
HAL Id: hal-00537104
https://hal.science/hal-00537104

Submitted on 17 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Strong Normalization of the Calculus of
Constructions with Type-Based Termination

Benjamin Grégoire, Jorge Luis Sacchini

To cite this version:
Benjamin Grégoire, Jorge Luis Sacchini. On Strong Normalization of the Calculus of Constructions
with Type-Based Termination. 17th International Conference on Logic for Programming, Artificial
Intelligence and Reasoning, Oct 2010, Yogyakarta, Indonesia. pp.333-347, �10.1007/978-3-642-16242-
8_24�. �hal-00537104�

https://hal.science/hal-00537104
https://hal.archives-ouvertes.fr


On Strong Normalization of the Calculus of

Constructions with Type-Based Termination

Benjamin Grégoire and Jorge Luis Sacchini

INRIA Sophia Antipolis - Méditerranée, France
{Benjamin.Gregoire,Jorge-Luis.Sacchini}@inria.fr

Abstract. Termination of recursive functions is an important property
in proof assistants based on dependent type theories; it implies con-
sistency and decidability of type checking. Type-based termination is
a mechanism for ensuring termination that uses types annotated with
size information to check that recursive calls are performed on smaller
arguments. Our long-term goal is to extend the Calculus of Inductive
Constructions with a type-based termination mechanism and prove its
logical consistency. In this paper, we present an extension of the Calcu-
lus of Constructions (including universes and impredicativity) with sized
natural numbers, and prove strong normalization and logical consistency.
Moreover, the proof can be easily adapted to include other inductive
types.

1 Introduction

Termination of recursive functions is an important property in proof assistants
based on dependent type theory; it implies consistency of the logic, and decid-
ability of type checking. In current implementations, it is common to use syn-
tactic criteria (called guard predicates) to ensure termination. Guard predicates
are applied to the body of recursive functions to check that recursive calls are
performed on structurally smaller arguments. However, these criteria are often
difficult to understand and implement.

An alternative approach is type-based termination. The basic idea is the use
of sized types, i.e., types decorated with size information. Termination is ensured
by typing constraints, restricting recursive calls to smaller arguments. Compared
to guard predicates, type-based termination provides a simple yet expressive
mechanism for ensuring termination.

In previous work by the first author [4], the Calculus of Inductive Con-
structions (CIC) was extended with a type-based termination mechanism. The
obtained system, called CIĈ , has many desirable metatheoretical properties,
including complete size inference. However, the logical consistency of CIĈ is
derived from a conjecture stating strong normalization of well-typed terms.

Our long-term goal is to define a type-based termination mechanism for CIC
that is proved consistent. This paper is a step in that direction. We present a
simplified version of CIĈ , called CIĈ− (Sect. 3).



2 Benjamin Grégoire and Jorge Luis Sacchini

Our main contribution is a proof of strong normalization (SN) and logical
consistency for CIĈ− restricted to one inductive type, namely natural numbers
(Sect. 4). The interpretation of natural numbers is done in a generic way, and
can be extended to other inductive types.

For lack of space, most of the proofs are omitted. The interested reader can
find them in the long version of this paper [7].

2 A Primer on Type-based Termination

Before giving the details of CIĈ−, this section introduces briefly the main ideas
of sized types and type-based termination. Consider the type of natural numbers,
defined by

nat : Type := O : nat | S : nat→ nat .

With sized types, this defines a family of types of the form nats, where s is a
size (or stage) expression. Size information is used to type recursive functions,
as shown in the following (simplified) typing rule for fixpoint construction:

Γ (f : natı → U) ⊢M : natbı → U [ı := ı̂]

Γ ⊢ (fix f : nat→ U := M) : nats → U [ı := s]

where ı is a stage variable, and ·̂ is the successor function on stages. Intuitively,
natı and natbı denote the type of natural numbers whose size is smaller than ı
and ı + 1, respectively. This intuition is reflected in the subtyping rule, stating
that natı ≤ natbı ≤ nat∞, where nat∞ denotes the usual type of natural numbers.

In the typing rule above, the body of the fixpoint, M , is a function that takes
an argument of type natbı. The recursive calls to f in M are only allowed on terms
of type natı, that is, smaller than the size of the argument. This ensures that
recursion terminates. Note that the variable ı can appear (positively) in U , which
allows to write size-preserving functions. A typical example is the subtraction of
natural numbers, which has type nats → nat∞ → nats, for any s. We can then
write the division of natural numbers as1:

fix div : nat→ nat→ nat :=
λ m n : nat. case mnat(bı) of

| O⇒ Onat(bı)

| S m′
nat(ı) ⇒ S (div (minus m′ n)nat(ı) n)nat(ı)

The type annotations are given for clarification only, and are not written in the
actual syntax. Since minus has type nats → nat∞ → nats, the recursive call in
div is well-typed. The function div also has type nats → nat∞ → nats.

Note in the case expression that m has type natbı, while the recursive argu-
ment m′ has a smaller type natı. This mechanism ensures that we can make
recursive calls on the recursive arguments of an inductive type. However, it is

1 div m n computes
l

m
n+1

m



On Strong Normalization of CC with Type-Based Termination 3

more powerful than guard predicates, thanks to the possibility of typing size-
preserving functions. For example, extending the system with sized lists, typical
functions can be given more precise types:

map : Π(A B : Type).(A→ B)→ listı A→ listı B

filter : Π(A : Type).(A→ bool)→ listı A→ listı A× listı A

These functions allow to type programs that are not structurally recursive such
as quicksort:

fix qsort : list A→ list A :=
λl : list A. case llist(bı) of

| nil⇒ nil

| cons h tlist(ı) ⇒ let (s, g) = filter (< h) tlist(ı) in

append (qsort slist(ı)) (cons h (qsort glist(ı)))

Note that the precise typing of filter allows the recursive calls in the above
definition. However, in this case, qsort has type list∞A → list∞A. For further
examples and references, we refer the reader to [4].

3 System CIC
−̂

CIĈ− is an extension of CIC with a type-based termination mechanism. In this
section we introduce the syntax and typing rules.

In order to treat impredicativity in the proof of SN, terms carry more type
annotations in the case of abstraction and application [2,11]. However, the sys-
tem we intend to use has a more traditional presentation. In the traditional
presentation, abstractions have the form λx : T ◦.M and applications have the
form M N . We give here the annotated presentation we use in the proof of SN.
The reduction rules and typing rules are adapted to the traditional presenta-
tion in the obvious way. Note that as a consequence of SN, we can prove the
equivalence between both presentations [7].

Syntax. We consider a predicative hierarchy of sorts Typei, for i ∈ N, and an
impredicative sort Prop. The set of sorts is denoted U . We assume a denumerable
set X of term variables. We use u to denote sorts, and f , x, y to denote term
variables. Inductive types are annotated with stage expressions.

Definition 1 (Stages). The syntax of stages is given by the following grammar,
where XS denotes a denumerable set of stage variables.

S ::= XS | Ŝ | ∞

We use ı,  to denote stage variables, and s, r to denote stages. The base of
a stage expression is defined by ⌊ı⌋ = ı and ⌊ŝ⌋ = ⌊s⌋ (the base of a stage
containing ∞ is not defined).



4 Benjamin Grégoire and Jorge Luis Sacchini

The syntax features three classes of terms, whose difference lies in the type of
annotations that inductive types carry. (This helps to ensure subject reduction
and efficient type inference [4].) Bare terms carry no annotation. Position terms
carry either no annotation, or a ⋆, which is used to indicate recursive positions
in fixpoint functions. Finally, sized terms carry a stage expression.

Definition 2 (Terms). The generic set of terms over the set a is defined by
the grammar:

T [a] ::= X | U | λX :T ◦.T ◦T [a] | appX :T ◦.T ◦(T [a], T [a]) | ΠX : T [a].T [a]
| nata | O | S(T [a])
caseT ◦ X := T [a] of T [a], T [a] | fix X (X : nat⋆) : T ⋆ := T [a]

The set of bare terms, position terms and sized terms are defined by T ◦ ::= T [ǫ],
T ⋆ ::= T [{ǫ, ⋆}], and T ::= T [S], respectively. We use M , N , P , T , U , C to
denote terms. Bare terms are usually denoted with a superscript ◦ and position
terms with a superscript ⋆, as in M◦ and M⋆.

To deal with the different classes of terms, we use two erasure functions: the
function |.| : T ⋆ ∪ T → T ◦ removes all annotations from a term; the function
|.|ı : T → T ⋆ replaces all stage annotations s with ⋆ if ⌊s⌋ = ı, or by ǫ otherwise.
Given a term M , we write M∞ to denote the term M where all size annotations
are replaced with ∞, and SV(M) to denote the set of stage variables appearing
in M .

Definition 3. Reduction → is defined as the compatible closure of β-reduction,
ι-reduction and µ-reduction:

appx:T◦.U◦(λx:T◦.U◦M, N)→β M [x := N ]
caseT◦ x := O of N0, N1 →ι N0

caseT◦ x := S(M) of N0, N1 →ι appy:nat.T◦[x:=S(y)](N1, M)

appx:nat.|U⋆|(F,C)→µ appx:nat.|U⋆|(M [f := F ], C)

where F ≡ fix f(x : nat⋆) : U⋆ := M and C is a term in constructor form (i.e.,
O or S(M) for some term M). We write ←, →∗, ≈ and ↓ for the inverse rela-
tion, the reflexive transitive closure, the equivalence closure and the associated
joinability relation of →, respectively. (M ↓ N if M →∗ P and N →∗ P for
some P .)

The reduction relation defined above, usually called tight reduction, is not
confluent (on pseudoterms). However, is it confluent for well-typed terms (this
is a consequence of SN). (Note that the reduction in the traditional presentation
is confluent.)

Subtyping. We consider a subtyping relation derived from a partial order on
stages.

Definition 4 (Substage). The substage relation, ⊑ ⊆ S ×S, is defined as the
reflexive transitive closure of the relation containing s ⊑ ŝ and s ⊑ ∞, for all
s ∈ S.



On Strong Normalization of CC with Type-Based Termination 5

Definition 5 (Subtyping). The subtyping relation, ≤ ⊆ T × T , is defined by
following rules:

T ↓ U

T ≤ U

T →∗ nats U →∗ natr s ⊑ r

T ≤ U

T →∗ Πx : T1.T2 U →∗ Πx : U1.U2 U1 ≤ T1 T2 ≤ U2

T ≤ U

We define a notion of positivity with respect to a stage variable. It is used in
the typing rules to restrict the types valid for recursion.

Definition 6. We say that ı is positive in T , written ı pos T , if for every pair
of stages s, r, such that s ⊑ r, T [ı := s] ≤ T [ı := r].

Remark: In the traditional presentation, the subtyping relation is defined in a
more standard way, as the reflexive transitive closure of the following rules:

T ≈ U

T ≤ U

U1 ≤ T1 T2 ≤ U2

Πx : T1.T2 ≤ Πx : U1.U2

s ⊑ r

nats ≤ natr

We cannot use this definition in the annotated presentation, since reduction is
not confluent.

Typing. In the typing rules, we restrict the use of size variables appearing in
types. Intuitively, we only allow types that reduce to a term of the form

Πx1 : T1.Πx2 : T2. . . . Πxn : Tn.Tn+1, (*)

where each Ti is of the form (*), or is of the form nats, or satisfies SV(Ti) = ∅.
We call these types “simple”. Formally, we define a predicate simple with the
following clauses:

SV(T ) = ∅

simple(T ) simple(nats)

simple(T1) simple(T2)

simple(Πx : T1.T2)

Contexts and judgments. A context is a sequence of the form (x1 : T1)(x2 :
T2) . . . (xn : Tn), where x1, x2, . . . , xn are distinct variables and T1, T2, . . . , Tn

are sized terms. We use Γ , ∆, Θ to denote contexts and [] to denote the empty
context.

We define two typing judgments: WF(Γ ) means that context Γ is well formed;
Γ ⊢M : T means that the term M has type T in Γ . The typing rules are given
in Fig. 1. The side conditions in some of the rules ensure that we restrict to
simple types. If we remove these side conditions, the resulting system is that of
CIĈ . In rule (fix) the condition ı /∈ SV(Γ,M) is therefore redundant, but we
keep it to emphasize the difference with CIĈ .

Most of the rules are similar to that of CIĈ , with exception of the added type
annotations. Note in rules (zero) and (succ) that constructors have a successor



6 Benjamin Grégoire and Jorge Luis Sacchini

stage as type. In rule (case), as we mentioned in Sect. 2, the argument has type
nat with a successor stage, allowing the recursive arguments to have smaller size.
Note that, because of subtyping, any term of type nat can be given a successor
size. In rule (fix) we introduce a fresh size variable for recursion. Not every type
is valid for recursion, since it might lead to inconsistencies [1]. In our case, we
require the size variable used for recursion to appear positively in the return type.
The body, M , has a product type (function) with domain natbı, while recursive
calls to f can only be performed on terms of type natı.

Simple metatheory. Usual metatheoretic results such as weakening, substitution
and subject reduction can be proved for CIĈ− in the same way as for CIĈ .
These properties are stated in Fig. 2.

4 Strong Normalization

In this section we prove the main results of the paper: strong normalization of
CIĈ−, and logical consistency (Theorem 1). The proof is based on Λ-sets as
introduced by Altenkirch in his PhD thesis [2], and later used by Melliès and
Werner [11] to prove strong normalization for Pure Type Systems.

A Λ-set X is a pair (X◦, |=), where X◦ is a set, and |= ⊆ SN×X◦ is a realiz-
ability relation2 (SN denotes the set of strongly normalizing terms). Intuitively,
we define a set-theoretical interpretation (products are interpreted by function
spaces, abstractions by functions and applications by function application), de-
noted [·], corresponding to the set part of a Λ-set.

We prove that the interpretation is sound: if Γ ⊢ M : T , then [M ] ∈
[T ] (Lemma 4). We can then prove that every term realizes its interpretation
(Lemma 5), i.e. M |= [M ]. Strong normalization (Corollary 1) follows from the
fact that every realizers is strongly normalizing by definition.

In the case of CIĈ−, the interpretation given above does not take size infor-
mation into account. We therefore define a second (relational) interpretation to
show that terms respect the size information given in the type (Sect. 4.3).

4.1 Preliminary Definitions

In this section we give the concepts necessary to define the interpretation of
terms. Namely, saturated sets, Λ-sets, and inaccessible cardinals.

Saturated sets. We define saturated sets in terms of elimination contexts:

E[] ::= [] | appX :T ◦.T ◦(E[], T ) | caseT ◦ X := E[] of T , T
| appX :T ◦.T ◦(fix X (X : nat⋆) : T ⋆ := T , E[])

A term is atomic if it is of the form E[x]. We denote the set of atomic
terms with AT, and the set of strongly normalizing terms with SN. Weak-head
reduction is defined as E[M ]→wh E[N ] iff M →βιµ N .

2 Actually, for technical reasons, our definition is slightly different.



On Strong Normalization of CC with Type-Based Termination 7

(empty)
WF([])

(cons)
WF(Γ ) Γ ⊢ T : u

WF(Γ (x : T ))
simple(T )

(var)
WF(Γ ) Γ (x) = T

Γ ⊢ x : T

(type)
WF(Γ )

Γ ⊢ Typei : Typei+1

(prop)
WF(Γ )

Γ ⊢ Prop : Type0

(Π-type)
Γ ⊢ T : u Γ (x : T ) ⊢ U : Typej

Γ ⊢ Πx : T.U : max(u, Typej)

(Π-prop)
Γ ⊢ T : u Γ (x : T ) ⊢ U : Prop

Γ ⊢ Πx : T.U : Prop

(abs)
Γ (x : T ) ⊢ M : U

Γ ⊢ λx:|T |.|U|M : Πx : T.U
SV(M) = ∅

(app)
Γ ⊢ M : Πx : T.U Γ ⊢ N : T

Γ ⊢ appx:|T |.|U|(M, N) : U [x := N ]
SV(N) = ∅

(nat)
WF(Γ )

Γ ⊢ nat
s : Type0

(zero)
WF(Γ )

Γ ⊢ O : nat
bs

(succ)
Γ ⊢ M : nat

s

Γ ⊢ S(M) : nat
bs

(case)

Γ ⊢ M : nat
bs Γ (x : nat

bs) ⊢ P : u
Γ ⊢ N0 : P [x := O] Γ ⊢ N1 : Πy : nat

s.P [x := S(y)]

Γ ⊢ case|P | x := M of N0, N1 : P [x := M ]
SV(M) = ∅

(fix)

T ≡ Π(x : nat
ı).U ı pos U ı /∈ SV(Γ, M)

Γ ⊢ T : u Γ (f : T ) ⊢ M : T [ı := bı]
Γ ⊢ fix f(x : nat

⋆) : |U |ı := M : T [ı := s]
SV(M) = ∅

(conv)
Γ ⊢ M : T Γ ⊢ U : u T ≤ U

Γ ⊢ M : U
simple(U)

Fig. 1. Typing rules of CICb−

Weakening: Γ ⊢ M : T ∧ WF(Γ∆) ⇒ Γ∆ ⊢ M : T

Substitution:

Γ (x : T )∆ ⊢ M : U

Γ ⊢ N : T

SV(N) = ∅

9
>=
>;

⇒ Γ∆ [x := N ] ⊢ M [x := N ] : U [x := N ]

Stage Substitution: Γ ⊢ M : T ⇒ Γ [ı := s] ⊢ M [ı := s] : T [ı := s]

Subject Reduction: Γ ⊢ M : T ∧ M → M ′ ⇒ Γ ⊢ M ′ : T

Type validity: Γ ⊢ M : T ⇒ Γ ⊢ T : u ∧ simple(T)

Fig. 2. Simple metatheory of CICb−



8 Benjamin Grégoire and Jorge Luis Sacchini

Definition 7 (Saturated set). A set of terms X ⊆ SN is saturated iff it
satisfies the following conditions:

(S1) AT ∩ SN ⊆ X;
(S2) if M ∈ SN and M →wh M ′ and M ′ ∈ X, then M ∈ X.

Λ-sets. As mentioned above, we use Λ-sets [2,11] in the proof. However, our
definition is slightly different, as explained below.

Definition 8 (Λ-set). A Λ-set is a triple X = (X◦, |=X ,⊥X) where X◦ is a
non-empty set, witnessed by ⊥X ∈ X◦, and |=X ⊆ T ×X◦.

X◦ is the carrier-set and the elements of X◦ are called the carriers of X. The
terms M such that M |=X α for some α ∈ X◦ are called the realizers of α. The
element ⊥X is called the atomic element of X. We write α ∈ X for α ∈ X◦. A
Λ-set X is included in a Λ-set Y , written X ⊆ Y , if X◦ ⊆ Y◦, |=X ⊆ |=Y , and
⊥X = ⊥Y .

Definition 9 (Saturated Λ-set). A Λ-set X is said to be saturated if

1. every realizer is strongly normalizable;
2. the atomic element ⊥X is realized by any atomic strongly normalizable term;
3. for every α ∈ X◦, if N |=X α, and M →wh N with M ∈ SN, then M |=X α

(i.e., the set of realizers is closed under weak-head expansion).

The difference between the definition in [2,11] and ours is that the atomic
element of a Λ-set is explicit in the definition. The use of the atomic element
will be evident in the definition of the interpretation of terms. However, the
difference in the definition is not essential in our proof.

We define some operations on Λ-sets.

Definition 10 (Product). Let X be a Λ-set and {Yα}α∈X◦
a X◦-indexed fam-

ily of Λ-sets. We define the Λ-set Π(X, Y ) by:

– Π(X, Y )◦ = {f ∈ X◦ →
⋃

α∈X◦
(Yα)◦ : ∀α ∈ X◦.f(α) ∈ (Yα)◦};

– M |=Π(X,Y ) f ⇐⇒ ∀α ∈ X◦. T ◦, U◦ ∈ SN.
N |=X α⇒ appx:T◦.U◦(M, N) |=Yα

f(α);
– ⊥Π(X,Y ) = α ∈ X◦ 7→ ⊥Yα

.

Lemma 1. If X and every {Yα}α∈X◦
are saturated Λ-sets, so is Π(X, Y ).

Definition 11 (Cartesian product). Let X, Y be Λ-sets. We define the Λ-set
X × Y by: (X × Y )◦ = X◦ × Y◦; M |=X×Y (α, β) ⇐⇒ M |=X α ∧ M |=Y β;
and ⊥X×Y = (⊥X ,⊥Y ).

We write X2 for X ×X.

Lemma 2. If X and Y are saturated Λ-sets, so is X × Y .

Definition 12 (Λ-iso). Let X and Y be Λ-sets. A Λ-iso f from X to Y is a
one-to-one function f : X◦ → Y◦ such that M |=X α ⇐⇒ M |=Y f(α), and
f(⊥X) = ⊥Y .



On Strong Normalization of CC with Type-Based Termination 9

Inaccessible cardinals. We assume an increasing sequence of inaccessible cardi-
nals {λi}i∈N. Let Vα be the cumulative hierarchy of sets. We define Ui to be the
set of saturated Λ-set whose carrier-set are in Vλi

. The set Ui can be viewed as a
Λ-set (Ui,SN×Ui, {∅})

3. Following [10], we interpret the predicative sorts using
large universes.

4.2 The Interpretation

Stages. Stages are interpreted by ordinals. We use a, b, . . . to denote ordinals.
Since we have only natural numbers as a sized type, we can safely interpret stages
with the smallest infinite ordinal, ω. If we include higher-order sized types (such
as well-founded trees), we need to interpret stages using higher ordinals.

Definition 13 (Stage interpretation). A stage assignment π is a function
from XS to ω. Given a stage assignment π, the interpretation of a stage s under
π, written LsMπ, is defined by:

LıMπ = π(ı), L∞Mπ = ω, LŝMπ = LsMπ +̂ 1

where a +̂ 1 = a + 1 if a < ω, and ω +̂ 1 = ω.
We use ∞ to denote the stage assignment such that ∞(ı) = ω for all ı.

Inductive types. Inductive types are interpreted as the least fixed point of a
monotone operator. For our case, we define a function FN , such that if X is a
Λ-set, FN (X) is also a Λ-set defined by:

– FN (X)◦ = {∅} ∪ {(0, ∅)} ∪ {(1, α) : α ∈ X◦};
– M |=FN (X) α, with M ∈ SN, iff one the following conditions holds:

• α = ∅ and M →wh
∗ N ∈ AT;

• α = (0, ∅) and M →wh
∗ O; or

• α = (1, α′) and M →wh
∗ S(M ′) with M ′ |=X α′.

– ⊥FN (X) = ∅,

It is clear that if X is a saturated Λ-set, then FN (X) is also a saturated Λ-set.
Note that FN is monotone, in the sense that if X ⊆ Y , then FN (X) ⊆ FN (Y ).
We write Fk

N to mean function FN iterated k times.
Consider the Λ-set ⊥ = ({∅},SN ∩ AT × {∅}, ∅). A fixpoint of FN (X) is

reached by iterating ω times, starting from ⊥. Let N = Fω
N (⊥).

Impredicativity. Following [11], we interpret the impredicative universe as the
set of degenerated Λ-sets.

Definition 14. A Λ-set X is degenerated, if the carrier-set X◦ is a singleton
{A}, where A is a saturated set, M |=X A iff M ∈ A, and ⊥X = A.

We write A for the degenerated Λ-set corresponding to a saturated set A.

3 We choose {∅} as atomic element, but any element of Ui will do.



10 Benjamin Grégoire and Jorge Luis Sacchini

A proposition, i.e. a term T of type Prop, is represented by a degenerated Λ-set,
whose only carrier represents a (possible) canonical proof.

Given a Λ-set X and a function Y such that for each α ∈ X◦, Yα is a
degenerated Λ-set (with carrier yα), the carrier-set of Π(X, Y ) is a singleton (the
only element being α ∈ X◦ 7→ yα). The canonical representation of Π(X,Y ) is
given by the degenerated Λ-set corresponding to the saturated set

↓(X, Y ) = {M ∈ SN : N |=X α⇒ appx:T◦.U◦(M,N) |=Yα
yα} .

Note that there is a Λ-iso p(X, Y ) : Π(X, Y )→ ↓(X, Y ).
In the interpretation, we need to convert between the interpretation of a proof

term as an element of Π(X, Y ) (if it needs to be applied), or as the canonical
proof ↓(X,Y ). For this, we use the isomorphism p(X, Y ).

We define the functions ΠΓ⊢T , ↓Γ⊢T , ↑Γ⊢T that give the interpretation of
products, abstractions, and applications (respectively), depending if the type
T is a proposition or not. In the case of proposition, these functions convert
between Π(X, Y ) and the canonical representation ↓(X, Y ). Otherwise, there is
no conversion needed. Their definition is given by:

– if Γ∞ ⊢ T∞ : Prop, then ΠΓ⊢T (X, Y ) = ↓(X, Y ), ↓Γ⊢T (X, Y ) = p(X, Y ),
and ↑Γ⊢T (X, Y ) = p−1(X,Y );

– otherwise, ΠΓ⊢T (X, Y ) = Π(X, Y ), ↓Γ⊢T (X, Y ) = idΠ(X,Y ), and ↑Γ⊢T

(X, Y ) = idΠ(X,Y ).

Terms and contexts. The interpretation of an erased context Γ is denoted [Γ ]
(an erased context is a context formed by erased terms). Assume a stage assign-
ment π. Given an erased context Γ , a term M and a sequence of values γ, the
interpretation of M under Γ is denoted [Γ ⊢M ]πγ .

We define the interpretation by induction on the structure of terms and
contexts. In the case of fixpoint construction we use Hilbert’s choice operator.

Definition 15 (Interpretation of terms and contexts).

[[]] = {∅}

[Γ (x : T )] = {(γ, α) : γ ∈ [Γ ] ∧ α ∈ [Γ ⊢ T∞]∞γ }

[Γ ⊢ Typei]
π
γ = Ui

[Γ ⊢ Prop]πγ = {X : X is a degenerated Λ-set}

[Γ ⊢ x]πγ = γ(x)

[Γ ⊢ Πx : T.U ]πγ = ΠΓ⊢Πx:T.U ([Γ ⊢ T ]πγ , [Γ (x : T ) ⊢ U ]πγ, )

[Γ ⊢ λx:T◦.U◦M ]πγ = ↓Γ⊢Πx:T◦.U◦([Γ (x : T∞) ⊢M ]πγ, )

[Γ ⊢ appx:T◦.U◦(M, N)]πγ = ↑Γ⊢Πx:T◦.U◦([Γ ⊢M ]πγ )([Γ ⊢ N ]πγ )

[Γ ⊢ nats]πγ = F
LsMπ

N (⊥)

[Γ ⊢ O]πγ = (0, ∅)



On Strong Normalization of CC with Type-Based Termination 11

[Γ ⊢ S(N)]πγ = (1, [Γ ⊢ N ]πγ )

[Γ ⊢ caseP◦ x := M of N0, N1]
π
γ =






⊥[Γ (x : nat) ⊢ P∞]πγ,⊥
if [Γ ⊢M ]πγ = ∅;

[Γ ⊢ N0]
π
γ if [Γ ⊢M ]πγ = (0, ∅);

↑Γ⊢T ([Γ ⊢ N1]
π
γ )(α) if [Γ ⊢M ]πγ = (1, α)

where T ≡ Πy : nat.P ◦ [x := S(y)]

[Γ ⊢ fix f(x : nat⋆) : U⋆ := M ]πγ = ǫ(F, P )

where F ∈ [Γ ⊢ Πx : nat∞.U∞]πγ , P is the conjunction of the following proper-
ties:

↑(F )∅ = ⊥[Γ (x : nat) ⊢ U∞]πγ,∅
; (1)

↑(F )(0, ∅) = ↑([Γ (f : |T |) ⊢M ]πγ,F )(0, ∅); (2)

↑(F )(1, α) = ↑([Γ (f : |T |) ⊢M ]πγ,F )(1, α), for all (1, α) ∈ N (3)

and we write |T | for Πx : nat.|U | and ↑ for ↑Γ⊢|T |.
We write [Γ (x : T ) ⊢M ]πγ, as a short hand for

α ∈ [Γ ⊢ T ]πγ 7→ [Γ (x : |T |) ⊢M ]πγ,α .

The conditions imposed on the interpretation of fixpoint construction ensure
the stability under µ-reductions. In the main soundness theorem, we prove that
the typing rules for fixpoint ensure the existence of a unique function F satisfying
the above conditions.

4.3 Interpretation of simple Types.

We define a second (relational) interpretation for simple types. The intention of
this second interpretation is to cope with the lack of size annotations in types.
Consider the following derivation:

Γ (x : nats) ⊢M : natr

Γ ⊢ λx : nat.M : nats → natr

Note that s and r above could be any size expression. But this size information is
not present in the term λx : nat.M . The interpretation of this term is a function
in the set N → N, specifically α ∈ N 7→ [M ]α. To show that the term respects
the sizes s and r, we use the relational interpretation of the type. In the case of
nats → natr, the relational interpretation, denoted J·K, is

Jnats → natrK = {(f1, f2) ∈ N→ N : α < [s]⇒ f1α = f2α < [r]}

Then, the interpretation satisfies ([λx : nat.M ], [λx : nat.M ]) ∈ Jnats → natrK.
The relational interpretation can be extended to simple types. Intuitively, the
soundness judgment says that if Γ ⊢M : T , then ([M ], [M ]) ∈ JT K.

The relational interpretation also satisfies the contravariance rule. Consider
a stage s′ ⊑ s; the relational interpretation of nats

′

→ natr gives

Jnats
′

→ natrK = {(f1, f2) ∈ N→ N : α < [s′]⇒ f1α = f2α < [r]}

Since [s′] ≤ [s], we have Jnats → natrK ⊆ Jnats
′

→ natrK.



12 Benjamin Grégoire and Jorge Luis Sacchini

Definition. Let T be a simple type such that [Γ ⊢ T∞]πγ1
, [Γ ⊢ T∞]πγ2

, [Γ ⊢ T ]πγ1
,

and [Γ ⊢ T ]πγ2
are Λ-sets and that [Γ ⊢ T ]πγ1

= [Γ ⊢ T ]πγ2
. The relational inter-

pretation of T , denoted JΓ ⊢ T Kπ
γ1,γ2

, is a Λ-set with a carrier-set included in

[Γ ⊢ T∞]πγ1
× [Γ ⊢ T∞]πγ2

.

It is defined as follows: if Γ∞ ⊢ T∞ : Prop, then

JΓ ⊢ T Kπ
γ1,γ2

= [Γ ⊢ T ]πγ1
× [Γ ⊢ T ]πγ2

;

otherwise, it is defined by induction on the structure of T :

– if T ≡ Πx : T1.T2 and simple(T1) and simple(T2). Assume JΓ ⊢ T1K
π
γ1,γ2

is a
defined Λ-set (denoted by JT1K), and for every (α1, α2) ∈ JT1K, JΓ (x : |T1|) ⊢
T2K

π
(γ1,α1),(γ2,α2)

is a defined Λ-set (denoted by JT2K(α1, α2)).

We define JΓ ⊢ T Kπ
γ1,γ2

= (X, |=,⊥), where

X = {(f1, f2) ∈ [Γ ⊢ T∞]πγ1
× [Γ ⊢ T∞]πγ2

:

(α1, α2) ∈ JT1K⇒ (f1(α1), f2(α2)) ∈ JT2K(α1, α2)};
(4)

M |= (f1, f2) ⇐⇒ N |=JT1K (α1, α2)⇒

appx:T◦.U◦(M,N) |=JT2K(α1,α2) (f1(α1), f2(α2))
(5)

⊥ = (⊥[Γ ⊢ T∞]πγ1

,⊥[Γ ⊢ T∞]πγ2

); (6)

– if T ≡ nats, we define JΓ ⊢ natsKπ
γ1,γ2

= ([Γ ⊢ nats]πγ1
)2;

– otherwise, SV(T ) = ∅ and we define JΓ ⊢ T Kπ
γ1,γ2

= ([Γ ⊢ T ]πγ1
)2 .

Note that, intuitively, α1 and α2 are related in JnatsKπ if they are equal, and the
“height” of α1 is less than LsMπ.

Given a simple type T , such that SV(T ) = ∅, there might be more than one
clause of the above definition that applies. The following lemma states that the
definition does not depend on which clause we use.

Lemma 3. Let T be a term such that simple(T ) and SV(T ) = ∅. If JΓ ⊢ T Kπ
γ1,γ2

is defined, then JΓ ⊢ T Kπ
γ1,γ2

= ([Γ ⊢ T ]πγ1
)2.

Figure 3 sums up some properties of the interpretation: stability under weak-
ening, substitution (of stages and terms), and reduction, monotonicity of stage

substitution, and soundness of subtyping. We use
·
= to denote Kleene equality:

a
·
= b iff a and b are both defined and equal, or if both are undefined.

4.4 Soundness

We extend the relational interpretation of types to contexts in the following way:

J[]Kπ = {(∅, ∅)}

JΓ (x : T )Kπ = {((γ1, α1), (γ2, α2)) : (γ1, γ2) ∈ JΓ Kπ ∧ (α1, α2) ∈ JΓ ⊢ T Kπ
γ1,γ2
}

Below is the main soundness theorem. In the following, we write [Γ ⊢M ]πγ1,γ2

to mean ([Γ ⊢M ]πγ1
, [Γ ⊢M ]πγ2

).



On Strong Normalization of CC with Type-Based Termination 13

Term interpretation

Weakening: [Γ∆ ⊢ M ]πγ,δ

·
= [Γ (z : T )∆ ⊢ M ]πγ,α,δ

Substitution: [Γ ⊢ M [ı := s]]πγ
·
= [Γ ⊢ M ]

π(ı:=LsMπ)
γ

[Γ, ∆ [x := N ] ⊢ M [x := N ]]πγ,δ

·
= [Γ (x : T )∆ ⊢ M ]πγ,[Γ ⊢ N ]πγ ,δ

Reduction: M → N ⇒ [Γ ⊢ M ]πγ
·
= [Γ ⊢ N ]πγ

Relational interpretation

Weakening: JΓ∆ ⊢ UKπ
(γ1,δ1),(γ2,δ2)

·
= JΓ (z : T )∆ ⊢ UKπ

(γ1,α1,δ1),(γ2,α2,δ2)

Substitution: JΓ ⊢ T [ı := s]Kπ
γ1,γ2

·
= JΓ ⊢ T K

π(ı:=LsMπ)
γ1,γ2

JΓ∆ [x := N ] ⊢ T [x := N ]Kπ
(γ1,δ1),(γ2,δ2)

·
= JΓ (x : U)∆ ⊢ T Kπ

(γ1,ν1,δ1),(γ2,ν2,δ2)

where ν1 ≡ [Γ ⊢ N ]πγ1

ν2 ≡ [Γ ⊢ N ]πγ2

Monotony: s ⊑ r ∧ ı pos T ⇒ JΓ ⊢ T K
π(ı:=s)
γ1,γ2

⊆ JΓ ⊢ T K
π(ı:=r)
γ1,γ2

Subtyping: T ≤ U ⇒ JΓ ⊢ T Kπ
γ1,γ2

⊆ JΓ ⊢ UKπ
γ1,γ2

Fig. 3. Properties of the interpretation

Lemma 4 (Soundness).

1. If Γ ⊢M : T and (γ1, γ2) ∈ JΓ Kπ, then [Γ ⊢M ]πγ1,γ2
, JΓ ⊢ T Kπ

γ1,γ2
are defined

and
[Γ ⊢M ]πγ1,γ2

∈ JΓ ⊢ T Kπ
γ1,γ2

.

2. If Γ ⊢ T : u, simple(T ), and (γ1, γ2) ∈ JΓ Kπ, then JΓ ⊢ T Kπ
γ1,γ2

is a defined
Λ-set.

3. If WF(Γ ) and (γ1, γ2) ∈ JΓ Kπ, then (γ1, γ1) ∈ JΓ Kπ and (γ1, γ1) ∈ JΓ K∞.

4.5 Strong Normalization

In this section we prove our main result: strong normalization of CIĈ−.
A substitution is a mapping θ from variables to terms, such that θ(x) 6= x

for a finite number of variables x. We use θ to denote substitutions, and ε to
denote the identity substitution. We write θ(x 7→ M) for the substitution that
gives M when applied to x and θ(y) when applied to y 6= x. We write Mθ for
the capture-avoiding substitution of the free variables of M with θ.

Definition 16. Let (γ1, γ2) ∈ JΓ Kπ. We define θ |=Γ
π (γ1, γ2) by the following

clauses:

ε |=Γ
π []

θ |=Γ
π (γ1, γ2) M |=JΓ⊢T Kπ

γ1,γ2

(α1, α2)

θ(x 7→M) |=Γ (x:T )
π (γ1, α1), (γ2, α2)

Lemma 5. If Γ ⊢M : T and (γ1, γ2) ∈ JΓ Kπ and θ |=Γ
π (γ1, γ2), then

Mθ |=JΓ⊢T Kπ
γ1,γ2

[Γ ⊢M ]πγ1,γ2



14 Benjamin Grégoire and Jorge Luis Sacchini

Corollary 1. If Γ ⊢M : T then M is strongly normalizing.

Proof. It is not difficult to see that ε |=Γ
π ⊥Γ , where ⊥Γ is the sequence of atomic

elements of relational interpretation the types of Γ . The result follows from the
previous lemma, and the fact that realizers are strongly normalizing. ⊓⊔

As a consequence of soundness and strong normalization, we can easily derive
logical consistency.

Theorem 1. There is no term M such that ⊢M : Πx : Prop.x.

5 Related Work

The idea of using sized types to ensure termination and productivity was initi-
ated by Hughes, Pareto and Sabry [8]. Abel [1] extended system Fω with sized
(co-)inductive types. In turn, CIĈ− is derived from CIĈ [4]. We refer to these
papers for further information and examples, and focus on work related to strong
normalization.

Our proof of strong normalization closely follows the work of Melliès and
Werner [11]. The authors use Λ-sets to develop a generic proof of strong normal-
ization for Pure Type Systems. They avoid the use of inaccessible cardinals, but
it is unlikely that the same can be achieved in the presence of inductive types.

Λ-sets were introduced by Altenkirch in [2]. He develops a generic model
for the Calculus of Constructions (CC), that can be instantiated with Λ-sets to
obtain a proof of strong normalization. He also extends the proof to include one
inductive type (trees) at the impredicative level.

There are in the literature several proofs of strong normalization for (non-
dependent) typed lambda calculi extended with sized types. We refer the reader
to [1,4] for further references.

On dependent types, an extension with type-based termination was first con-
sidered by Giménez [6]. However, stages are not explicitly represented, which
complicates the definition of mutually recursive functions.

Barras [3] has formalized in Coq a proof of consistency CCω extended with
natural numbers. Termination of recursive functions is ensured by a restricted
form of sized types, inspired by the work of Giménez. However, it is not possible
to express size-preserving functions, which prevents the typing of quicksort.

Blanqui [5] uses sized types to ensure termination of CC extended with
higher-order rewrite rules. In our case, we use just fix/case instead of rewrite
rules. However, he makes some assumptions on the confluence and subject re-
duction of the combination of rewriting and β-reduction. Nevertheless, it is of
interest to see if these techniques can be extended to CIĈ−.

Finally, let us mention the work of Wahlstedt [12]. He proves weak nor-
malization of a predicative type theory in the style of Martin-Löf type theory.
Termination is ensured using the size-change principle [9]. While this principle
is very powerful, his system cannot express size-preserving functions.



On Strong Normalization of CC with Type-Based Termination 15

6 Conclusions

We presented CIĈ−, an extension of CIC with a type-based termination mech-
anism. We have restricted to one inductive type, namely natural numbers, and
we have proved that the system is strongly normalizing and logically consistent.
The interpretation can be extended to other (positive) inductive types (in the
predicative universes). This is a intermediate result towards our goal of prov-
ing logical consistency of an extension of CIC with a type-based termination
mechanism.

There are some issues related with CIĈ that are present in CIĈ− and have
not been addressed in this work, namely, global definitions and mutually recur-
sive functions. We have preliminary results in this direction.

Acknowledgments. The authors would like to thank Bruno Barras, Hugo
Herbelin, and Benjamin Werner for many discussions on strong normalization
and type-based termination.

References

1. Andreas Abel. A Polymorphic Lambda-Calculus with Sized Higher-Order Types.
PhD thesis, Ludwig-Maximilians-Universität München, 2006.

2. Thorsten Altenkirch. Constructions, Inductive Types and Strong Normalization.
PhD thesis, University of Edinburgh, November 1993.

3. Bruno Barras. Sets in coq, coq in sets. 1st Coq Workshop, August 2009.
4. Gilles Barthe, Benjamin Grégoire, and Fernando Pastawski. CICb: Type-based

termination of recursive definitions in the Calculus of Inductive Constructions. In
Miki Hermann and Andrei Voronkov, editors, LPAR, volume 4246 of Lecture Notes

in Computer Science, pages 257–271. Springer, 2006.
5. Frédéric Blanqui. A type-based termination criterion for dependently-typed higher-

order rewrite systems. In Vincent van Oostrom, editor, RTA, volume 3091 of
Lecture Notes in Computer Science, pages 24–39. Springer, 2004.

6. Eduardo Giménez. Structural recursive definitions in type theory. In Kim Guld-
strand Larsen, Sven Skyum, and Glynn Winskel, editors, ICALP, volume 1443 of
Lecture Notes in Computer Science, pages 397–408. Springer, 1998.

7. Benjamin Grégoire and Jorge Luis Sacchini. On strong normalization of the Cal-
culus of Constructions with type-based termination. To appear in LPAR, 2010.

8. John Hughes, Lars Pareto, and Amr Sabry. Proving the correctness of reactive
systems using sized types. In POPL, pages 410–423, 1996.

9. Chin Soon Lee, Neil D. Jones, and Amir M. Ben-Amram. The size-change principle
for program termination. In POPL, pages 81–92, 2001.

10. Zhaohui Luo. Computation and reasoning: a type theory for computer science.
Oxford University Press, Inc., New York, NY, USA, 1994.

11. Paul-André Melliès and Benjamin Werner. A generic normalisation proof for pure
type systems. In Eduardo Giménez and Christine Paulin-Mohring, editors, TYPES,
volume 1512 of LNCS, pages 254–276. Springer, 1996.

12. David Wahlstedt. Dependent Type Theory with Parameterized First-Order Data

Types and Well-Founded Recursion. PhD thesis, Chalmers University of Technol-
ogy, 2007. ISBN 978-91-7291-979-2.


	On Strong Normalization of the Calculus of Constructions with Type-Based Termination

