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A NUMERICAL SCHEME

FOR THE ONE-DIMENSIONAL

PRESSURELESS GASES SYSTEM

LAURENT BOUDIN AND JULIEN MATHIAUD

Abstract. In this work, we investigate the numerical approximation of
the one-dimensional pressureless gases system. After briefly recalling the
mathematical framework of the duality solutions introduced by Bouchut
and James [6], we point out that the upwind scheme for density and
momentum does not satisfy the one-sided Lipschitz (OSL) condition on
the expansion rate required for the duality solutions. Then we build
a diffusive scheme which allows the OSL condition to be recovered by
following the strategy described in [9] for the continuous model.

1. Introduction

During the last two decades, there have been many contributions on the
pressureless gases system, and it seems natural to tackle the question of its
discretization. The pressureless gases system appears as a system of conser-
vation laws on the mass and momentum. Hence, it is relevant to wonder if
standard numerical schemes for conservation laws, like the upwind scheme,
for instance, are fitted to this particular system. However, we emphasize
that it is a degenerate hyperbolic system (the Jacobian is not diagonaliz-
able).

Let us now recall the one-dimensional system describing a pressureless
gas. Let T > 0. The gas density ̺(t, x) ≥ 0 and the momentum q(t, x) ∈ R

satisfy the following equations in (0, T )× R

∂t̺+ ∂x(̺u) = 0,(1)

∂tq + ∂x(qu) = 0.(2)

One must define the velocity u(t, x) ∈ R as a quotient of q by ̺, but this may
not be possible, since ̺ can be zero. We discuss this issue below, by recalling
the notion of duality solutions [5]. As already stated, each equation consists
of a conservation law, (1) for mass and (2) for momentum. We obviously
need initial conditions

(3) ̺(0, ·) = ̺in, q(0, ·) = qin,
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2 L. BOUDIN AND J. MATHIAUD

in which the condition on the momentum can be replaced by an initial
condition on the velocity u(0, ·) = uin, and then written again as q(0, ·) =
̺inuin.

The previous system can be seen as a simplified model of the Euler
equations, where the pressure has been set to zero. It can describe ei-
ther cold plasmas or galaxies’ dynamics [27]. This system (1)–(2) and re-
lated problems (traffic models, magnetohydrodynamics, astrophysics, pres-
sureless fluid equations...) have been widely studied, see, for instance,
[4, 19, 16, 12, 25, 6, 9, 26, 1, 24, 22, 7, 17, 15, 2, 23, 11]. Those refer-
ences use the same fluid point of view we choose here, or the kinetic one,
involving the adhesion dynamics of the so-called sticky particles.

When one studies smooth solutions of the pressureless gases system, (2)
can be replaced by the standard Burgers equation:

(4) ∂tu+ ∂x

(

u2

2

)

= ∂tu+ u∂xu = 0.

System (1)–(2) is then uncoupled, since we obtain u from (4), and then
̺ from (1). On the other hand, it is well-known that smooth initial data
can result in mass concentration, for example, when the velocity does not
increase. In that case, the velocity cannot satisfy (4) anymore.

In [5], Bouchut and James introduced the notion of duality solution for
one-dimensional transport equations and conservation laws. In [6], they
prove that this framework is fitted to the pressureless gases system. Let us
briefly recall the results they obtain.

Definition 1. A couple (̺, q) ∈ C(R+; w*-Mloc(R))
2, with ̺ ≥ 0, is a

duality solution to (1)–(2), if there exists a bounded Borel function a and
α ∈ L1

loc
(R∗

+) such that

∂xa ≤ α, q = a̺, in R
∗
+ ×R,

and, in the duality sense on (t1, t2)× R, for any 0 < t1 < t2,

∂t̺+ ∂x(̺a) = 0, ∂tq + ∂x(qa) = 0.

In that setting, u is defined ̺-almost everywhere, and we have u = a
̺-a.e. Bouchut and James prove that duality solutions are stable, and also
entropic, i.e. the following inequality holds, in the distributional sense,

(5) ∂t(̺S(u)) + ∂x(̺uS(u)) ≤ 0,

for any convex function S. Using those properties and the sticky particles
dynamics, they obtain the following existence result.

Theorem 1. Let ̺in, qin ∈ Mloc(R), with ̺in ≥ 0 and |qin| ≤ U̺in, U ≥ 0.
Then there exists a duality solution to (1)–(3), and we have ‖a‖∞ ≤ U and
α(t) = 1/t.

As proven in [20], the one-sided Lipschitz (OSL) condition on the expan-
sion rate ∂xa ≤ 1/t, also known as the Oleinik entropy condition, is optimal
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for a convex scalar conservation law. In the proof of Theorem 1, it is clear
that the standard convex entropy condition (5) is not enough, and the OSL
condition is really required. Note that, when the solutions are smooth, this
estimate can easily be proven, since the Burgers equation (4) lies in the class
of convex scalar conservation laws [13, 21].

Eventually, Bouchut and James also obtain uniqueness when ̺in is nonatomic
(essentially meaning that ̺in is smooth).

In this work, we also consider the viscous pressureless gases system. In
this system, as explained in [9], (2) is replaced by an equation on the velocity
itself. Let us choose ε > 0. The gas density ̺(t, x) > 0 and the velocity
u(t, x) ∈ R satisfy, in (0, T ) × R, Equation (1) and

(6) ∂tu+ u∂xu =
ε

̺
∂2
xxu,

with the same set of initial conditions (3). That writing imposes that ̺
remains nonnegative, which is true if ̺in is also nonnegative, see [9]. Note
that (6) is equivalent, when ε is fixed, to

(7) ∂tu+ ∂x

(

u2

2

)

=
ε

̺
∂2
xxu,

if we take into account the smoothness of the viscous velocity given in [9].
In fact, (6) or (7) can also be rewritten as an equation on the momentum,

with a viscosity term ε∂2
xxu on the right-hand side,

∂t(̺u) + ∂x(̺u
2) = ε∂2

xxu,

which yields (2) when ε goes to 0. In [9], the author proved the existence,
in the sense of distributions, of solutions to the viscous system (1), (3) and
(7), and that the expansion rate is upper-bounded: ∂xu ≤ A/(At + 1),
when A = max(ess sup ∂xu

in, 0) is finite. He also obtains the convergence of
the viscous solutions towards the duality solutions to the pressureless gases
system when ε vanishes. More precisely, the following convergence result
holds.

Theorem 2. Let (̺inε ), (u
in

ε ) such that, for any ε > 0,

̺inε > 0, ̺inε ∈ L∞(R),
∥

∥1/̺inε
∥

∥

L∞(R)
≤ Cε−1/4,

uin

ε ∈ L1 ∩ L∞(R),
∥

∥uin

ε

∥

∥

L∞(R)
≤ C,

∂xu
in

ε L
1 ∩ L2(R), ess sup ∂xu

in

ε ≤ Cε−1/2.

We assume that (̺inε ) ⇀ ̺in and (̺inε u
in

ε ) ⇀ qin in w*-Mloc(R). Then,
up to a subsequence, (̺ε, ̺εuε), given by the solutions to (1) and (7), with
initial datum (̺inε , ̺

in

ε u
in

ε ), converges in Ct(w*-Mloc(R)) towards the duality
solution (̺, q) of (1)–(3).
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Both viscous and inviscid systems can also be studied in a periodic frame-
work, i.e. we focus on the closed interval [0, 1] and impose that all the phys-
ical quantities have the same values at both x = 0 and x = 1, so that the
solutions are 1-periodic.

This work is dedicated to the numerical approximation of the pressure-
less gases system (1)–(2), where the latter may be replaced by (7). For
readability reasons, we choose the periodic framework.

There are two methods to get a priori relevant schemes. The first one
is to use the natural kinetic framework which underlies the pressureless gas
dynamics, with kinetic schemes, as in [4, 8], or with particle methods [14].
The second one is related to the discretization of hyperbolic conservation
laws. Gosse and James [18] point out the relevance of two families of nu-
merical schemes: the upwind schemes and the Lax-Friedrichs schemes. In
[3], Berthon et al. investigate a relaxation scheme for the pressureless gases
system in one and two-dimensional settings.

As we already pointed out, the key condition to obtain the duality solution
is that the velocity expansion rate must be upper-bounded by 1/t. Brenier
and Osher [13] obtained the relevance of the OSL condition in a discrete
framework for the convex scalar conservation laws. In this work, we first
investigate the upwind scheme associated to (1)–(2), and prove that it fails
to ensure the OSL condition. Subsequently, we try the upwind diffusive
scheme associated to (1) and (7), and explain how we can obtain a good
numerical approximation of the duality solution to the inviscid pressureless
gases system using this scheme. We do not study the Lax-Friedrichs schemes
described in [18]. Indeed, the numerical dissipation induced by those first
order schemes is too significant. Since it is then natural to use higher order
schemes, we recover the same kind of problems as in the diffusive upwind
scheme we here propose, involving second order terms.

In the remainder, let ∆t, ∆x > 0 such that N = T/∆t ∈ N
∗ and I =

1/∆x ∈ N
∗, and set λ = ∆t/∆x. We respectively denote ̺ni , q

n
i and uni

the approximate values of ̺, q and u at time n∆t ∈ [0, T ] and coordinate
(i+ 1/2)∆x ∈ [0, 1), for 0 ≤ n ≤ N and 0 ≤ i < I. Since we use a periodic
framework, we define ̺ni , q

n
i and uni for any i ∈ Z, by

̺ni+pI = ̺ni , qni+pI = qni , uni+pI = uni , 0 ≤ i < I, p ∈ Z
∗.

For the sake of readability, in the previous notations, we may drop the time
iteration index n and replace n + 1 by a prime symbol “ ′ ”. For instance,
the velocity at time (n + 1)∆t and coordinate (i + 1/2)∆x can be written
as u′i or u

n+1
i .

Apart from the density, momentum and velocity, the quantity of interest,
which we name the numerical expansion rate, is, for each time and space
indices n and i,

wn
i := nλ(uni+1 − uni ).
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Indeed, the OSL condition at time n∆t then reads max
i

wn
i ≤ 1.

2. Upwind scheme

Let us first denote the positive and negative parts of a ∈ R

a+ = max(0, a), a− = min(0, a).

The upwind scheme writes, for any 0 ≤ i < I,

̺′i = ̺i − λ
[

̺i(ui)
+ − ̺i−1(ui−1)

+
]

− λ
[

̺i+1(ui+1)
− − ̺i(ui)

−
]

,

q′i = qi − λ
[

qi(ui)
+ − qi−1(ui−1)

+
]

− λ
[

qi+1(ui+1)
− − qi(ui)

−
]

,

u′i =
q′i
̺′i
, if ̺′i > 0,

and u′i is not defined if ̺′i = 0. It is quite clear that the previous schemes
on both ̺ and q are monotonic, if the standard Courant-Friedrichs-Lewy
(CFL) condition λmax |u| ≤ 1 is satisfied. Hence, we only choose positive
initial data to study positive velocities. The scheme then becomes, for any
0 ≤ i < I,

̺′i = (1 − λui)̺i + λui−1̺i−1,(8)

q′i = (1 − λui)qi + λui−1qi−1,(9)

u′i =
q′i
̺′i
.(10)

As we already stated, this last equality allows to define u′i only when ̺′i > 0.
This fits the mathematical setting of the pressureless gases system, since
u can only be defined ̺-almost everywhere. Nevertheless, it is not satisfy-
ing from a numerical viewpoint, since the computations stop whenever the
density becomes equal to 0. We can impose whichever value we want, for
instance, u′i = 0, when ̺′i = 0. Indeed, we do not care about the value of the
velocity at a point where is there is no matter. But we must keep in mind
not to use those artificial nil values of u′i to study the numerical expansion
rate.

Thanks to (10), we immediately have

̺′i̺
′
i+1(u

′
i+1 − u′i) = ̺′iq

′
i+1 − ̺′i+1q

′
i,

which implies

̺′i̺
′
i+1

w′
i

(n+ 1)λ
= (1− λui+1)̺i+1̺

′
i

wi

nλ
+ λui−1̺i−1̺

′
i+1

wi−1

nλ
.

Under the CFL condition λmax |u| ≤ 1, if (wi)0≤i<I are negative, and if
(̺′i)0≤i<I are nonnegative, it is clear that the quantities (w′

i) also remain
negative. Unfortunately, if wj is nonnegative for a given j, the OSL condition
w′
i ≤ 1 for all i may not be satisfied.
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Proposition 3. Let 0 < λ < 1 and U such that 0 < λU < 1, and choose an
integer I > 2 + 1/λ. We consider the following initial data

(11) ̺0i = 1, 0 ≤ i ≤ I − 1, u00 = U, u0i = 0, 1 ≤ i ≤ I − 1.

Then the upwind scheme (8)–(10) does not satisfy the OSL condition. More
precisely, we have

(12) max
i

wI−2
i > U.

The assumption on the Courant number 0 < λ < 1 is standard and is a
natural consequence of the CFL condition λU ≤ 1 when U is large. The
initial data can of course be defined without the discretization grid: we have
̺in ≡ 1 and uin ≡ 0 except in 0 where uin(0) = U .

Proof. It is easy to simultaneously prove, by induction on the time index
0 ≤ j < I − 1, that

̺ji > 0, 0 ≤ i ≤ I − 1,

and

uj0 = U, ujj+1 > 0, uji = 0, j + 2 ≤ i ≤ I − 1.

We must emphasize that the nil values of uji are obtained because qji = 0

and ̺ji > 0, and not because of the choice of nil velocity when the density
equals 0.

Then we can write that

wI−2
I−1 = (I − 2)λ(uI−2

0 − uI−2
I−1) = (I − 2)λU,

which, together with the choice of I, implies

max
i

wI−2
i ≥ (I − 2)λU > U.

Note that the first inequality is in fact an equality, but we do not need to
prove it here. �

Remark 1. As we already pointed out, the standard numerical version
of the OSL condition reads max

i
wn
i ≤ 1. It may have been relaxed into

max
i

wn
i ≤ K, where K is a nonnegative constant, which does not depend

on the initial data. But (12) implies that the quantity max
i

wI−2
i can be as

large as we want, depending on the value of U .

Proposition 3 means in particular that, if the space step ∆x is refined
enough, the numerical OSL condition cannot be satisfied anymore, with
initial data given by (11). Moreover, we must point out that, whatever
the final time is, one can find a discretization for which the upwind scheme
cannot satisfy the OSL condition, because I does not depend on T .

The initial datum uin in the previous proposition is not smooth. Nev-
ertheless, even with smooth (and periodic) initial data, the upwind scheme
does not necessarily provide a solution satisfying the OSL condition, see 4.1.
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3. Adding an artificial viscosity

As it was done in [9], we now add a small viscosity term in (2) to obtain
(7), and we study the numerical approximation of (1) and (7). We still deal
with arbitrary 1-perodic initial data uin ≥ 0, ̺in ≥ 0.

In what follows, we consider a fixed ε > 0, small enough. If necessary,
we regularize both uin and ̺in so that (keeping the same notations for both,
even if they depend on ε) uin, ̺in ∈ C1(R;R∗

+), remain periodic and satisfy
the assumptions of Theorem 2, which can be written as

(13) ̺in(x) ≥ Cε1/4, uin(x) ≤ C, (uin)′(x) ≤ C√
ε
, ∀x ∈ [0, 1],

where C is a constant which does not depend on ε. The regularized ̺in must
lie in R

∗
+, since the continuous diffusive model involves a division by ̺.

In the following, we set

U = max
[0,1]

uin > 0, V = min
[0,1]

uin > 0,

A = max(0,max
[0,1]

(uin)′) ≥ 0, R = min
[0,1]

̺in > 0.

The previous quantities can depend on ε, and must satisfy properties which
come from (13), i.e.

(14) R ≥ Cε1/4, V ≤ U ≤ C, A ≤ C√
ε
,

where C does not depend on ε.
Then we consider ∆t,∆x > 0, and set

λ =
∆t

∆x
, σ =

∆t

∆x2
.

In the remainder, we make the following assumptions on the time and space
steps:

0 < ∆x ≤ 2V

1 +A
,(15)

0 < ∆t ≤ min

(

1

4A+ 1
,
1

4U
∆x,

R

4ε(1 +AT )
∆x2

)

.(16)

In fact, (15) and (16) are not so restrictive, since, eventually, ∆x and ∆t will
go to 0, ε being fixed. From now on, even if we do not write the dependence
on ε, we must keep in mind, in the numerical examples, that U , V , A and
R can depend on ε and must satisfy (14), at least for ε small enough. That
dependence implies that, at most, ∆x is of order

√
ε and ∆t of order 4

√
ε.

Note that it cannot prevent ∆t and ∆x from going to 0 while ε remains
fixed.

With the same notations for quantities at times n∆t and (n + 1)∆t as
in Section 2, we now focus on the following scheme, corresponding to the
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discretization of (1) and (7).

u′i = ui − λ

(

ui
2

2
− ui−1

2

2

)

+
εσ

̺i
(ui−1 + ui+1 − 2ui),(17)

̺′i = (1− λu′i)̺i + λu′i−1̺i−1.(18)

Note that (17) is obtained from (7), which is written under a conservative
form, as suggested in [13].

If we choose uin ≡ 1, we can note that both upwind and diffusive schemes
give uni = 1 for any i and n, which is reassuring: in that case, and when
̺ remains nonnegative, the velocity satisfies the Burgers equation, which
implies, at least formally, that u remains constant.

Remark 2. The velocity terms which appear in (18) are the ones at time
(n+ 1)∆t. They must not be at time n∆t to ensure the lower bound on ̺,
as we shall see in the proof of Theorem 4 below.

Numerical strategy. Let us here sum up the strategy used to build a
relevant numerical solution to the pressureless gases system.

1. Consider 1-periodic initial data.
2. Fix ε > 0 small enough.
3. Regularize ̺in, uin so that they become C1(R;R∗

+) and satisfy (13).
4. Fix ∆x and ∆t satisfying (15)–(16).
5. Use the numerical scheme (17)–(18).

The previous strategy holds for two reasons. First, the following theorem
states that the scheme (17)–(18) is L∞-stable, consistent, monotonic, and
that it satisfies the OSL condition. Consequently, (̺ni ) and (uni ) converge
towards to ̺ and u, solutions to the viscous pressureless gases system when
both ∆t and ∆x go to 0, ε being fixed. Second, thanks to Theorem 2, the
scheme eventually provides a good approximation of a solution to the inviscid
pressureless gases system, if one chooses ε small enough, and regularized
initial data in C1(R;R∗

+) close to the original ones and satisfying (13). The
error between the diffusive numerical and the duality solutions is currently
under study, see [10].

Theorem 4. We assume that (15)–(16) hold. Then we have, for any i and
n ≥ 0,

V ≤ uni ≤ U,(19)

uni − uni−1 ≤
A∆x

1 +An∆t
,(20)

̺ni ≥ R

1 +An∆t
≥ R

1 +AT
> 0.(21)

Moreover, the discrete total mass is conserved, i.e., for any n ≥ 0,

(22)
∑

i

̺ni ∆x =
∑

i

̺0i∆x.
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Finally, when ε > 0 is fixed, the scheme (17)–(18) is consistent with (1) and
(7), is first order accurate in time and space, and is monotonic.

Equations (19) and (21) respectively correspond to the maximum princi-
ples on the velocity and the density, (20) stands for the discrete version of
the OSL condition.

Remark 3. The assumptions (16) on ∆t ensure the stability of the scheme.
More precisely, the second one is induced by the CFL condition and the third
one is similar to standard stability conditions for explicit diffusive schemes.
The first one is needed for the required properties of the scheme, as it will
be detailed in the proof of Theorem 4.

Proof. We proceed by induction on n ∈ N, and first investigate the case
when n = 0. Equations (19) and (21) are obviously satisfied by definitions
of U , V and R, and thanks to (15). The fact that (20) holds comes from the
fact that uin is smooth, and consequenly satisfies the intermediate values
inequality.

In the remaining of the proof, we suppose that A > 0. The case when
A = 0 can easily be treated. Let us assume that (19)–(21) hold for a fixed
n, and prove them for n+ 1. We can rewrite Equation (17) as

(23) u′i =

(

1− λ
ui + ui−1

2
− 2εσ

̺i

)

ui+
εσ

̺i
ui+1+

(

λ
ui + ui−1

2
+

εσ

̺i

)

ui−1.

Under this form, u′i is a convex combination of ui−1, ui and ui+1, since
the corresponding coefficients in (23) live in [0, 1] and their sum equals 1.
Indeed, we clearly have, thanks to (16) and (21),

0 ≤ 2εσ

̺i
≤ 1

2
,

and, thanks to (16) and (19),

0 ≤ λ
ui + ui−1

2
≤ 1

4
.

Then it is easy to check that u′i satisfies (19).

Let us now define, for any i,

δi = ui+1 − ui −
A∆x

1 +An∆t
,

which we know is negative, and prove that δ′i is also negative, for any i.
Thanks to (23), we can write

u′i+1 − u′i =

[

1− λ

2
(ui+1 + ui)−

εσ

̺i
− εσ

̺i+1

]

(ui+1 − ui)

+
εσ

̺i+1
(ui+2 − ui+1) +

[

λ

2
(ui + ui−1) +

εσ

̺i

]

(ui − ui−1).
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Then we have

δ′i =
εσ

̺i+1
δi+1 +

[

λ

2
(ui + ui−1) +

εσ

̺i
− Aλ∆x

2(1 +An∆t)

]

δi−1

+

[

1− λ

2
(ui+1 + ui)−

εσ

̺i
− εσ

̺i+1
− Aλ∆x

2(1 +An∆t)

]

δi

+
A∆x

1 +An∆t

(

1− A∆t

1 +An∆t

)

− A∆x

1 +A(n+ 1)∆t
.

The coefficient before δi+1 is clearly positive. Let us check that the ones
before δi−1 and δi are positive too. We have

Aλ∆x

2(1 +An∆t)
≤ λ

2
(ui + ui−1)

and
λ

2
(ui+1 + ui) +

εσ

̺i
+

εσ

̺i+1
+

A∆t

2(1 +An∆t)
≤ 1,

because of (15)–(21). Since the (δi) are all negative, we still have to prove
that the remaining term is negative to get δ′i ≤ 0. After simplifying by A∆x,
which has no influence on the sign, we write

1 +A(n− 1)∆t

(1 +An∆t)2
− 1

1 +A(n+ 1)∆t
=

−(A∆t)2

(1 +An∆t)2(1 +A(n+ 1)∆t)
,

which is clearly negative, and ensures that (20) holds for n+ 1.

We now focus on the properties of ̺. We successively have, thanks to
(21) for n and (20) for n+ 1,

̺′i ≥
[

1− A∆t

1 +A(n+ 1)∆t

]

R

1 +An∆t
=

R

1 +A(n + 1)∆t
,

which concludes the induction. Note that, as we pointed out in Remark 2,
if (18) only involved velocities at time n∆t, the previous inequality would
not hold, and we would not get any maximum principle on 1/̺.

We easily notice that in the equality
∑

i

̺′i∆x =
∑

i

̺i∆x− λ∆x
∑

i

̺iu
′
i + λ∆x

∑

i

̺i−1u
′
i−1,

the last two terms cancel, which ensures the discrete total mass conservation.

Finally, let us investigate some basic properties of the scheme (17)–(18).
The consistency is quite clear. Moreover, if we study u′i as a function of
ui−1, ui and ui+1, we immediately have

∂u′i
∂ui−1

= λui−1 +
εσ

̺i
≥ 0,

∂u′i
∂ui

= 1− 2εσ

̺i
− λui ≥ 0,

∂u′i
∂ui+1

=
εσ

̺i
≥ 0,

which ensures the required property of monotonicity for (17), whereas it is
clear for (18).

That ends the proof of Theorem 4. �
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Remark 4. Let us check the behavior of the numerical total momentum.
Indeed, in its continuous version (7), the total momentum is conserved, since
all the terms besides the time derivative of ̺u are partial derivatives in x.
Unfortunately, the scheme does not ensure the exact conservation of the
total momentum. Nevertheless, we can write

∑

i

q′i =
∑

i

̺iu
′
i + λ

∑

i

̺iu
′
i(u

′
i+1 − u′i),

which implies the following inequalities

[1− λ(U − V )]
∑

i

̺iu
′
i ≤

∑

i

q′i ≤
[

1 + min

(

1

n+ 1
, λ(U − V )

)]

∑

i

̺iu
′
i.

Then we have to study the behavior of the quantity

∑

i

̺iu
′
i =

∑

i

qi −
λ

2

∑

i

̺i(ui
2 − ui−1

2),

for which we have
∑

i

qi−U min

(

1

n
, λ(U − V )

)

∑

i

̺0i ≤
∑

i

̺iu
′
i ≤

∑

i

qi+λV (U−V )
∑

i

̺0i .

We eventually can write

∑

i

q′i ≥ [1− λ(U − V )]

[

∑

i

qi − U min

(

1

n
, λ(U − V )

)

∑

i

̺0i

]

,

∑

i

q′i ≤
[

1 + min

(

1

n+ 1
, λ(U − V )

)]

[

∑

i

qi + λV (U − V )
∑

i

̺0i

]

,

which is not really satisfactory. Nevertheless, since the time and space steps
satisfy (16), we have

λ ≤ R

4ε(1 +AT )
∆x,

which ensures that λ is small when both ∆x and ∆t go to 0, and ε > 0 is
fixed. Of course, that will not prevent the numerical total momentum from
varying, but, at least, from one time step to the next one, the variations
have to remain small. It is interesting to note that, in the examples of the
next section, the total momentum conservation almost holds, meaning that
the previous estimates may be improved in some cases.

4. Numerical examples

As we already pointed out, a significant drawback of our scheme (17)–
(18) is that it does not ensure the exact conservation of the total momen-
tum, since it involves a scheme on the velocity and not on the momentum.
Moreover, initial data with vacuum need to be regularized since our scheme
cannot stand nil values of ̺. In this section, apart from checking that the
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OSL condition is satisfied (or not, if studying the behavior of the upwind
scheme), we shall also study the numerical total momentum.

Of course, we choose the time and space steps in the following tests such
that the CFL condition is satisfied when using the upwind scheme, and
(15)–(16) when using the diffusive scheme.

4.1. Nil velocity almost everywhere. This test is the one described in
Proposition 3 to prove that the OSL condition was eventually not satisfied
by the upwind scheme. We choose ε = 10−6. The (regularized) initial data
are given by ̺in ≡ 1 and

uin(x) =



























U + ε

2
+

U − ε

2
cos

(

πx√
ε

)

if 0 ≤ x ≤ √
ε,

ε if
√
ε ≤ x ≤ 1−√

ε,

U + ε

2
− U − ε

2
cos

[

π√
ε

(

x− 1 +
√
ε
)

]

if 1−√
ε ≤ x ≤ 1,

We immediately check that minuin = ε, maxuin = U , max(uin)′ ≤ Uπ

2
√
ε

and min ̺in = 1. We numerically choose U = 1. The space step is set to
∆x = 10−4 on [0, 1], i.e. I = 104, and the Courant number to λ = 0.25, so
that ∆t = 2.5 10−5. We perform 100 iterations in time, i.e. T = 2.5 10−3 s.
Eventually, it is clear, on Figure 1, that the diffusive scheme is more efficient
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x 
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on
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e

diffusive scheme

upwind scheme

Figure 1. Positive part of the numerical expansion rate near
1 at final time T

than the upwind one regarding the OSL condition.

4.2. Piecewise linear velocity. There are other situations when the up-
wind scheme does not satisfy the OSL condition. For instance, let us consider
the following set of initial data

(24) ̺in(x) = 1, uin(x) = 1− x ≥ 0, ∀x ∈ [0, 1),

extended by 1-periodicity on R. In both tests, we choose T = 1.2 and
∆x = 10−4.
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4.2.1. Using the upwind scheme. Using the upwind scheme implies choosing
the Courant number λ so that the CFL condition holds. We set λ = 0.1,
which ensures λmax u < 1. Then, on Figure 2, the positive part of the
numerical expansion rate w is plotted on [0, 1].
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at

e

Figure 2. “Upwind” plot of w+ at t = 0.2 s with initial data (24)

It is then clear that there are some values of i such that wi > 1, and,
in anticipation of the next paragraph, we must point out that, of course,
choosing a lower Courant number does not have any effect on the behavior
of the numerical expansion rate.

4.2.2. Using the diffusive scheme. We choose ε = 0.001. As explained in
Section 3, the initial data must be regularized: both ̺in and uin must be
C1(R;R∗

+), and uin is regularized near 0 in order to have a reasonable peri-
odic agreement with the value in 1, and satisfy (13). Since (15)–(16) must
hold, it is possible to check that (λ = 0.01, ∆t = 10−6) is a relevant choice.
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Figure 3. “Diffusive” plot of w+ at x = 0.1 with regularized
initial data (24)

This time, the OSL condition is satisfied, as one can see on Figure 3 at
x = 0.1, where the upwind scheme experiences trouble with the expansion
rate for times smaller than 0.2.

Eventually, to investigate the total numerical momentum, on Figure 4, we
show its behavior with respect to t, till T , and the result is quite convincing.
On the same figure, we also show the total numerical mass, which is of course
exactly conserved.
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Figure 4. Numerical total mass and momentum

4.3. Continuous velocity and piecewise constant density. Of course,
the upwind scheme may often provide a numerical solution satisfying the
OSL condition. It is then interesting to check the behavior of both upwind
and diffusive schemes, which should be similar. We consider the following
initial data for the density

̺in(x) = 1, 0 ≤ x < 0.2, ̺in(x) = 0.5, 0.2 ≤ x < 1,

and for the velocity

uin(x) = 0.5(1 − cos(10πx)), 0 ≤ x < 1,

extended by 1-periodicity on R. The final time is T = 2.
For the diffusive scheme, we pick ε = 10−12. Since min ̺in = 0.5, the reg-

ularization of the initial density can be chosen not depending on ε. Since uin

is already C1, we need no regularization, but we have to add a nonnegative
term to ensure that minuin > 0, for instance, V = 0.032. And we note that
max(uin)′ = 5π.

Then we choose ∆x = 0.002, and λ = 0.1 for both upwind and diffusive

cases. The space step satisfies (15), as required, since ∆x ≤ 2V

5π
.

0 0.05 0.1 0.15 0.2
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

time (s)

̺

q

0 0.5 1 1.5 2
0.294

0.295

0.296

0.297

0.298

0.299

0.3

0.301

0.302

time (s)

q

Figure 5. (a) Numerical total mass and momentum com-
puted with the diffusive scheme, (b) zoom on the total mo-
mentum

First, we check on Figure 5a–b that the numerical total momentum is still
well conserved by the diffusive scheme.



A NUMERICAL SCHEME FOR THE 1D PRESSURELESS GASES SYSTEM 15

Let us get into some more details of the behavior of both schemes with
respect to time. For small times, one can check on Figures 6–7 that both
schemes give very similar results for ̺, u and w. If we accurately study
Figure 6b, we can see that the upwind scheme has very small variations
with respect to the diffusive scheme near some points, which are in fact the
jump points of the density, see Figure 8a.
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Figure 6. (a) Density at 0.04 s, (b) velocity at 0.2 s
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Figure 7. Numerical expansion rate at time 0.2 s

Hence, when time grows, the behaviors of both schemes become more and
more different, as seen on Figures 8–10, for quite small times for the density,
later for the velocity and the numerical expansion rate.
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Figure 8. Density at times (a) 0.2 s, and (b) 1 s
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Figure 9. Velocity at times (a) 1 s, and (b) 2 s
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Figure 10. Numerical expansion rate at time 1 s

It is important to note that the numerical expansion rates are still upper-
bounded by 1, for both schemes. The differences between the numerical
solutions is consequently not related to the OSL condition. In fact, we be-
lieve that the diffusive scheme is more trustworthy. Indeed, the upwind
scheme has natural numerical diffusion, which is responsible for the varia-
tions. This numerical diffusion seems to be fully avoided by the diffusive
scheme: it is absorbed by the artificial viscosity inserted in the scheme, and
its effect cannot numerically appear.
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