Times series forecasting with neural networks: a case study, 

Research report 95-06 of the statistics group, University of Bath] is a collection of time ordered observations xt, 

each one being recorded at a specific time t (period). Time series can appear in a wide set of domains such as 

Finance, Production or Control, just to name a few. In first approximation, a time series model ( x̂ t) assumes that 

past patterns will occur in the future. In fact a time series model could be used only to provide synthetic time 

series statistically similar to the original one. The modeling of the series begins with the selection of a suitable 

mathematical model (or class of models) for the data. Then, it is possible to predict future values of 

measurements [Brockwell, P. J., Davis, R. A., 2006. Time series: theory and methods. ISBN 0387974296 

(USA). 577p. Springer series in statistics, second edition]. 

2.3 Most popular forecasting methods  

We have identified in the time series forecasting literature the following methods: ARIMA (classical method), 

Bayesian inference, Markov chains and k-Nearest-Neighbors predictors. We present in the next sub-sections 

each method with the model obtained after a specific optimization.  
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2.3.1 ARIMA techniques  

The ARIMA techniques [Hamilton, J.D., 1994. Times series analysis. ISBN 0-691-04289-6] are reference 

estimators in the prediction of global radiation field. It is a stochastic process coupling autoregressive component 

(AR) to a moving average component (MA). This kind of model is commonly called SARIMA (p, d, q)(P, D, Q) 

and is defined as follows (p,d,q, P,D and Q are integers and B the lag operator): 

            t

S

Qqt

DSdS

pp uBMBmXBBBKBk  11       (1) 

Where, Xt is a time series, kp are the parameters of the autoregressive part, mq are the parameters of the 

moving average part and ut is an error term distributed as a Gaussian white noise, Kp and MQ are parameters of 

seasonal autoregressive and seasonal moving average part. The d and D are non seasonal and seasonal difference 

and S is seasonal period. The optimization of these parameters must be made depending on the type of the series 

studied. To help us in this study, we chose to use grocer, a very complete toolbox compatible with the Scilab
®

 

software [Dubois, E., Michaux, E., 2008: "Grocer: an econometric toolbox for Scilab", available at 

http://dubois.ensae.net/grocer.html]. The criterion adopted to consider when an ARMA model „fits‟ to the time 

series is the normalized root mean square error obtained by: nRMSE =  22 )(/)( xyx  where x 

represents the measurement and y the prediction, using averaged values. This parameter is generated by the 

prediction of two years of radiation not used during the ARMA parameters calculation step. After several 

experiments the model best suited to the study of global radiation is an ARMA (2,2), its representation is: 









2

1

2

1

..
j

jtjit

i

itt umXkuX         (2) 

Where k1=-1.47, k2=0.47, m1=-1.19 and m2=0.22. A Student‟s T-test (introduced by William Sealy Gosset 

in 1908) has been used to verify that these coefficients were significantly different from zero and residual auto-

correlogram tests have been computed to verify white noise error terms.  

Moreover, we also wanted to study a simplest model among the different ARIMA techniques. We have 

chosen to study the AR type and we have found that the most interesting in this case was the AR(8).  

2.3.2 Bayesian inference  

The second classical technique we have chosen is called Bayesian inference [Diday, E.,  Lemaire, L.,  Pouget, 

J.,  Testu, F., 1982. Éléments d‟analyse de données, Dunod, Paris ; Celeux, G.,  Nakache, J.P., 1994. Analyse 
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discriminante sur variables qualitatives ISBN 2840540274, Polytechnica, 270 p., Paris Pole, A., West, M., 

Harrison, J., 1994. Applied Bayesian forecasting and time series analysis. ISBN 0412044013. Chapman and 

Hall/CRC.]. In this method, evidences or observations are used to update or to newly infer the probability that a 

hypothesis may be true. To estimate the probability that the series is in the state yk at time t, it is useful to use the 

Bayes theorem. This ideology is expressed mathematically by the following formula (where   represents the 

initial and known measured, k is the class and yk the value of this class, P is the conditional probability): 

   )().(maxarg)(maxarg* ktkt
k

kt
k

kt yXPyXPyXPyX      (3) 

A practical way to solve this equation is to make the assumption of conditional independence as follows: 




 
J

j

ktjtkt yXXPyXP
1

)()(
        (4) 

which leads to: 














 





J

j

ktjtkt
k

kt yXXPyXPyX
1

* )().(maxarg
      (5) 

To use this kind of predictor, we must establish the conditional probability table of the series and so quantify 

the last term of the equation. For the optimization we have used Matlab
®
 software and we have been able to 

identify that the best prediction was obtained with 50 classes (0 < k < 51) and an order of J = 3. 

2.3.3 Markov chains  

In forecasting domain, some authors have tried to use so-called Markov processes [Logofet, D.O., Lesnaya, 

E.V., 2000. The mathematics of Markov models: what Markov chains can really predict in forest successions. 

Ecological Modelling 126, 285-298Muselli, M., Poggi, P., Notton, G., Louche, A., 2001. First Order Markov 

Chain Model for Generating Synthetic 'Typical Days' Series of Global Irradiation in Order to Design PV Stand 

Alone Systems. Energy Conversion and Management 42-6, 675-687], specifically the Markov chains. A Markov 

process is a stochastic process with the Markov property. Markov property means that, given the present state, 

future states are independent of the past states. In other words, the description of the present state fully captures 

all the information that could influence the future evolution of the process. Future states will be reached through 

a probabilistic process instead of a deterministic one. The proper use of these processes needs to calculate firstly 

the matrix of transition states. The transition probability of state i to the state j is defined by pi,j. The family of 

these numbers is called the transition matrix of the Markov chain R, we have:  

http://en.wikipedia.org/wiki/Stochastic_process
http://en.wikipedia.org/wiki/Markov_property
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)( 1, iXjXp ttji  
         (6) 

the formulation of the prediction can be resumed by: 

n

tnt RXX .
          (7) 

The choice of the dimension of the transition matrix (number of class), and order of the chain (determination 

of the lag prediction) was done on Matlab
®
. We obtained an optimal prediction for 50 classes and an order of 3: 

 kttt
k

kt eRXRXRXyX )....(maxarg 3

3

2

21*         (8) 

where ek represents the set of basic vectors of the transition matrix. 

2.3.4 K-Nearest Neighbors  

The k-nearest neighbors‟ algorithm (k-NN) [Sharif, M., Burn, D.H., 2006. Simulating climate change 

scenarios using an improved K-nearest neighbor model. Journal of Hydrology, 325 1-4,179-196Yakowitz, S.. 

1987. Nearest neighbors method for time series analysis. Journal of Time Series Analysis 8 : 235-247.] is a 

method for classifying objects based on closest training examples in the feature space. k-NN is a type of 

instance-based learning, or lazy learning where the function is only approximated locally and all computation is 

deferred until classification. It can also be used for regression. Unlike previous models, this tool does not use a 

learning base. The method consists in looking into the history of the series for the case the most resembling to 

the present case. By considering a series of observations Xt, to determine the next term Xt+1, we must find among 

anterior information, which minimize the quantity defined on Eq.(9) (d is the quadratic error). 

 ),(.....),(),(minarg 11 krtktrttrtt
r

o XXdXXdXXdr        (9) 

In this study we have chosen a k equal to 10. After this argument of the minimum search, the prediction can be 

written: 

11   rott XX           (10) 

 

2.4 Artificial neural networks for prediction  

Artificial neural networks (ANN) are intelligent systems that have the capacity to learn, memorize and create 

relationships among data. We present in this section an overview of this methodology in the context of time 

series prediction. An ANN is made up by simple processing units, the neurons, which are connected in a network 

http://en.wikipedia.org/wiki/Statistical_classification
http://en.wikipedia.org/wiki/Feature_space
http://en.wikipedia.org/wiki/Instance-based_learning
http://en.wikipedia.org/wiki/Lazy_learning
http://en.wikipedia.org/wiki/Regression_analysis
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by a large number of weighted links where the acquired knowledge is stored and over which signals or 

information can pass. An input xj is transmitted through a connection, which multiplies its strength by a weight 

wij to give a product xjwij. This product is an argument to a transfer function f, which yields an output yi 

represented as: yi = f( xj wij) where i is an index of neurons in the hidden layer and j is an index of an input to 

the neural network [Mubiru, J. 2008. Predicting total solar irradiation values using artificial neural networks. 

Renewable Energy 33-10 2329-2332Cortez, P., Sollari Allegro, F., Rocha, M., Neves, J., 2002. Real-Time 

Forecasting by Bio-Inspired Models. Proceeding (362) Artificial Intelligence and Applications. ]. In a Multi 

Layer Perceptron (MLP), neurons are grouped in layers and only forward connections exist. This provides a 

powerful architecture, capable of learning any kind of continuous nonlinear mapping, with successful 

applications ranging from Computer Vision, Data Analysis or Expert Systems, etc. [Cortez, P., Rocha, M., 

Neves, J., 2001. Evolving Time Series Forecasting Neural Network Models. Proceeding of int. symposium on 

adaptive systems: evolutionary computation and probabilistic graphical models.Faraway, J., Chatfield, C., 1995. 

Times series forecasting with neural networks: a case study, Research report 95-06 of the statistics group, 

University of Bath Jain, K., Jianchang, M., Mohiuddin, KM., 1996. Artificial neural networks: A tutorial, IEEE 

Computer, 29-3, 31–44Hu, Y., Hwang,  J., 2002. Handbook of neural network signal processing. ISBN 0-8493-

2359-2 ; Crone, SF., 2005. Stepwise Selection of Artificial Neural Networks Models for Time Series Prediction 

Journal of Intelligent Systems, Department of Management Science Lancaster University Management School 

Lancaster, United Kingdom]. One of the most interesting characteristic of ANNs is their ability to learn and to 

model a phenomenon. Figure 1 gives the basic architecture for a MLP application to time series forecasting 

during the learning task. To establish the prediction, a fixed number p of past values are set as inputs of the 

MLP, the output is the prediction of the future value of the time series. This method called “sliding-window 

technique” uses a moving time window to select N times, p inputs data for training.  

 

Figure 1 

 

In order to determine the best network configuration, we have tried to study all the parameters available in 

this network architecture. The principal parameters witch influence the number of local minima and the 

complexity of the network and its learning are: the number of input (these are the neurons which represent the 

input layer of the neural net); the number of hidden layer and their number of neurons; the activation (or transfer) 

function; the learning algorithm and the comparison function used during the learning phase. Additionally we 

have to think about the normalization of data, the learning sampling size and data distribution between the 
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learning, test and validation phases. For convenience we have chosen to optimize the parameters separately with 

an intuitive order of preference for all the ANN used in this work. Thus the chosen parameter optimization 

follows the pattern below (witch is adapted from the method described by Kalogirou, SA., 2001. Artificial neural 

networks in renewable energy systems applications: a review. Renewable and sustainable energy reviews 5, 373-

401): 

1. Number of input: 1 to 15 inputs  

2. Number of hidden layers and neurons : 1 to 3 hidden layers, and 1 to 50 neurons by layer 

3. Transfer function of hidden layer : linear (with or without saturating), exponential and sigmoid  

4. Normalization of data : size of the interval for standardization between 0.6 to 1 

5. Learning sample size : 500 to 6000 samples 

6. Learning algorithm and parameters : all gradient descent, conjugate gradient, and quasi-Newton 

algorithms 

7. Comparison function : MSNE (mean squared normalized error), MSE (mean square error), SSE (sum 

of square error), MAE (mean absolute error) 

8. Data distribution (Learning - Test - Validation) : 60-20-20 and 80-10-10 

9. Customization => new study on the number of hidden neurons, and the hidden layer to complete the 

process 

As a result of this iterative process, the selected network has 3 layers: input, hidden and output layers. There was 

no significant difference in the use of 1, 2 and 3 hidden layers architectures. Considering this fact one hidden 

layer was used in order to minimize the complexity of the proposed ANN model. We tried several input layer 

configurations, best results were obtained with 8 inputs which received the endogenous entries St-1,.. , St-8 

normalized on {0,1}. We found that 3 neurons on the hidden layer were sufficient. Finally, as we wanted to 

predict the solar radiation at horizon 1, we have one neuron on the output layer 
tŜ . Concerning the activation 

functions the best results were obtained with the Gaussian (hidden layer) and linear (output layer) functions. 

Concerning the training algorithm, many experiences enabled us to choose the Levenberg–Marquardt 

optimization (second-order algorithm) with 5000 epochs and  decrease factor (learning rate) of 0.5, all other 

parameters have default values. The ANN configuration leads to an output signal corresponding to a nonlinear 

auto-regression to the data entry: 

1,2

).(3

1

1,,2

8

1

2
,1,,1

.ˆ beWS n

jntjn bSW

j

jt 


 

 



        (11) 
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where parameters Wi,j,k represent interconnection weights between layers and bi,j bias correction coefficients. 

The reader can find in the Appendix A the full list of these values for the most efficient ANN predictor. 

We used the Matlab
®
 software and its neural network toolbox to implement the network. The Matlab

®
 

learning, testing and validation were set respectively to 80%, 10% and 10%. These 3 steps constitute the training 

of the network, after which the weights and bias values are optimized. The training has concerned the years 1971 

to 1987 and the performance function was the Mean Square Error (MSE). In the learning step, the data are 

presented to the ANN following a sequential order. The predicted values of global radiation are compared to the 

years 1988-89. Those years were not used during training. 

3 Results and discussion 

3.1 Results with non-stationary time series 

In this section we examine if the proposed network was really interesting in terms of daily irradiation 

prediction. Indeed, we have compared its performance with the forecasting results obtained with a naive 

predictor (365 values representing the average over 17 years of the considered day), order 3 Markov chains, 

order 3 Bayesian inferences, an order 10 k-NN, an order 8 AutoRegressive AR(8). Table 1 and Figure 2 present 

results obtained in the case of prediction for a period of 2 years (1988-1989). The main comparison function 

used is the nRMSE for daily global radiation prediction (d+1). Moreover, classical statistical parameters enable 

us to evaluate the prediction quality: the absolute error is measured by the Root Mean Square Error (RMSE), the 

Mean Bias Error (MBE) witch gives an idea about the error in term of under or over estimation, determination 

coefficient (R²) and Mean Absolute Error (MAE). 

Table 1, Figure 2 

As can be seen the predictors other than AR(8) and ANN give the same results, slightly better than those 

obtained with a naive predictor. Although AR and ANN could be considered as the best predictors, nRMSE are 

important considering from the point of view of energetic applications such as grid management with 

decentralized grid connected systems. In order to improve these results, the possibility to determine a signal 

pretreatment as input of AR and ANN is discussed. As proposed in [Diday, E.,  Lemaire, L.,  Pouget, J.,  Testu, 

F., 1982. Éléments d‟analyse de données, Dunod, Paris], it appeared interesting to make stationary the time 
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series as much as possible. So we try to find a treatment in order to eliminate seasonal components without 

changing the other information. This treatment is called a seasonal adjustment process. In the present study, we 

have considered the solar irradiation like a seasonal phenomenon. The choice of the methodology used depends 

on the nature of the seasonality. In our case the seasonality is very pronounced and repetitive, so very 

deterministic and not stochastic. In the next sections, we present how we have used the physical modeling of 

radiation to determine a stationarization methodology for the daily signal.  

3.2 Result with stationary time series 

3.2.1 Preprocessing proposed 

In this section we present all the steps of an ad-hoc time series preprocessing. Figure 3 summarizes the different 

steps we want to experiment. The „classical methods‟ like Knn, Bayesian inferences and also naïve predictor 

don‟t require the use of preprocessing. In the literature, very few references related to way to make the data 

stationary. Concerning the Markov chains, we assumed that the simplest model without preprocessing was 

sufficient in comparison with others „classical methods‟. For the preprocessing, a first treatment (step 1) allows 

us to clean the series of non-typical points related to sensor maintenances or absence of measurement 

representing, 4.1% of measurements were missing and replacing by the hourly average over the 19 years for the 

given day.  

 

Figure 3 

 

 

Steps 2 and 3 will be described in the next section and lead to a series corrected utilizing clear sky or 

extraterrestrial normalizations. In case of stationary transformation by clear sky model the term 
corr

ydS , will be 

replaced by 
*

,

corr

ydS . The step 4 consists to use one of the forecasting methods which have been outlined in the 

previous section with the optimized MLP. Finally, step 5 allows to reverse the preprocessing treatment and to 

obtain the prediction of global irradiation. The VC parameter represents the signal dispersion. In the remainder 

of this paper, we choose the following naming convention: Xt designates the time series, and Xd,y the modeling 

of the variables, where d is the day of the year y. To remove the seasonal dependencies, we chose to study both 

the "clearness index" and "clear sky index". According to Bird and Hulstrom [Bird, E.,  Hulstrom, R. L., 1981. A 
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Simplified Clear Sky Model for Direct and Diffuse Insolation on Horizontal Surfaces, SERI/TR-642-761, Solar 

Energy Research Institute, Golden, USA, Colorado], the global radiation on an horizontal plane under clear sky 

(standard Earth‟s atmosphere without cloud) is connected to the extraterrestrial radiation and solar elevation 

angle. In daily case, the periodic phenomenon of irradiation is only due to the extraterrestrial solar radiation 

coefficient for day d ( dH0
) [Badescu, V., 2008. Modelling Solar radiation at the earth surface, recent advances. 

ISBN: 978-3-540-77454-9, Viorel Ed.]. Thus we apply on the original series Xd,y  the ratio to trend method 

[Bourbonnais, R., Terraza, M., 2008. Analyse des séries temporelles. ISBN 9782100517077, 318p., Dunod Ed., 

Paris]. This leads to a new series Sd,y, known as clearness index series (often noted as K in scientific press): 

d

yd

yd
H

X
S

0

,

,            (12) 

In parallel, we wanted to test another method to remove seasonal effects, which is done by using the clear sky 

model for clear sky index. There are a lot of methods to determine this model. In our case, we preferred the 

simplified “Solis clear sky” model [Ineichen, P., 2008. A broadband simplified version of the Solis clear sky 

model. Solar Energy, 82-8, 758-762] based on radiative transfer calculations and the Lambert-Beer relation 

[Mueller, R.W., Dagestad, K.F., Ineichen, P., Schroedter-Homscheidt, M., Cros, S., Dumortier, D., Kuhlemann, 

R.,  Olseth, J.A., Piernavieja, G., Reise, C., Wald, L., Heinemann, D., 2004. Rethinking satellite-based solar 

irradiance modelling: The SOLIS clear-sky module. Remote Sensing of Environment 91, 160-174]. In this case 

the clear sky global horizontal irradiance (Hgh,clearsky) reaching the ground is defined by: 

)sin(.. ))(sin/(

0, heHH h

clearskygh

b         (13) 

where is the global total atmospheric optical depth (-0.37 in our case), h is the solar elevation angle and b 

is a fitting parameter (0.35 for us). The daily integration of the clearskyghH ,  parameter allows us to determine the 

daily solar ratio for modeling
d

clearskyghH , . A series of test (not presented in this paper) has allowed to validate the 

Solis model on horizontal and 80° tilted daily global radiation We obtain a relation “equivalent” to Eq.(12): 

d

clearskygh

yd

yd
H

X
S

,

,*

,            (14) 

These treatments aim to create a new distribution without periodicity. Although the previous pre-treatment 

tends to make the time series stationary, a test of Fisher shows that seasonality was not optimal. According to 

Bourbonnais and Terraza [Bourbonnais, R., Terraza, M., 2008. Analyse des séries temporelles. ISBN 

9782100517077, 318p., Dunod Ed., Paris], after using a ratio to trend method (Eqs 12 and 14) to correct rigid 
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seasonalities, a ratio to moving average can be used. This second ratio can be applied when there is no analytical 

expression of the trend. In this case, we find that Ho led a new seasonality which is difficult to model. That is the 

reason why we considered a moving average ratio to overcome this flexible seasonality: 








m

mi

yid

yd

yd

S
m

S
y

,

,

,

.
1.2

1

         (15) 

In the present case, 2m+1 = 365 days (period of original time series), we obtain m = 182. The term Sd,y is 

equivalent to *

,ydS , they refer only to the chosen stationarization methodology. To complete the process, we use 

the 365 seasonal factors (yd). These are coefficients which allow overcoming seasonality by a moving average 

ratio described above [Bourbonnais, R., Terraza, M., 2008. Analyse des séries temporelles. ISBN 

9782100517077, 318p., Dunod Ed., Paris]. In order not to distort the series, we have considered that the total 

sum of the components of the series is the same before and after the report (final seasonal factors yd* of the 

Eq.18). The transition coefficients (N = 18, the number of years of history) and the average coefficients of the 

regular 365 days are given by Eq.(16). A new series seasonally adjusted that represents only the stochastic 

component of global radiation is given by Eq.(19).  





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
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1           (16) 
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S
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y

S
S          (19) 

Thereafter, the juxtaposition of different values of 
corr

ydS ,  or 
*

,

corr

ydS  will be resumed on stationary time series 

noted tS (extraterrestrial stationarization) and 
*

tS (clear sky stationarization). After this step we needed to verify 

the effectiveness of pre-treatment on the time series. To achieve this we used a Fast Fourier Transform (FFT). 

The spectrum of the original series shows an important peak for the value 365 days that disappears after the pre-

treatment. 
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3.2.2 Comparison of ARIMA and ANN  

In Table 2, the statistical errors nRMSE obtained in the case of pre-treatment with the two best predictors 

(AR/ARMA and ANN) are shown. The results are systematically (but slightly) better with preprocessing. The 

reduction of the error prediction is low, but the difference between the two methods is significant, given the 

average and the confidence interval. A nRMSE reduction from 21.0% to 20.2% represents a gain of  ~1%.   

 

Table 2 

 

Table 3 details in both ANN pre-processing normalizations (clear sky and clearness indexes) the annual 

prediction errors obtained for the years 1988 and 1989. In this study (global horizontal radiation) no significant 

differences between the both stationarization methodologies ("clearness index" and "clear sky index") are noted. 

 

Table 3 

 

The confidence interval is calculated after 8 training-simulations providing information on the prediction 

robustness. The weights are initiated before each simulation. With small confidence intervals, it can be said that 

there are very few local minimums. The ANN learning step error is obtained for RMSE < 10
-4

 (fixed before the 

treatment), leading to the stop of the learning. The monthly average error is the error (nRMSE) generated by 

monthly average values of the global radiation prediction. It‟s in fact the error of the monthly sum of global 

radiation. As can be seen the prediction is different from an average of 4% of the measured data. The negative 

MBE (-0.37MJ/m² and -0.32 MJ/m²) means that the solar potential is underestimated over the year. With non-

ordinary low irradiation days (thick cover cloud during the whole days causing a very low sunshine duration), a 

tendency to overestimate is noted. The determination coefficient R² is greater than 0.8 that is good in relation to 

the noise present in measurements. There should be a compromise between RMSE and nRMSE. The nRMSE, 

computed from the mean global radiation obtained on the season, are useful for comparison and optimization 

(20.17% for clearness index and 20.25% for clear sky index). But for the absolute interpretation of received 

energy we must look at the RMSE. In order to better understand the predictor performances, Figure 4 shows the 

errors of prediction and distinguishes the seasons for the years 1988 and 1989 for a clear sky pre-processing. 

Best results in term of forecast are obtained in summer. These results can be used for example by energy 

managers who need to avoid using hydraulic power plants in dry season.  
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Figure 4 

 

 

The spring season is the most difficult to predict with accuracy given the climate instabilities of this period. 

The absolute error is consistent. However, we find that in summer the error does not exceed 3.24 MJ / m² (900 

Wh/m²), while the irradiation is important. MBE are found negative, which indicates an underestimation. The 

MBE is not significantly different from one season to another. Thus we always have the same prediction error, 

whatever the season. We systematically overestimate the days when the irradiation is minimal (winter). 

Moreover it is very difficult to predict the days when the irradiation had to be theoretically important. We would 

undoubtedly have improved the results optimizing an ANN by season, but it would complicate the process, and 

tend to decrease the procedure robustness.  

After presenting the pre-treatment to be performed on the series and after verifying its effectiveness, we 

propose in the next section to validate this process on a facade PV system. 

3.3 Frontage PV  

In order to validate the approach proposed, we decided to use the previous simulator on a real frontage PV 

system installed recently in our laboratory (Vignola near Ajaccio-Campo del‟Oro). Two additional difficulties 

have to be overcome: the PV modules are tilted 80° to horizontal and are located at 10 km from the 

meteorological station of Ajaccio-Campo del‟Oro.  

 

3.3.1 System description 

The system has a nominal power of 6.525 kWp composed by 1.8 kWp and 4.725 kWp amorphous and mono-

crystal PV modules respectively built in 6 independent power subsystems (Figure 5). PV power predictions from 

ANN methodology described in this paper have been computed from the central part of the PV plant on the front 

side exposed to the south (azimuth zero) and tilted at 80° (Index “PV” on Figure 5). The PV system consists of 9 

SUNTECH 175S-24Ac with 1.175 kWp nominal power connected to a 1.85 kW SUNNY BOY SMA inverter 

for PV production on the grid. The irradiance sensor used (Figure 5) is an INGENIEURBÜRO SI-12TC 

calibrated by the PTB Braunschweig (German national metrology Institute): scale range between 0 and 1200 

W/m² requiring an annual quality control for calibration. 
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Figure 5 

 

 

For the daily PV power calculation, we use in first approximation, a classical linear production based on a 

constant PV plant efficiency ηPV ~ 15.3% (R² = 0.9967), with  

EPV (MJ) = ηPV Iβ S         (20) 

Where Iβ is the daily global irradiation on the PV system (MJ.m
-2

, β = 80°), S is the usable surface of 

the PV system under consideration (S = 10.125 m²).  

 

We propose to predict the DC electrical energy produced by PV modules, at 1 day horizon between the 15 

January 2009 and the 15 June 2009. Unfortunately, no historical irradiation data (on synoptic Campo del‟Oro 

station and on our laboratory) are available for  = 80°. So as it is shown in Figure 6 we planed to use an ANN 

trained on the site of Campo del‟Oro (10 km from the PV modules) with horizontal global radiation data. The 

training phase described in section 3 is performed; only the prediction phase is different because we need to 

transpose the tilted data to horizontal data for use the ANN (and the reverse process as output). 

 

Figure 6 

3.3.2 Tilted global radiation 

Before continuing, it is necessary to develop a methodology to convert the horizontal data for the tilt angle of 

the PV. This approach used the PVSYST software version 4 (www.pvsyst.com) to determine the global 

horizontal and inclined clear sky radiation. This software is very recognized in the field of renewable energies 

[Bouhouras, A.S.,  Marinopoulos, A.G., Labridis, D.P., Dokopoulos, P.S., 2009.  Installation of PV systems in 

Greece–Reliability improvement in the transmission and distribution system, Electric Power Systems Research ; 

Qoaider, L., Steinbrecht, D., 2009  “Photovoltaic systems: A cost competitive option to supply energy to off-grid 

agricultural communities in arid regions,” Applied EnergySpanos, I., Duckers, L., 2004. Expected cost benefits 

of building-integrated PVs in UK, through a quantitative economic analysis of PVs in connection with buildings, 

focused on UK and Greece, Renewable energy, vol. 29,  p. 1289–1303.]. Eq. 21 has been built to convert the 

horizontal global radiation where is the angle of inclination and I the global radiation. On the basis of a 6-

months period, this equation leads to a nRMSE = 14% from measured and simulated daily tilted irradiation 

between 80° to 0° (RMSE = 2.4 MJ / m²). To validate this methodology, we have compared the tilt results with a 
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methodology more sophisticated based on the Climed-2 and Klucher models. The first model is used to 

determine the diffuse and beam fraction, and the second to tilt the diffuse component. In hourly case, the 

Climed2-Klutcher methodology is very convincing, [Noorian, A.M.,  Moradi, I., Kamali, G.A., 2008.  

Evaluation of 12 models to estimate hourly diffuse irradiation on inclined surfaces, Renewable Energy, vol. 33, 

p. 1406–1412 ; Notton, G.,  Poggi, P., Cristofari, C., 2006.  Predicting hourly solar irradiations on inclined 

surfaces based on the horizontal measurements: Performances of the association of well-known mathematical 

models, Energy Conversion and Management, vol. 47, p. 1816–1829.Notton, G., Cristofari, C., Poggi, P., 2006.  

Performance evaluation of various hourly slope irradiation models using Mediterranean experimental data of 

Ajaccio, Energy Conversion and Management, vol. 47, p. 147–173.] but in daily case (integration of hourly 

data), the results are similar with the methodology proposed in this article. For both methodologies the nRMSE 

values are almost identical. Because the Climed-Klutcher methodology is only applicable on some locations near 

the Mediterranean Sea, we have chosen to develop in this article only the PVSYST method which is applicable 

everywhere. In the Eq 21, the diffuse and ground reflected radiations are implied in the bracketed term:  

clearsky

I

I
II


















0

0.





         (21) 

 

3.3.3 Predictor models and Results 

In order to conduct an objective study, several forecasting experiments have to be completed in parallel. Their 

comparisons allow to generate interpretable results of PV power prediction (Eq.20). We have chosen to use 

models that have shown the best results in the horizontal case presented in previous sections, and also a naïve 

predictor for quantify the prediction quality. The selected models are:  

A. Prediction omitting cloud cover: clear sky modeling  

The Solis model (section 3.2.1) is used and coupled with the PVSYST process (Eq.21) to determine the tilted 

clear sky global radiation on Vignola site. 

B. Prediction by average values 

Daily solar radiation averages ( = 0°) are computed from the 19 years of historical data available on the site 

of Campo del‟Oro, then inclined at 80° (Eq.21) 

C. ANN without preprocessing 

ANN is used with time series not made stionary, directly on the raw data.  
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D. ANN with the clearness index  

This method follows the schematic of Figure 6. The time series is made stationary with the processing based 

on extraterrestrial radiation. 

E. ANN with clear sky index  

Equivalent to D but the processing used is the ratio to clear sky model (Solis) 

F. ARMA(2,2) with clear sky index  

Equivalent to E but the ANN are replaced by the linear methodology (ARMA) 

 

Identical irradiation data from Campo del‟Oro meteorological station are used as inputs for the processes B-F 

except model A where a physical model SOLIS computes clear sky conditions. Table 4 presents errors obtained 

on the period of prediction (January-June) and details of the bi-monthly errors. As can be seen on the 6-months 

period (January 15 – June 15, 2009), the ANN with clear sky index (E) methodology slightly outperforms the 

other. Indeed, all results computed are consistent (nRMSE=34.1%, RMSE=0.81 MJ, MBE=-0.03 MJ and 

MAE=0.62 MJ). But the differences are small among C, D, E and F experiments i.e. between the use of ANN or 

ARMA predictor, with or without preprocessing. The max value of RMSE is 0.85 MJ (C, ANN without 

preprocessing), the min is 0.81 MJ (E, ANN clear sky) and the difference is only 0.04 MJ/day. Only clear sky 

(A) and average (B) models are the worst forecasters (respectively nRMSE=46.6% and 47.6%). Bi-monthly 

errors show different behavior for prediction processes. The methods with clear sky index are the most relevant 

for the months for which the signal is very noisy (January-February prediction with E, ANN, and March-April 

with F, ARMA). In the case of May-June prediction the simple method, ANN without preprocessing (C) is the 

most relevant with nRMSE=15.5% while the sophisticate methods with preprocessing (D, E and F) generate 

nRMSE > 16.2%. The MBE factor is very weak for C, D, E and F (max = -0.11 MJ in F case is very acceptable). 

In the case of the wall-PV power system with 80° tilt, the maximum radiation value is obtained during the winter 

months concluding that the “E” process is the most relevant. ANN and ARMA perform almost similar, denoting 

the stochastic nature of the time series and thus the impossibility to predict the cloud effect on solar radiation. 

 

Table 4 

 

These two processes present no significant differences; only these two predictors are considered in the 

following. Figure 7 shows the cumulative daily predicted PV power versus measured ones from January 15 to 

June 15, 2009. This type of chart is very interesting to check the gap between measurement and simulation over 
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the long term (seasonal variations and under or overestimations of the PV energy). All figures show a good 

correlation between measured and predicted data (R² > 0.99). We understand easily that C, D, E and F methods 

are similar and although nRMSE are important, the accumulated predictions are almost identical to the measures 

(2.1% for ANN without preprocessing, 1.5% for ANN with clearly sky and clarity index and also for ARMA 

with clear sky index). 

 

Figure 7 

 

It is important to understand why the daily errors are significant. The first hypothesis is based on the high 

frequency noise series. In fact, the sampling frequency is the same as the frequency of the noise. It seems very 

unlikely that the ANN can predict “extra-ordinary days" at least if the previous day„s cloud cover is ordinary. 

The second hypothesis is that ANNs (and ARMA) don‟t take risks and propose irradiation value centered, on a 

mean value with a small standard deviation. The output of the network is then an “improved average” that fits 

the precursor trend of previous lags. Table 5 presents the decomposition for the ANN prediction errors (“E” 

process).  

 

Table 5 

 

 

The decomposition of the error is quite significant. We understand easily that the total error committed is 

important: the combination of preprocessing and modeling data (tilting, normalization for ANN) induces an error 

of about 20%. Furthermore the year 2009 (Jan-June) is not representative, there was an escalation of 13% error 

due to specific meteorological conditions (rainy period). Moreover, the 80° module tilt is very destabilizing, 

because the winter is a period of high climatic instability, but also a period where irradiation (80°) is the most 

important. 

To try to compare all prediction methods (A-F) in a last step, we tried to present a new factor that reflects the 

tendency of prediction (the first derivative linked to the signal predicted slope). In the case of the measured 

signal, we use the m coefficient defined as follows (I is the measured values of PV electricity energy): 

)()1( tItIm  , and in the case of prediction using the coefficient p ( Î represents the values predicted for 

the DC PV energy): )()1(ˆ tItIp  . 
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It is interesting to note that a Student‟s T-test between the coefficient m and p for ANN and ARMA shows 

that predictions with the ANN process better represent the reality (t = 0.364 and p = 0.71 for ANN vs t = 0.584 

and p = 0.56 for ARMA), recall that p-value is the probability that the averages between the forecasting and 

measured values are identical. So according to this indicator, on average, ANN is more representative than 

ARMA for the trend estimation. Table 6 presents the coefficient comparing the quality of prediction based on the 

ratio  = m / p for all prediction methods (A-F). This type of parameter “” allows determining 4 interpretation 

intervals: 

 <0 ; number of very bad interpretation, for example : m > 0, p < 0, and vice versa, 

 [0;1-and]1+;+∞[: area where one commits an error of prediction; take = 0.2. In the first 

interval on a p > m and the other interval p < m, 

 [1-;1+]: good prediction zone, the sign and the absolute value is correct. 
 

Table 6 

 

Table 6 presents the “” values and its results for the 4 classes considering for each interval, the number of 

events obtained on the studied period. 

 

With this methodology we must recognize that ANN and ARMA are a little different. A-B processes are not 

efficient for daily DC PV energy predictions (Figure 8a). It must be said that it is very difficult to distinguish the 

quality of prediction made with ANN or ARMA (Figure 8b). Only the Student test used with the coefficient m 

and p allows separating the prediction quality of the two models with ANN slightly higher than ARMA. 

 

Figure 8 

4 Conclusion and perspectives 

In this paper, an ANN prediction approach developed to determine global irradiation at daily horizon (d+1) 

which can help electrical managers with grid-PV power systems connected is presented. This prediction model 

has been compared to other prediction methods (AR, ARMA, k-NN, Markov Chains, etc.). We have used an ad-

hoc time series preprocessing (based on clearness or clear sky indexes) and a time series prediction designed 



 22 

MLP. Although the location was very specific, with the proximity to the sea and the mountain that can greatly 

affect nebulosity, we have obtained relevant results.  

Without pre-processing, AR(8) and ANN models presents better daily RMSE of about 3.6 MJ/m² (998 Wh/m
-

2
) and nRMSE ~ 21% compared to Markov chain, Bayes, k-NN methods where nRMSE ~ 25 - 26%. However, 

annual pre-processing ANN methods based on clearness index and clear sky index reduce forecasting errors of 

about 5-6% (nRMSE ~ 20%) compared to classical predictors as Markov chains. The choice of a pre-processing 

built on clearness index (with 
dH 0 ) of clear sky index (

d

clearskyghH , ) leads to comparable results. 

These simulation tools have been successfully validated on the DC energy prediction of a 1.175 kWp mono-Si 

PV power system connected to the grid. On a seasonal point of view, ANN with clear sky pre-processing, 

represents for winter months (January, February) an adequate solution (nRMSE ~ 37%). For summer months, 

ANN without pre-processing gives the best results (nRMSE ~ 15 %). Cumulative simulated and measured PV 

productions are in very good agreement (R² > 0.99) validating the whole prediction process (nRMSE < 2% for a 

6-months period).  

Finally, a new differential variable  has been introduced to study predicted tendency errors based on the first 

derivative predicted signal. According to a Student test, ANN and ARMA simulated daily irradiation profiles 

confirm the good accuracy for the predicted tendency at d + 1. These two methodologies are similar. 

In the future, this tool (ANN) could eventually help the system manager, for implanting new PV systems 

especially on isolated electrical grid where 30% for renewable energy power system represents an integration 

limit. With operational prediction tools, this threshold can be increased to 50% allowing to limit the utilization of 

fossil plants to supply electricity. 

Moreover, it seems important to study shorter time horizons (hour). As a matter of fact, electrical managers 

are also interested to horizons that can range from ½ hour to several hours: from 3 hours to 24 hours. In this new 

configuration, other ANN architecture types have to be studied: time delay, recurrent ANNs, etc.  

In the long-term, it would be also very interesting to study a network trained on an urban data, and used on 

other site with equivalent geographical feature, and maybe combine both ANN and Geographic Information 

Systems (GIS) approaches. 
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List of captions: 

 

Figure 1. MLP application to time series forecasting (bias nodes are not displayed). 

Figure 2. Comparison between measures and forecasts for the daily global horizontal radiation. (a): average 

value; (b): Markov chain; (c): Bayesian inference; (d): knn; (e): AR ; (f): ANN. The thick line 

represents the graph y = x and the normal line, the linear regression. 

Figure 3. Summarize of the protocol followed to obtain the predicted irradiation. VC is the variation coefficient 

(ratio to standard deviation to the means). 

 

Figure 4. Seasonal errors for the daily prediction of the years 1988 and 1989 (mean with 95% confidence 

interval). 

 

Figure 5. Frontage PV system (6.525 kWp). The PV plant under study is mentioned by the “PV” mark. Tilted 

(80°) daily solar radiation I is measured on the top of the system facing south. 

 

Figure 6. PV energy prediction methodology based on a daily horizontal irradiation ANN simulator 

 

Figure 7. Cumulative predictions and measures, (a): ANN without preprocessing, (b): ANN with clearness index, 

(c): ANN with clear sky index and (d): ARMA with clear sky index. 

 

Figure 8. Distribution of -values (X-axis) representing the quality of prediction. (a) : A-B processes not 

relevant, (b) : C-F processes corresponding to best ANN and ARMA simulators 

 

Table 1. Evaluation of the prediction quality for all prediction methods, forecasting years 1988 and 1989, 1 day 

horizon 

 

Table 2. Annual errors for ARMA and ANN prediction methods (nRMSE ± 95% CI), forecasting years 1988 and 

1989, 1 day horizon 

 

Table 3. Annual prediction error for the years 1988 and 1989 with our MLP 
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Table 4. Bi-monthly prediction errors and 6-months prediction errors on the electrical energy from PV plant 

(1.175 kWp,  = 80°) for 1 day horizon from 15 January 2009 to 15 June 2009. The mean and variance 

are the characteristics of the global radiation time series on the period. 

 

Table 5. Decomposition of the nRMSE for electrical energy prediction (“E” process). 

 

Table 6. Tendency of prediction with -values distributions for all processes 
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APPENDIX A 

MLP weight values after training with clarity index for the global radiation (most efficient configuration). W1 

corresponds to the matrix where each element W1n,j, is the weight related to the number n of input neurons (from 

1 to 8) and the number j of hidden neurons (from 1 to 3). W2 corresponds to a vector with 3 elements 

representing the weights between the 3 hidden nodes and the output. B1 is the bias vector related to each hidden 

neuron (3 values) and B2 the output bias value. 
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 nRMSE (%) 

± 95% IC 

RMSE 

(MJ/m²) 

MAE  

(MJ/m²) 
R²   

MBE 

 (MJ/m²) 

Naïve predictor (persistence) 26.13±0.00 4.65 3.03 0.69 -0.001 

Naïve predictor (daily average) 22.52±0.00 4.01 3.11 0.75 -0.39 

Markov Chain (order 3) 25.85±0.00 4.59 3.03 0.69 -0.23 

Bayes (order 3) 25.57±0.00 4.55 3.01 0.69 -0.13 

k-NN (order 10) 25.20±0.00 4.48 3.19 0.70 -0.03 

AR(8)  21.18±0.00 3.77 2.85 0.78 -0.61 

ANN[8,3,1]  20.97±0.15 3.73 2.82 0.79 -0.58 

 

Table 1. 
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 Clearness index 

methodology  

Clear sky index 

methodology 

AR(8) without preprocessing 21.18 ± 0% 21.18 ± 0% 

ARMA(2,2) with preprocessing 20.31 ± 0% 20.32 ± 0% 

ANN[8,3,1] without preprocessing 20.97 ±0.15% 20.97 ±0.15% 

ANN[8,3,1] with preprocessing 20.17 ± 0.1% 20.25 ± 0.1% 

 

Table 2. 
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 Clearness index 

methodology 

Clear sky index 

methodology 

nRMSE (%) 20.17 ± 0.1% 20.25 ± 0.1% 

RMSE (MJ/m²) 3.59 3.60 

MAE (MJ /m²) 2.65 2.67 

MBE (MJ /m²) -0.37 -0.32 

R² 0.801 0.790 

Monthly average error (%) 3.9 4.1 

 

Table 3. 
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A  
clear sky 

B 
average 

C 
 ANN 

D 
 ANN 

Clearness 

E 
 ANN  

clear sky 

F 
 ARMA  

clear sky 

Jan-Feb Mean : 2.39 MJ/m² Std Dev : 0.062 

nRMSE (%) 56.4 57.1 41.7 38.7 37.9 38.4 

RMSE (MJ) 1.47 1.49 1.09 1.01 0.99 1.01 

MBE (MJ) 1.04 1.02 -0.13 -0.01 0.02 -0.04 

MAE (MJ) 1.06 1.12 0.98 0.90 0.87 0.89 

March-April Mean : 2.27 MJ/m² Std Dev : 0.059 

nRMSE (%) 49.3 45.1 38.3 38.3 37.9 37.7 

RMSE (MJ) 1.22 1.11 0.95 0.95 0.94 0.93 

MBE (MJ) 0.79 0.58 -0.01 -0.03 -0.02 0.01 

MAE (MJ) 0.79 0.76 0.76 0.77 0.77 0.75 

May-June Mean : 1.95 MJ/m² Std Dev : 0.031 

nRMSE (%) 17.9 18.9 15.5 16.2 16.4 16.4 

RMSE (MJ) 0.35 0.37 0.31 0.32 0.32 0.33 

MBE (MJ) 0.20 0.08 -0.03 -0.07 -0.09 -0.12 

MAE (MJ) 0.66 0.79 0.63 0.63 0.62 0.62 

January-June Mean : 2.19 MJ/m² Std Dev : 0.055 

nRMSE (%) 46.6 47.6 35.6 34.7 34.1 34.2 

RMSE (MJ) 1.11 1.13 0.85 0.82 0.81 0.81 

MBE (MJ) 0.65 0.64 -0.05 -0.03 -0.03 -0.05 

MAE (MJ) 0.66 0.79 0.63 0.63 0.62 0.62 

Table 4. 
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 nRMSE 

Preprocessing and modeling 20% 

Specificity of year 2009 13% 

Electrical conversion ~ 1% 

Total observed error 34% 

 

Table 5. 
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-values A B C D E F 

< 0 59 45 33 32 30 32 

0 - 0.8 17 24 54 53 56 53 

0.8 - 1.2 22 23 11 5 7 8 

> 1.2 38 44 38 46 43 43 

 

Table 6. 
 

 


