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A NUMERICAL SCHEME FOR THE ONE-DIMENSIONAL PRESSURELESS GASES SYSTEM

 for the continuous model.

Introduction

During the last two decades, there have been many contributions on the pressureless gases system, and it seems natural to tackle the question of its discretization. The pressureless gases system appears as a system of conservation laws on the mass and momentum. Hence, it is relevant to wonder if standard numerical schemes for conservation laws, like the upwind scheme, for instance, are fitted to this particular system. However, we emphasize that it is a degenerate hyperbolic system (the Jacobian is not diagonalizable).

Let us now recall the one-dimensional system describing a pressureless gas. Let T > 0. The gas density ̺(t, x) ≥ 0 and the momentum q(t, x) ∈ R satisfy the following equations in (0, T ) × R

∂ t ̺ + ∂ x (̺u) = 0, (1) ∂ t q + ∂ x (qu) = 0. (2)
One must define the velocity u(t, x) ∈ R as a quotient of q by ̺, but this may not be possible, since ̺ can be zero. We discuss this issue below, by recalling the notion of duality solutions [START_REF] Bouchut | One-dimensional transport equations with discontinuous coefficients[END_REF]. As already stated, each equation consists of a conservation law, (1) for mass and (2) for momentum. We obviously need initial conditions [START_REF] Berthon | A relaxation scheme for the approximation of the pressureless Euler equations[END_REF] ̺(0, •) = ̺ in , q(0, •) = q in , Date: May 5, 2011. in which the condition on the momentum can be replaced by an initial condition on the velocity u(0, •) = u in , and then written again as q(0, •) = ̺ in u in .

The previous system can be seen as a simplified model of the Euler equations, where the pressure has been set to zero. It can describe either cold plasmas or galaxies' dynamics [START_REF] Ya | Gravitational instability: An approximate theory for large density perturbations[END_REF]. This system (1)-( 2) and related problems (traffic models, magnetohydrodynamics, astrophysics, pressureless fluid equations...) have been widely studied, see, for instance, [START_REF] Bouchut | On zero pressure gas dynamics[END_REF][START_REF] Grenier | Existence globale pour le système des gaz sans pression[END_REF][START_REF] Rykov | Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics[END_REF][START_REF] Brenier | Sticky particles and scalar conservation laws[END_REF][START_REF] Poupaud | Measure solutions to the linear multi-dimensional transport equation with non-smooth coefficients[END_REF][START_REF] Bouchut | Duality solutions for pressureless gases, monotone scalar conservation laws, and uniqueness[END_REF][START_REF] Boudin | A solution with bounded expansion rate to the model of viscous pressureless gases[END_REF][START_REF] Sever | An existence theorem in the large for zero-pressure gas dynamics[END_REF][START_REF] Berthelin | Existence and weak stability for a pressureless model with unilateral constraint[END_REF][START_REF] Poupaud | Diagonal defect measures, adhesion dynamics and Euler equation[END_REF][START_REF] Leveque | The dynamics of pressureless dust clouds and delta waves[END_REF][START_REF] Bouchut | Uniqueness and weak stability for multidimensional transport equations with one-sided Lipschitz coefficient[END_REF][START_REF] Gallagher | On pressureless gases driven by a strong inhomogeneous magnetic field[END_REF][START_REF] Coulombel | From gas dynamics to pressureless gas dynamics[END_REF][START_REF] Berthelin | A model for the formation and evolution of traffic jams[END_REF][START_REF] Nguyen | Pressureless Euler/Euler-Poisson systems via adhesion dynamics and scalar conservation laws[END_REF][START_REF] Brenier | A modified least action principle allowing mass concentrations for the early universe reconstruction problem[END_REF]. Those references use the same fluid point of view we choose here, or the kinetic one, involving the adhesion dynamics of the so-called sticky particles.

When one studies smooth solutions of the pressureless gases system, (2) can be replaced by the standard Burgers equation:

(4) ∂ t u + ∂ x u 2 2 = ∂ t u + u∂ x u = 0.
System (1)-( 2) is then uncoupled, since we obtain u from (4), and then ̺ from [START_REF] Berthelin | Existence and weak stability for a pressureless model with unilateral constraint[END_REF]. On the other hand, it is well-known that smooth initial data can result in mass concentration, for example, when the velocity does not increase. In that case, the velocity cannot satisfy (4) anymore.

In [START_REF] Bouchut | One-dimensional transport equations with discontinuous coefficients[END_REF], Bouchut and James introduced the notion of duality solution for one-dimensional transport equations and conservation laws. In [START_REF] Bouchut | Duality solutions for pressureless gases, monotone scalar conservation laws, and uniqueness[END_REF], they prove that this framework is fitted to the pressureless gases system. Let us briefly recall the results they obtain. Definition 1. A couple (̺, q) ∈ C(R + ; w*-M loc (R)) 2 , with ̺ ≥ 0, is a duality solution to (1)-(2), if there exists a bounded Borel function a and α ∈ L 1 loc (R * + ) such that ∂ x a ≤ α, q = a̺, in R * + × R, and, in the duality sense on (t 1 , t 2 ) × R, for any 0 < t 1 < t 2 ,

∂ t ̺ + ∂ x (̺a) = 0, ∂ t q + ∂ x (qa) = 0.
In that setting, u is defined ̺-almost everywhere, and we have u = a ̺-a.e. Bouchut and James prove that duality solutions are stable, and also entropic, i.e. the following inequality holds, in the distributional sense, (5)

∂ t (̺S(u)) + ∂ x (̺uS(u)) ≤ 0,
for any convex function S. Using those properties and the sticky particles dynamics, they obtain the following existence result.

Theorem 1. Let ̺ in , q in ∈ M loc (R), with ̺ in ≥ 0 and |q in | ≤ U ̺ in , U ≥ 0.
Then there exists a duality solution to (1)-( 3), and we have a ∞ ≤ U and

α(t) = 1/t.
As proven in [START_REF] Hoff | The sharp form of Oleȋnik's entropy condition in several space variables[END_REF], the one-sided Lipschitz (OSL) condition on the expansion rate ∂ x a ≤ 1/t, also known as the Oleinik entropy condition, is optimal for a convex scalar conservation law. In the proof of Theorem 1, it is clear that the standard convex entropy condition (5) is not enough, and the OSL condition is really required. Note that, when the solutions are smooth, this estimate can easily be proven, since the Burgers equation ( 4) lies in the class of convex scalar conservation laws [START_REF] Brenier | The discrete one-sided Lipschitz condition for convex scalar conservation laws[END_REF][START_REF] Leveque | Numerical methods for conservation laws[END_REF].

Eventually, Bouchut and James also obtain uniqueness when ̺ in is nonatomic (essentially meaning that ̺ in is smooth).

In this work, we also consider the viscous pressureless gases system. In this system, as explained in [START_REF] Boudin | A solution with bounded expansion rate to the model of viscous pressureless gases[END_REF], ( 2) is replaced by an equation on the velocity itself. Let us choose ε > 0. The gas density ̺(t, x) > 0 and the velocity u(t, x) ∈ R satisfy, in (0, T ) × R, Equation ( 1) and ( 6)

∂ t u + u∂ x u = ε ̺ ∂ 2 xx u,
with the same set of initial conditions (3). That writing imposes that ̺ remains nonnegative, which is true if ̺ in is also nonnegative, see [START_REF] Boudin | A solution with bounded expansion rate to the model of viscous pressureless gases[END_REF]. Note that ( 6) is equivalent, when ε is fixed, to

∂ t u + ∂ x u 2 2 = ε ̺ ∂ 2 xx u, (7) 
if we take into account the smoothness of the viscous velocity given in [START_REF] Boudin | A solution with bounded expansion rate to the model of viscous pressureless gases[END_REF]. In fact, ( 6) or [START_REF] Bouchut | Uniqueness and weak stability for multidimensional transport equations with one-sided Lipschitz coefficient[END_REF] can also be rewritten as an equation on the momentum, with a viscosity term ε∂ 2 xx u on the right-hand side, ∂ t (̺u) + ∂ x (̺u 2 ) = ε∂ 2 xx u, which yields (2) when ε goes to 0. In [START_REF] Boudin | A solution with bounded expansion rate to the model of viscous pressureless gases[END_REF], the author proved the existence, in the sense of distributions, of solutions to the viscous system (1), ( 3) and [START_REF] Bouchut | Uniqueness and weak stability for multidimensional transport equations with one-sided Lipschitz coefficient[END_REF], and that the expansion rate is upper-bounded: ∂ x u ≤ A/(At + 1), when A = max(ess sup ∂ x u in , 0) is finite. He also obtains the convergence of the viscous solutions towards the duality solutions to the pressureless gases system when ε vanishes. More precisely, the following convergence result holds.

Theorem 2. Let (̺ in ε ), (u in ε ) such that, for any ε > 0,

̺ in ε > 0, ̺ in ε ∈ L ∞ (R), 1/̺ in ε L ∞ (R) ≤ Cε -1/4 , u in ε ∈ L 1 ∩ L ∞ (R), u in ε L ∞ (R) ≤ C, ∂ x u in ε L 1 ∩ L 2 (R), ess sup ∂ x u in ε ≤ Cε -1/2 . We assume that (̺ in ε ) ⇀ ̺ in and (̺ in ε u in ε ) ⇀ q in in w*-M loc (R).
Then, up to a subsequence, (̺ ε , ̺ ε u ε ), given by the solutions to (1) and (7), with initial datum (̺ in ε , ̺ in ε u in ε ), converges in C t (w*-M loc (R)) towards the duality solution (̺, q) of (1)-(3).

Both viscous and inviscid systems can also be studied in a periodic framework, i.e. we focus on the closed interval [0, 1] and impose that all the physical quantities have the same values at both x = 0 and x = 1, so that the solutions are 1-periodic. This work is dedicated to the numerical approximation of the pressureless gases system (1)- [START_REF] Berthelin | A model for the formation and evolution of traffic jams[END_REF], where the latter may be replaced by [START_REF] Bouchut | Uniqueness and weak stability for multidimensional transport equations with one-sided Lipschitz coefficient[END_REF]. For readability reasons, we choose the periodic framework.

There are two methods to get a priori relevant schemes. The first one is to use the natural kinetic framework which underlies the pressureless gas dynamics, with kinetic schemes, as in [START_REF] Bouchut | On zero pressure gas dynamics[END_REF][START_REF] Bouchut | Numerical approximations of pressureless and isothermal gas dynamics[END_REF], or with particle methods [START_REF] Chertock | A new sticky particle method for pressureless gas dynamics[END_REF]. The second one is related to the discretization of hyperbolic conservation laws. Gosse and James [START_REF] Gosse | Numerical approximations of one-dimensional linear conservation equations with discontinuous coefficients[END_REF] point out the relevance of two families of numerical schemes: the upwind schemes and the Lax-Friedrichs schemes. In [START_REF] Berthon | A relaxation scheme for the approximation of the pressureless Euler equations[END_REF], Berthon et al. investigate a relaxation scheme for the pressureless gases system in one and two-dimensional settings.

As we already pointed out, the key condition to obtain the duality solution is that the velocity expansion rate must be upper-bounded by 1/t. Brenier and Osher [START_REF] Brenier | The discrete one-sided Lipschitz condition for convex scalar conservation laws[END_REF] obtained the relevance of the OSL condition in a discrete framework for the convex scalar conservation laws. In this work, we first investigate the upwind scheme associated to (1)- [START_REF] Berthelin | A model for the formation and evolution of traffic jams[END_REF], and prove that it fails to ensure the OSL condition. Subsequently, we try the upwind diffusive scheme associated to (1) and [START_REF] Bouchut | Uniqueness and weak stability for multidimensional transport equations with one-sided Lipschitz coefficient[END_REF], and explain how we can obtain a good numerical approximation of the duality solution to the inviscid pressureless gases system using this scheme. We do not study the Lax-Friedrichs schemes described in [START_REF] Gosse | Numerical approximations of one-dimensional linear conservation equations with discontinuous coefficients[END_REF]. Indeed, the numerical dissipation induced by those first order schemes is too significant. Since it is then natural to use higher order schemes, we recover the same kind of problems as in the diffusive upwind scheme we here propose, involving second order terms.

In the remainder, let ∆t, ∆x > 0 such that N = T /∆t ∈ N * and I = 1/∆x ∈ N * , and set λ = ∆t/∆x. We respectively denote ̺ n i , q n i and u n i the approximate values of ̺, q and u at time n∆t ∈ [0, T ] and coordinate (i + 1/2)∆x ∈ [0, 1), for 0 ≤ n ≤ N and 0 ≤ i < I. Since we use a periodic framework, we define ̺ n i , q n i and u n i for any i ∈ Z, by

̺ n i+pI = ̺ n i , q n i+pI = q n i , u n i+pI = u n i , 0 ≤ i < I, p ∈ Z * .
For the sake of readability, in the previous notations, we may drop the time iteration index n and replace n + 1 by a prime symbol " ′ ". For instance, the velocity at time (n + 1)∆t and coordinate (i + 1/2)∆x can be written as u ′ i or u n+1 i . Apart from the density, momentum and velocity, the quantity of interest, which we name the numerical expansion rate, is, for each time and space indices n and i,

w n i := nλ(u n i+1 -u n i ).
Indeed, the OSL condition at time n∆t then reads max i w n i ≤ 1.

Upwind scheme

Let us first denote the positive and negative parts of a ∈ R a + = max(0, a), a -= min(0, a).

The upwind scheme writes, for any 0 ≤ i < I,

̺ ′ i = ̺ i -λ ̺ i (u i ) + -̺ i-1 (u i-1 ) + -λ ̺ i+1 (u i+1 ) --̺ i (u i ) -, q ′ i = q i -λ q i (u i ) + -q i-1 (u i-1 ) + -λ q i+1 (u i+1 ) --q i (u i ) -, u ′ i = q ′ i ̺ ′ i , if ̺ ′ i > 0,
and

u ′ i is not defined if ̺ ′ i = 0.
It is quite clear that the previous schemes on both ̺ and q are monotonic, if the standard Courant-Friedrichs-Lewy (CFL) condition λ max |u| ≤ 1 is satisfied. Hence, we only choose positive initial data to study positive velocities. The scheme then becomes, for any 0 ≤ i < I,

̺ ′ i = (1 -λu i )̺ i + λu i-1 ̺ i-1 , (8) q 
′ i = (1 -λu i )q i + λu i-1 q i-1 , (9) 
u ′ i = q ′ i ̺ ′ i . (10) 
As we already stated, this last equality allows to define u ′ i only when ̺ ′ i > 0. This fits the mathematical setting of the pressureless gases system, since u can only be defined ̺-almost everywhere. Nevertheless, it is not satisfying from a numerical viewpoint, since the computations stop whenever the density becomes equal to 0. We can impose whichever value we want, for instance, u ′ i = 0, when ̺ ′ i = 0. Indeed, we do not care about the value of the velocity at a point where is there is no matter. But we must keep in mind not to use those artificial nil values of u ′ i to study the numerical expansion rate.

Thanks to [START_REF] Boudin | Convergence of a viscous numerical scheme towards the inviscid one-dimensional pressureless gases system[END_REF], we immediately have

̺ ′ i ̺ ′ i+1 (u ′ i+1 -u ′ i ) = ̺ ′ i q ′ i+1 -̺ ′ i+1 q ′ i , which implies ̺ ′ i ̺ ′ i+1 w ′ i (n + 1)λ = (1 -λu i+1 )̺ i+1 ̺ ′ i w i nλ + λu i-1 ̺ i-1 ̺ ′ i+1 w i-1 nλ .
Under the CFL condition λ max |u| ≤ 1, if (w i ) 0≤i<I are negative, and if (̺ ′ i ) 0≤i<I are nonnegative, it is clear that the quantities (w ′ i ) also remain negative. Unfortunately, if w j is nonnegative for a given j, the OSL condition w ′ i ≤ 1 for all i may not be satisfied.

Proposition 3. Let 0 < λ < 1 and U such that 0 < λU < 1, and choose an integer I > 2 + 1/λ. We consider the following initial data

(11) ̺ 0 i = 1, 0 ≤ i ≤ I -1, u 0 0 = U, u 0 i = 0, 1 ≤ i ≤ I -1.
Then the upwind scheme (8)- [START_REF] Boudin | Convergence of a viscous numerical scheme towards the inviscid one-dimensional pressureless gases system[END_REF] does not satisfy the OSL condition. More precisely, we have [START_REF] Brenier | Sticky particles and scalar conservation laws[END_REF] max

i w I-2 i > U.
The assumption on the Courant number 0 < λ < 1 is standard and is a natural consequence of the CFL condition λU ≤ 1 when U is large. The initial data can of course be defined without the discretization grid: we have ̺ in ≡ 1 and u in ≡ 0 except in 0 where u in (0) = U .

Proof. It is easy to simultaneously prove, by induction on the time index 0 ≤ j < I -1, that

̺ j i > 0, 0 ≤ i ≤ I -1, and u j 0 = U, u j j+1 > 0, u j i = 0, j + 2 ≤ i ≤ I -1.
We must emphasize that the nil values of u j i are obtained because q j i = 0 and ̺ j i > 0, and not because of the choice of nil velocity when the density equals 0.

Then we can write that Note that the first inequality is in fact an equality, but we do not need to prove it here.

w I-2 I-1 = (I -2)λ(u I-2 0 -u I-2 I-1 ) = (I -2)
Remark 1. As we already pointed out, the standard numerical version of the OSL condition reads max i w n i ≤ 1. It may have been relaxed into max i w n i ≤ K, where K is a nonnegative constant, which does not depend on the initial data. But [START_REF] Brenier | Sticky particles and scalar conservation laws[END_REF] implies that the quantity max i w I-2 i can be as large as we want, depending on the value of U . Proposition 3 means in particular that, if the space step ∆x is refined enough, the numerical OSL condition cannot be satisfied anymore, with initial data given by [START_REF] Brenier | A modified least action principle allowing mass concentrations for the early universe reconstruction problem[END_REF]. Moreover, we must point out that, whatever the final time is, one can find a discretization for which the upwind scheme cannot satisfy the OSL condition, because I does not depend on T .

The initial datum u in in the previous proposition is not smooth. Nevertheless, even with smooth (and periodic) initial data, the upwind scheme does not necessarily provide a solution satisfying the OSL condition, see 4.1.

Adding an artificial viscosity

As it was done in [START_REF] Boudin | A solution with bounded expansion rate to the model of viscous pressureless gases[END_REF], we now add a small viscosity term in (2) to obtain [START_REF] Bouchut | Uniqueness and weak stability for multidimensional transport equations with one-sided Lipschitz coefficient[END_REF], and we study the numerical approximation of ( 1) and [START_REF] Bouchut | Uniqueness and weak stability for multidimensional transport equations with one-sided Lipschitz coefficient[END_REF]. We still deal with arbitrary 1-perodic initial data

u in ≥ 0, ̺ in ≥ 0.
In what follows, we consider a fixed ε > 0, small enough. If necessary, we regularize both u in and ̺ in so that (keeping the same notations for both, even if they depend on ε) u in , ̺ in ∈ C 1 (R; R * + ), remain periodic and satisfy the assumptions of Theorem 2, which can be written as

(13) ̺ in (x) ≥ Cε 1/4 , u in (x) ≤ C, (u in ) ′ (x) ≤ C √ ε , ∀x ∈ [0, 1],
where C is a constant which does not depend on ε. The regularized ̺ in must lie in R * + , since the continuous diffusive model involves a division by ̺. In the following, we set

U = max [0,1] u in > 0, V = min [0,1] u in > 0, A = max(0, max [0,1] (u in ) ′ ) ≥ 0, R = min [0,1]
̺ in > 0.

The previous quantities can depend on ε, and must satisfy properties which come from (13), i.e.

(14) R ≥ Cε 1/4 , V ≤ U ≤ C, A ≤ C √ ε ,
where C does not depend on ε.

Then we consider ∆t, ∆x > 0, and set

λ = ∆t ∆x , σ = ∆t ∆x 2 .
In the remainder, we make the following assumptions on the time and space steps:

0 < ∆x ≤ 2V 1 + A , ( 15 
) 0 < ∆t ≤ min 1 4A + 1 , 1 4U ∆x, R 4ε(1 + AT ) ∆x 2 . ( 16 
)
In fact, [START_REF] Coulombel | From gas dynamics to pressureless gas dynamics[END_REF] and ( 16) are not so restrictive, since, eventually, ∆x and ∆t will go to 0, ε being fixed. From now on, even if we do not write the dependence on ε, we must keep in mind, in the numerical examples, that U , V , A and R can depend on ε and must satisfy [START_REF] Chertock | A new sticky particle method for pressureless gas dynamics[END_REF], at least for ε small enough. That dependence implies that, at most, ∆x is of order √ ε and ∆t of order 4 √ ε.

Note that it cannot prevent ∆t and ∆x from going to 0 while ε remains fixed.

With the same notations for quantities at times n∆t and (n + 1)∆t as in Section 2, we now focus on the following scheme, corresponding to the discretization of ( 1) and [START_REF] Bouchut | Uniqueness and weak stability for multidimensional transport equations with one-sided Lipschitz coefficient[END_REF].

u ′ i = u i -λ u i 2 2 - u i-1 2 2 + εσ ̺ i (u i-1 + u i+1 -2u i ), (17) 
̺ ′ i = (1 -λu ′ i )̺ i + λu ′ i-1 ̺ i-1 . (18) 
Note that ( 17) is obtained from [START_REF] Bouchut | Uniqueness and weak stability for multidimensional transport equations with one-sided Lipschitz coefficient[END_REF], which is written under a conservative form, as suggested in [START_REF] Brenier | The discrete one-sided Lipschitz condition for convex scalar conservation laws[END_REF].

If we choose u in ≡ 1, we can note that both upwind and diffusive schemes give u n i = 1 for any i and n, which is reassuring: in that case, and when ̺ remains nonnegative, the velocity satisfies the Burgers equation, which implies, at least formally, that u remains constant.

Remark 2. The velocity terms which appear in [START_REF] Gosse | Numerical approximations of one-dimensional linear conservation equations with discontinuous coefficients[END_REF] are the ones at time (n + 1)∆t. They must not be at time n∆t to ensure the lower bound on ̺, as we shall see in the proof of Theorem 4 below.

Numerical strategy. Let us here sum up the strategy used to build a relevant numerical solution to the pressureless gases system.

1. Consider 1-periodic initial data. 2. Fix ε > 0 small enough.

3. Regularize ̺ in , u in so that they become C 1 (R; R * + ) and satisfy (13). 4. Fix ∆x and ∆t satisfying ( 15)-( 16). 5. Use the numerical scheme ( 17)- [START_REF] Gosse | Numerical approximations of one-dimensional linear conservation equations with discontinuous coefficients[END_REF]. The previous strategy holds for two reasons. First, the following theorem states that the scheme ( 17)-( 18) is L ∞ -stable, consistent, monotonic, and that it satisfies the OSL condition. Consequently, (̺ n i ) and (u n i ) converge towards to ̺ and u, solutions to the viscous pressureless gases system when both ∆t and ∆x go to 0, ε being fixed. Second, thanks to Theorem 2, the scheme eventually provides a good approximation of a solution to the inviscid pressureless gases system, if one chooses ε small enough, and regularized initial data in C 1 (R; R * + ) close to the original ones and satisfying [START_REF] Brenier | The discrete one-sided Lipschitz condition for convex scalar conservation laws[END_REF]. The error between the diffusive numerical and the duality solutions is currently under study, see [START_REF] Boudin | Convergence of a viscous numerical scheme towards the inviscid one-dimensional pressureless gases system[END_REF].

Theorem 4. We assume that (15)-( 16) hold. Then we have, for any i and n ≥ 0,

V ≤ u n i ≤ U, (19) 
u n i -u n i-1 ≤ A∆x 1 + An∆t , (20) 
̺ n i ≥ R 1 + An∆t ≥ R 1 + AT > 0. (21)
Moreover, the discrete total mass is conserved, i.e., for any n ≥ 0, [START_REF] Leveque | The dynamics of pressureless dust clouds and delta waves[END_REF] i

̺ n i ∆x = i ̺ 0 i ∆x.
Finally, when ε > 0 is fixed, the scheme (17)-( 18) is consistent with (1) and [START_REF] Bouchut | Uniqueness and weak stability for multidimensional transport equations with one-sided Lipschitz coefficient[END_REF], is first order accurate in time and space, and is monotonic.

Equations ( 19) and ( 21) respectively correspond to the maximum principles on the velocity and the density, [START_REF] Hoff | The sharp form of Oleȋnik's entropy condition in several space variables[END_REF] stands for the discrete version of the OSL condition.

Remark 3. The assumptions [START_REF] Rykov | Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics[END_REF] on ∆t ensure the stability of the scheme. More precisely, the second one is induced by the CFL condition and the third one is similar to standard stability conditions for explicit diffusive schemes. The first one is needed for the required properties of the scheme, as it will be detailed in the proof of Theorem 4.

Proof. We proceed by induction on n ∈ N, and first investigate the case when n = 0. Equations ( 19) and ( 21) are obviously satisfied by definitions of U , V and R, and thanks to [START_REF] Coulombel | From gas dynamics to pressureless gas dynamics[END_REF]. The fact that (20) holds comes from the fact that u in is smooth, and consequenly satisfies the intermediate values inequality.

In the remaining of the proof, we suppose that A > 0. The case when A = 0 can easily be treated. Let us assume that ( 19)-( 21) hold for a fixed n, and prove them for n + 1. We can rewrite Equation ( 17) as [START_REF] Nguyen | Pressureless Euler/Euler-Poisson systems via adhesion dynamics and scalar conservation laws[END_REF] 

u ′ i = 1 -λ u i + u i-1 2 - 2εσ ̺ i u i + εσ ̺ i u i+1 + λ u i + u i-1 2 + εσ ̺ i u i-1 .
Under this form, u ′ i is a convex combination of u i-1 , u i and u i+1 , since the corresponding coefficients in [START_REF] Nguyen | Pressureless Euler/Euler-Poisson systems via adhesion dynamics and scalar conservation laws[END_REF] live in [0, 1] and their sum equals 1. Indeed, we clearly have, thanks to ( 16) and ( 21),

0 ≤ 2εσ ̺ i ≤ 1 2 ,
and, thanks to ( 16) and ( 19),

0 ≤ λ u i + u i-1 2 ≤ 1 4 .
Then it is easy to check that u ′ i satisfies [START_REF] Grenier | Existence globale pour le système des gaz sans pression[END_REF]. Let us now define, for any i,

δ i = u i+1 -u i - A∆x 1 + An∆t ,
which we know is negative, and prove that δ ′ i is also negative, for any i. Thanks to [START_REF] Nguyen | Pressureless Euler/Euler-Poisson systems via adhesion dynamics and scalar conservation laws[END_REF], we can write

u ′ i+1 -u ′ i = 1 - λ 2 (u i+1 + u i ) - εσ ̺ i - εσ ̺ i+1 (u i+1 -u i ) + εσ ̺ i+1 (u i+2 -u i+1 ) + λ 2 (u i + u i-1 ) + εσ ̺ i (u i -u i-1
).

Then we have

δ ′ i = εσ ̺ i+1 δ i+1 + λ 2 (u i + u i-1 ) + εσ ̺ i - Aλ∆x 2(1 + An∆t) δ i-1 + 1 - λ 2 (u i+1 + u i ) - εσ ̺ i - εσ ̺ i+1 - Aλ∆x 2(1 + An∆t) δ i + A∆x 1 + An∆t 1 - A∆t 1 + An∆t - A∆x 1 + A(n + 1)∆t .
The coefficient before δ i+1 is clearly positive. Let us check that the ones before δ i-1 and δ i are positive too. We have

Aλ∆x 2(1 + An∆t) ≤ λ 2 (u i + u i-1 ) and λ 2 (u i+1 + u i ) + εσ ̺ i + εσ ̺ i+1 + A∆t 2(1 + An∆t) ≤ 1,
because of ( 15)-( 21). Since the (δ i ) are all negative, we still have to prove that the remaining term is negative to get δ ′ i ≤ 0. After simplifying by A∆x, which has no influence on the sign, we write

1 + A(n -1)∆t (1 + An∆t) 2 - 1 1 + A(n + 1)∆t = -(A∆t) 2 (1 + An∆t) 2 (1 + A(n + 1)∆t) ,
which is clearly negative, and ensures that (20) holds for n + 1.

We now focus on the properties of ̺. We successively have, thanks to [START_REF] Leveque | Numerical methods for conservation laws[END_REF] for n and (20) for n + 1,

̺ ′ i ≥ 1 - A∆t 1 + A(n + 1)∆t R 1 + An∆t = R 1 + A(n + 1)∆t ,
which concludes the induction. Note that, as we pointed out in Remark 2, if [START_REF] Gosse | Numerical approximations of one-dimensional linear conservation equations with discontinuous coefficients[END_REF] only involved velocities at time n∆t, the previous inequality would not hold, and we would not get any maximum principle on 1/̺.

We easily notice that in the equality i

̺ ′ i ∆x = i ̺ i ∆x -λ∆x i ̺ i u ′ i + λ∆x i ̺ i-1 u ′ i-1 ,
the last two terms cancel, which ensures the discrete total mass conservation.

Finally, let us investigate some basic properties of the scheme ( 17)-( 18). The consistency is quite clear. Moreover, if we study u ′ i as a function of u i-1 , u i and u i+1 , we immediately have

∂u ′ i ∂u i-1 = λu i-1 + εσ ̺ i ≥ 0, ∂u ′ i ∂u i = 1 - 2εσ ̺ i -λu i ≥ 0, ∂u ′ i ∂u i+1 = εσ ̺ i ≥ 0,
which ensures the required property of monotonicity for [START_REF] Gallagher | On pressureless gases driven by a strong inhomogeneous magnetic field[END_REF], whereas it is clear for [START_REF] Gosse | Numerical approximations of one-dimensional linear conservation equations with discontinuous coefficients[END_REF].

That ends the proof of Theorem 4.

Remark 4. Let us check the behavior of the numerical total momentum. Indeed, in its continuous version [START_REF] Bouchut | Uniqueness and weak stability for multidimensional transport equations with one-sided Lipschitz coefficient[END_REF], the total momentum is conserved, since all the terms besides the time derivative of ̺u are partial derivatives in x.

Unfortunately, the scheme does not ensure the exact conservation of the total momentum. Nevertheless, we can write

i q ′ i = i ̺ i u ′ i + λ i ̺ i u ′ i (u ′ i+1 -u ′ i ),
which implies the following inequalities

[1 -λ(U -V )] i ̺ i u ′ i ≤ i q ′ i ≤ 1 + min 1 n + 1 , λ(U -V ) i ̺ i u ′ i .
Then we have to study the behavior of the quantity

i ̺ i u ′ i = i q i - λ 2 i ̺ i (u i 2 -u i-1 2 ),
for which we have

i q i -U min 1 n , λ(U -V ) i ̺ 0 i ≤ i ̺ i u ′ i ≤ i q i + λV (U -V ) i ̺ 0 i .
We eventually can write

i q ′ i ≥ [1 -λ(U -V )] i q i -U min 1 n , λ(U -V ) i ̺ 0 i , i q ′ i ≤ 1 + min 1 n + 1 , λ(U -V ) i q i + λV (U -V ) i ̺ 0 i ,
which is not really satisfactory. Nevertheless, since the time and space steps satisfy (16), we have

λ ≤ R 4ε(1 + AT ) ∆x,
which ensures that λ is small when both ∆x and ∆t go to 0, and ε > 0 is fixed. Of course, that will not prevent the numerical total momentum from varying, but, at least, from one time step to the next one, the variations have to remain small. It is interesting to note that, in the examples of the next section, the total momentum conservation almost holds, meaning that the previous estimates may be improved in some cases.

Numerical examples

As we already pointed out, a significant drawback of our scheme ( 17)-( 18) is that it does not ensure the exact conservation of the total momentum, since it involves a scheme on the velocity and not on the momentum. Moreover, initial data with vacuum need to be regularized since our scheme cannot stand nil values of ̺. In this section, apart from checking that the OSL condition is satisfied (or not, if studying the behavior of the upwind scheme), we shall also study the numerical total momentum.

Of course, we choose the time and space steps in the following tests such that the CFL condition is satisfied when using the upwind scheme, and ( 15)-( 16) when using the diffusive scheme. 4.1. Nil velocity almost everywhere. This test is the one described in Proposition 3 to prove that the OSL condition was eventually not satisfied by the upwind scheme. We choose ε = 10 -6 . The (regularized) initial data are given by ̺ in ≡ 1 and

u in (x) =              U + ε 2 + U -ε 2 cos πx √ ε if 0 ≤ x ≤ √ ε, ε if √ ε ≤ x ≤ 1 - √ ε, U + ε 2 - U -ε 2 cos π √ ε x -1 + √ ε if 1 - √ ε ≤ x ≤ 1,
We immediately check that min

u in = ε, max u in = U , max(u in ) ′ ≤ U π 2 √ ε
and min ̺ in = 1. We numerically choose U = 1. The space step is set to ∆x = 10 -4 on [0, 1], i.e. I = 10 4 , and the Courant number to λ = 0.25, so that ∆t = 2.5 10 -5 . We perform 100 iterations in time, i.e. T = 2.5 10 -3 s. Eventually, it is clear, on Figure 1, that the diffusive scheme is more efficient 

Piecewise linear velocity.

There are other situations when the upwind scheme does not satisfy the OSL condition. For instance, let us consider the following set of initial data [START_REF] Poupaud | Diagonal defect measures, adhesion dynamics and Euler equation[END_REF] ̺ in (x) = 1,

u in (x) = 1 -x ≥ 0, ∀x ∈ [0, 1),
extended by 1-periodicity on R. In both tests, we choose T = 1.2 and ∆x = 10 -4 .

4.2.1. Using the upwind scheme. Using the upwind scheme implies choosing the Courant number λ so that the CFL condition holds. We set λ = 0.1, which ensures λ max u < 1. Then, on Figure 2, the positive part of the numerical expansion rate w is plotted on [0, 1]. It is then clear that there are some values of i such that w i > 1, and, in anticipation of the next paragraph, we must point out that, of course, choosing a lower Courant number does not have any effect on the behavior of the numerical expansion rate. 4.2.2. Using the diffusive scheme. We choose ε = 0.001. As explained in 3, the initial data must be regularized: both ̺ in and u in must be C 1 (R; R * + ), and u in is regularized near 0 in order to have a reasonable periodic agreement with the value in 1, and satisfy [START_REF] Brenier | The discrete one-sided Lipschitz condition for convex scalar conservation laws[END_REF]. Since ( 15)-( 16) must hold, it is possible to check that (λ = 0.01, ∆t = 10 -6 ) is a relevant choice. This time, the OSL condition is satisfied, as one can see on Figure 3 at x = 0.1, where the upwind scheme experiences trouble with the expansion rate for times smaller than 0.2.

Eventually, to investigate the total numerical momentum, on Figure 4, we show its behavior with respect to t, till T , and the result is quite convincing. On the same figure, we also show the total numerical mass, which is of course exactly conserved. Of course, the upwind scheme may often provide a numerical solution satisfying the OSL condition. It is then interesting to check the behavior of both upwind and diffusive schemes, which should be similar. We consider the following initial data for the density

̺ in (x) = 1, 0 ≤ x < 0.2, ̺ in (x) = 0.5, 0.2 ≤ x < 1,
and for the velocity

u in (x) = 0.5(1 -cos(10πx)), 0 ≤ x < 1,
extended by 1-periodicity on R. The final time is T = 2.

For the diffusive scheme, we pick ε = 10 -12 . Since min ̺ in = 0.5, the regularization of the initial density can be chosen not depending on ε. Since u in is already C 1 , we need no regularization, but we have to add a nonnegative term to ensure that min u in > 0, for instance, V = 0.032. And we note that max(u in ) ′ = 5π.

Then we choose ∆x = 0.002, and λ = 0.1 for both upwind and diffusive cases. The space step satisfies (15), as required, since ∆x ≤ 2V 5π . Let us get into some more details of the behavior of both schemes with respect to time. For small times, one can check on Figures 67that both schemes give very similar results for ̺, u and w. If we accurately study Figure 6b, we can see that the upwind scheme has very small variations with respect to the diffusive scheme near some points, which are in fact the jump points of the density, see Figure 8a It is important to note that the numerical expansion rates are still upperbounded by 1, for both schemes. The differences between the numerical solutions is consequently not related to the OSL condition. In fact, we believe that the diffusive scheme is more trustworthy. Indeed, the upwind scheme has natural numerical diffusion, which is responsible for the variations. This numerical diffusion seems to be fully avoided by the diffusive scheme: it is absorbed by the artificial viscosity inserted in the scheme, and its effect cannot numerically appear.

  λU, which, together with the choice of I, implies max i w I-2 i ≥ (I -2)λU > U.
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 1 Figure 1. Positive part of the numerical expansion rate near 1 at final time T
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 2 Figure2. "Upwind" plot of w + at t = 0.2 s with initial data[START_REF] Poupaud | Diagonal defect measures, adhesion dynamics and Euler equation[END_REF] 
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 3 Figure 3. "Diffusive" plot of w + at x = 0.1 with regularized initial data[START_REF] Poupaud | Diagonal defect measures, adhesion dynamics and Euler equation[END_REF] 
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 43 Figure 4. Numerical total mass and momentum
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 5 Figure 5. (a) Numerical total mass and momentum computed with the diffusive scheme, (b) zoom on the total momentum First, we check on Figure 5a-b that the numerical total momentum is still well conserved by the diffusive scheme.
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 6 Figure 6. (a) Density at 0.04 s, (b) velocity at 0.2 s
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 7 Figure 7. Numerical expansion rate at time 0.2 s
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 8910 Figure 8. Density at times (a) 0.2 s, and (b) 1 s
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