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On the Central Limit Theorem for the Eigenvalue Counting Function of Wigner and Covariance Matrices

This note presents some central limit theorems for the eigenvalue counting function of Wigner matrices in the form of suitable translations of results by Gustavsson and O'Rourke on the limiting behavior of eigenvalues inside the bulk of the semicircle law for Gaussian matrices. The theorems are then extended to large families of Wigner matrices by the Tao and Vu Four Moment Theorem. Similar results are developed for covariance matrices.

). In this work, we restrict ourselves to the families of so-called Wigner and covariance matrices.

Wigner matrices are Hermitian or real symmetric matrices M n such that, if M n is complex, for i < j, the real and imaginary parts of (M n ) ij are iid, with mean 0 and variance 1 2 , (M n ) ii are iid, with mean 0 and variance 1. In the real case, (M n ) ij are iid, with mean 0 and variance 1 and (M n ) ii are iid, with mean 0 and variance 2. In both cases, set W n = 1

√ n M n . An important example of Wigner matrices is the case where the entries are Gaussian. If M n is complex, then it belongs to the so-called Gaussian Unitary Ensemble (GUE). If it is real, it belongs to the Gaussian Orthogonal Ensemble (GOE). In this case, the joint law of the eigenvalues is known, allowing for complete descriptions of their limiting behavior both in the global and local regimes (cf. for example [START_REF] Anderson | An Introduction to Random Matrices[END_REF]).

Covariance matrices are Hermitian or real symmetric semidefinite matrices S m,n such that S m,n = 1 n X * X where X is a m × n random complex or real matrix (with m n) whose entries are iid with mean 0 and variance 1. We only consider here the situation where m n → γ ∈ [1, +∞) as n → ∞. If the entries are Gaussian, then the covariance matrix belongs to the so-called Laguerre Unitary Ensemble (LUE) if it is complex and Laguerre Orthogonal Ensemble (LOE) if it is real. Again in this Gaussian case, the joint law of the eigenvalues is known allowing, as for Wigner matrices, for a complete knowledge of their asymptotics (see for example [START_REF] Bai | Exact Separation of Eigenvalue of Large Dimensional Sample Covariance Matrices[END_REF], [START_REF] Bai | Limit of the Smallest Eigenvalue of a Large Dimensional Sample Covariance Matrix[END_REF], [START_REF] Jonsson | Some Limit Theorems for the Eigenvalues of a Sample Covariance Matrix[END_REF]).

Both W n and S m,n have n real eigenvalues λ 1 , . . . , λ n for which one may investigate the linear statistics

N n [ϕ] = n j=1 ϕ(λ j )
where ϕ : R → C. The classical Wigner theorem states that the empirical distribution At the fluctuation level, various results have been obtained in the last decade for different subclasses of Wigner matrices. As usual in random matrix theory, the case of GUE or GOE matrices is easier and was investigated first. For a regular function ϕ, it has been shown by Johansson (see [START_REF] Johansson | On Fluctuations of Eigenvalues of Random Hermitian Matrices[END_REF]) that the random variable

N o n [ϕ] = N n [ϕ] -[N n [ϕ]
] converges in distribution to a Gaussian random variable with mean 0 and variance

V β Gaussian [ϕ] = 1 2βπ 2 2 -2 2 -2 ϕ(x) -ϕ(y) x -y 2 4 -xy √ 4 -x 2 4 -y 2 dxdy,
where β = 1 if the matrix is from the GOE and β = 2 if it is from the GUE. Cabanal-Duvillard in [START_REF] Cabanal-Duvillard | Fluctuations de la loi empirique de grandes matrices aléatoires[END_REF] proved this theorem using different techniques. It is remarkable that due to the repelling properties of the eigenvalues, no normalization appears in this central limit theorem. Recentely, Lytova and Pastur [START_REF] Lytova | Central Limit Theorem for Linear Eigenvalue Statistics of the Wigner and the Sample Covariance Random Matrices[END_REF] proved this theorem with weaker assumptions for the smoothness of ϕ: if ϕ is continuous and has a bounded derivative, the theorem is true. The case of covariance matrices is very similar. The Marchenko-Pastur theorem states that the empirical distribution 1 n n j=1 δ λ j on the eigenvalues of S m,n converges weakly almost surely to the Marchenko-Pastur law (with parameter γ) dµ γ

(x) = 1 2πx (x -α)(β -x)½ [α,β] (x)dx, where α = ( √ γ -1) 2 and β = ( √ γ + 1) 2 .
Consequently, for any bounded continuous function ϕ,

1 n N n [ϕ] → n→+∞ ϕdµ γ almost surely.
At the fluctuation level, Guionnet (cf. [START_REF] Guionnet | Large Deviations, Upper Bounds, and Central Limit Theorems for Non-Commutative Functionals of Gaussian Large Random Matrices[END_REF]) proved that, for S m,n from the LUE and ϕ a polynomial function, the random variable

N o n [ϕ] = N n [ϕ] -[N n [ϕ]
] converges in distribution to a Gaussian random variable with mean 0 and variance

V β Laguerre [ϕ] = 1 2βπ 2 β -α β -α ϕ(x) -ϕ(y) x -y 2 4γ -(x -δ)(y -δ) 4γ -(x -δ) 2 4γ -(y -δ) 2 dxdy,
where β = 1 if the matrix is from the LOE and β = 2 if it is from the LUE, and δ = α+β 2 = 1+γ. Again, Cabanal-Duvillard in [START_REF] Cabanal-Duvillard | Fluctuations de la loi empirique de grandes matrices aléatoires[END_REF] proved this theorem using different techniques. Recently, Lytova and Pastur in [START_REF] Lytova | Central Limit Theorem for Linear Eigenvalue Statistics of the Wigner and the Sample Covariance Random Matrices[END_REF] proved that this result is true for continuous test functions ϕ with a bounded derivative.

Numerous recent investigations (cf. [START_REF] Anderson | CLT for a Band Matrix Model[END_REF], [START_REF] Bai | CLT for Linear Spectral Statistics of Large Dimensional Sample Covariance Matrices[END_REF]) have been concerned with the extension of the preceding statements to non-Gaussian Wigner and covariance matrices. More or less, the results are the same but so far stronger smoothness assumptions on ϕ are required. Various techniques have been developed toward this goal: moment method for polynomial functions ϕ (see [START_REF] Anderson | CLT for a Band Matrix Model[END_REF]), Stieltjès transform for analytical functions ϕ (see [START_REF] Bai | CLT for Linear Spectral Statistics of Large Dimensional Sample Covariance Matrices[END_REF]) and Fourier transforms for essentially C 4 functions ϕ (see [START_REF] Lytova | Central Limit Theorem for Linear Eigenvalue Statistics of the Wigner and the Sample Covariance Random Matrices[END_REF]). The latest and perhaps more complete results are due to Lytova and Pastur [START_REF] Lytova | Central Limit Theorem for Linear Eigenvalue Statistics of the Wigner and the Sample Covariance Random Matrices[END_REF] who proved that, under some suitable assumptions on the distribution of the entries of the Wigner matrix, the smoothness condition C 4 on ϕ is essentially enough to ensure that N o n [ϕ] converges in distribution to a Gaussian random variable with mean 0 and variance V W ig [ϕ] which is the sum of V β Gaussian [ϕ] and a term which is zero in the Gaussian case. In the same article, they proved a similar result for covariance matrices: under the same assumptions, N o n [ϕ] converges in distribution to a Gaussian random variable with mean 0 and variance V Cov [ϕ] which is the sum of V β Laguerre [ϕ] and a term which is zero in the Gaussian case. These results are deduced from the Gaussian cases by using an interpolation procedure.

The picture is rather different when ϕ is not smooth, and much is less actually known in this case. What is best known concerns the case where ϕ is the characteristic function of an interval I, in which case N n [ϕ] is the number of eigenvalues falling into the interval I, and which will be denoted by N I (W n ) or N I (S m,n ) throughout this work. By Wigner's and Marchenko-Pastur's theorems as above, for any interval I ⊂ R,

1 n N I (W n ) → n→+∞ ρ sc (I) and 1 n N I (S m,n ) → n→+∞ µ γ (I) almost surely.
In case of the GUE and the LUE, the eigenvalues form a determinantal point process. This particular structure (cf. [START_REF] Hough | Determinantal Processes and Independence[END_REF]) allows for the representation of N I as a sum of independent Bernoulli random variables with parameters related to the kernel eigenvalues. In particular, this description underlies the following general central limit theorem going back to Costin-Lebowitz and Soshnikov (cf. [START_REF] Costin | Gaussian Fluctuations in Random Matrices[END_REF] and [START_REF] Soshnikov | Gaussian Fluctuation for the Number of Particles in Airy, Bessel, Sine, and other Determinantal Random Point Fields[END_REF]).

Theorem 1 (Costin-Lebowitz, Soshnikov). Let M n be a GUE matrix. Let I n be an interval in

R. If Var(N In (M n )) → ∞ as n → ∞, then N In (M n ) -[N In (M n )] Var(N In (M n )) → N (0, 1) (1) 
in distribution.

The same result holds for a LUE matrix S m,n .

In order to efficiently use this conclusion, it is of interest to evaluate the order of growth of the variance of N I (M n ). As a main result, Gustavsson [START_REF] Gustavsson | Gaussian Fluctuations of Eigenvalues in the GUE[END_REF], using asymptotics of Hermite orthogonal polynomials, was able to show that, say for an interval I strictly in the bulk (-2, +2) of the semi-circle law, Var(N I (M n )) is of the order of √ log n as n → ∞. This behavior is thus in strong contrast with the smooth case (for which no normalization is necessary). On the basis of this result, Gustavsson investigated the (Gaussian) limiting behavior of eigenvalues in the bulk. The main observation in this regard is the link between the k-th eigenvalue λ k (sorted in nondecreasing order) and the counting function

N I (W n ) of an interval I = (-∞, a], a ∈ R, given by N I (W n ) k if and only if λ k a. (2) 
Gustavsson's results have been extended to the real GOE ensemble by O'Rourke in [START_REF] O'rourke | Gaussian Fluctuations of Eigenvalues in Wigner Random Matrices[END_REF] by means of interlacing formulas (cf. [START_REF] Forrester | Inter-Relationships between Orthogonal, Unitary and Symplectic Matrix Ensembles[END_REF]). Using their already famous Four Moment Theorem, Tao and Vu (cf. [START_REF] Tao | Random Matrices: Universality of Local Eigenvalues Statistics[END_REF]) were able to extend Gustavsson's theorem to large classes of Wigner Hermitian matrices. As pointed out at the end of O'Rourke's paper [START_REF] O'rourke | Gaussian Fluctuations of Eigenvalues in Wigner Random Matrices[END_REF], the extension also holds for real Wigner matrices.

Su [START_REF] Su | Gaussian Fluctuations in Complex Sample Covariance Matrices[END_REF] extended Gustavsson's work for LUE matrices and got the same behavior for the variance of N I (S m,n ), namely √ log n. Similar interlacing results (cf. [START_REF] Forrester | Inter-Relationships between Orthogonal, Unitary and Symplectic Matrix Ensembles[END_REF]) yield the same conclusions for LOE matrices. Since Tao and Vu extended their Four Moment Theorem to covariance matrices (cf. [START_REF] Tao | Random Covariance Matrices: Universality of Local Statistics of Eigenvalues[END_REF]), it is then possible to extend Su's central limit theorems to more general covariance matrices.

The purpose of this note is to translate the aforementioned results on the behavior of eigenvalues inside the bulk directly as central limit theorems on the eigenvalue counting function, combining thus the Costin-Lebowitz -Soshnikov theorem with the Tao-Vu Four Moment Theorem. While these statements are implicit in the preceding investigations, we found it interesting and useful to emphasize the conclusions as central limit theorems for the eigenvalue counting function, in particular by comparison with the case of smooth linear statistics as described above. In particular, we express central limit theorems for N [an,+∞) , a n → a, where a is in the bulk of the spectrum and where a n is close to the edge of the spectrum. The results are presented first, along the lines of Gustavsson [START_REF] Gustavsson | Gaussian Fluctuations of Eigenvalues in the GUE[END_REF], for matrices from the GUE, then extended to Wigner Hermitian matrices by the Tao-Vu Four Moment Theorem. Similar results are developed for a finite number of intervals, by means of the corresponding multidimensional central limit theorem. The conclusions are carried over to the real case following O'Rourke's [START_REF] O'rourke | Gaussian Fluctuations of Eigenvalues in Wigner Random Matrices[END_REF] interlacing approach. The results are then presented for LUE matrices, using Su's work [START_REF] Su | Gaussian Fluctuations in Complex Sample Covariance Matrices[END_REF], and extended to non-Gaussian complex covariance matrices. Following O'Rourke, the results are then extended to LOE matrices and, at last, to real covariance matrices.

Turning to the content of this note, the first section describes the families of Wigner matrices of interest, as well as the Tao-Vu Four Moment Theorem. Section 2 then presents the various central limit theorems for the eigenvalue counting function of Hermitian matrices, both for single or multiple intervals. In Section 3, we formulate the corresponding statements in the real case. In the last section, we present the results for covariance matrices.

Notations and definitions 1.Wigner matrices

Definitions of Wigner matrices somewhat differ from one paper to another. Here we follow Tao and Vu in [START_REF] Tao | Random Matrices: Universality of Local Eigenvalues Statistics[END_REF], in particular for moment assumptions which will be suited to their Four Moment Theorem.

Definition 1. A Wigner Hermitian matrix of size n is a random Hermitian matrix M n whose entries ξ ij have the following properties:

• For 1 i < j n, the real and imaginary parts of ξ ij are iid copies of a real random variable ξ with mean 0 and variance 1 2 .

• For 1 i n, the entries ξ ii are iid copies of a real random variable ξ with mean 0 and variance 1.

• ξ and ξ are independent and have finite moments of high order: there is a constant

C 0 2 such that [|ξ| C 0 ] C and [| ξ| C 0 ] C for some constant C.
If ξ and ξ are real Gaussian random variables with mean 0 and variance 1 2 and 1 respectively, then M n belongs to the GUE.

A similar definition holds for real Wigner matrices.

Definition 2. A real Wigner symmetric matrix of size n is a random real symmetric matrix M n whose entries ξ ij have the following properties:

• for 1 i < j n, ξ ij are iid copies of a real random variable ξ of mean 0 and variance 1.

• for 1 i n, ξ ii are iid copies of a real random variable ξ of mean 0 and variance 2.

• the entries are independent and have finite moments of high order: there is a constant

C 0 2 such that [|ξ| C 0 ] C and [| ξ| C 0 ] C for some constant C.
The GOE is the equivalent of the GUE in the real case, namely a real Wigner symmetric matrix is said to belong to the GOE if its entries are independent Gaussian random variables with mean 0 and variance 1, 2 on the diagonal.

The Gaussian Unitary and Orthogonal Ensembles are specific sets of random matrices for which the eigenvalue density is explicitly known. On this basis, the asymptotic behavior of the eigenvalues, both at the global and local regimes, has been successfully analyzed in the past giving rise to complete and definitive results (cf. for example [START_REF] Anderson | An Introduction to Random Matrices[END_REF]). Recent investigations have concerned challenging extensions to non-Gaussian Wigner matrices. In this regard, a remarkable breakthrough was achieved by Tao and Vu with their Four Moment Theorem which is a tool allowing the transfer of known results for the GUE or GOE to large classes of Wigner matrices. We present next this main statement following the recent papers [START_REF] Tao | Random Matrices: Universality of Local Eigenvalues Statistics[END_REF], [START_REF] Tao | Random Matrices: Universality of Local Eigenvalue Statistics up to the Edge[END_REF] and [START_REF] Tao | Random Covariance Matrices: Universality of Local Statistics of Eigenvalues[END_REF].

Tao and Vu's results

The Tao and Vu Four Moment Theorem indicates that two random matrices whose entries have the same first four moments have very close eigenvalues. Before recalling the precise statement, say that two complex random variables ξ and ξ ′ match to order k if

Re(ξ) m Im(ξ) l = Re(ξ ′ ) m Im(ξ ′ ) l
for all m, l 0 such that m + l k.

Theorem 2 (Four Moment Theorem). There exists a small positive constant c 0 such that, for every k 1, the following holds. Let M n = (ξ ij ) 1 i,j n and M ′ n = (ξ ′ ij ) 1 i,j n be two random Wigner Hermitian matrices. Assume that, for 1 i < j n, ξ ij and ξ ′ ij match to order 4 and that, for 1 i n, ξ ii and ξ ′ ii match to order 2.

Set A n = √ nM n and A ′ n = √ nM ′ n . Let G : R k → R be a smooth fonction such that: ∀ 0 j 5, ∀x ∈ R k , |∇ j G(x)| n c 0 . ( 3 
)
Then, for all 1 i 1 < i 2 • • • < i k n and for n large enough (depending on k and constants C and

C ′ ), | [G(λ i 1 (A n ), . . . , λ i k (A n ))] -[G(λ i 1 (A ′ n ), . . . , λ i k (A ′ n ))]| n -c 0 . (4) 
This theorem applies to any kind of Wigner matrices. It will be used with one of the two matrices in the GUE giving thus rise to the following corollary. 

| [G(λ i 1 (A n ), . . . , λ i k (A n ))] -[G(λ i 1 (A ′ n ), . . . , λ i k (A ′ n ))]| n -c 0 . (5) 
For the further purposes, let us briefly illustrate how this result may be used in order to estimate tail probabilities of eigenvalues. Consider matrices satisfying the conditions of Theorem 2. Let I = [a, b], I + = [an -c 0 /10 , b + n -c 0 /10 ] and I -= [a + n -c 0 /10 , bn -c 0 /10 ]. Take a smooth bump function G such that G(x) = 1 if x ∈ I and G(x) = 0 if x / ∈ I + and such that G satisfies condition (3). Theorem 2 applies in this setting so that, for every i ∈ {1, . . . , n} (possibly depending on n),

| [G(λ i (A n ))] -[G(λ i (A ′ n ))]| n -c 0 . But now, È(λ i (A n ) ∈ I) [G(λ i (A n ))] and È(λ i (A ′ n ) ∈ I + ) [G(λ i (A ′ n ))]
. Therefore, by the triangle inequality,

È(λ i (A n ) ∈ I) È(λ i (A ′ n ) ∈ I + ) + n -c 0 .
Taking another smooth bump function H such that H(x) = 1 if x ∈ I -and H(x) = 0 if x / ∈ I and using the same technique yields

È(λ i (A ′ n ) ∈ I -) -n -c 0 È(λ i (A n ) ∈ I).
Combining the two preceding inequalities,

È(λ i (A ′ n ) ∈ I -) -n -c 0 È(λ i (A n ) ∈ I) È(λ i (A ′ n ) ∈ I + ) + n -c 0 . (6) 
This inequality will be used repeatedly. Combined with the equivalence (2), it will yield significant informations on the eigenvalue counting function. In the next section we thus present the central limit theorems for GUE matrices, and then transfer them, by this tool, to Hermitian Wigner matrices. The real case will be addressed next.

2 Central limit theorems (CLT) for Hermitian matrices 2.1 Infinite intervals

CLT for GUE matrices

We first present Gustavsson's results [START_REF] Gustavsson | Gaussian Fluctuations of Eigenvalues in the GUE[END_REF] on the limiting behavior of the expectation and variance of the eigenvalue counting function of the GUE, and then deduce the corresponding central limit theorems through the Costin-Lebowitz -Soshnikov Theorem (Theorem 1). Set

G(t) = ρ sc ((-∞, t]) = 1 2π t -2 √ 4 -x 2 ½ [-2,2] (x)dx for t ∈ [-2, 2].
Theorem 4. Let M n be a GUE matrix.

• Let t = G -1 k n with k n → a ∈ (0,

1). The number of eigenvalues of M n in the interval

I n = [t √ n, +∞)
has the following asymptotics:

[N In (M n )] = n -k + O log n n . (7) 
• The expected number of eigenvalues of M n in the interval I n = [t n √ n, +∞), when t n → 2 -, is given by:

[N In (M n )] = 2 3π n(2 -t) 3/2 + O(1). (8) 
• Let δ > 0. Assume that t n satisfies t n ∈ [-2 + δ, 2) and n(2

-t n ) 3/2 → +∞ when n → ∞.
Then the variance of the number of eigenvalues of M n in

I n = [t n √ n, +∞) satisfies Var(N In (M n )) = 1 2π 2 log[n(2 -t n ) 3/2 ](1 + η(n)), (9) 
where η(n) → 0 as n → ∞.

As announced, together with Theorem 1, we deduce central limit theorems for the eigenvalue counting function of the GUE. Theorem 5. Let M n be a GUE matrix and

W n = 1 √ n M n Set I n = [a n , +∞), where a n → a ∈ (-2, 2) when n → ∞. Then N In (W n ) -nρ sc ([a n , +∞)) 1 2π 2 log n → N (0, 1), ( 10 
)
in distribution when n goes to ∞.

The proof is an immediate consequence of Theorem 4 together with the Costin-Lebowitz -Soshnikov Theorem (Theorem 1). Note that the statement holds similarly with [N In (W n )] instead of nρ sc ([a n , +∞)) (and actually the latter is a consequence of the result with [N In (W n )]).

Theorem 5 concerns intervals in the bulk. When the interval is close to the edge, the second part of Theorem 4 yields the corresponding conclusion. Theorem 6. Let M n be a GUE matrix and

W n = 1 √ n M n . Let I n = [a n , +∞) where a n → 2 -
when n goes to infinity. Assume actually that a n satisfies a n ∈ [-2+δ, 2) and n(2-a n ) 3/2 → +∞ when n → ∞. Then, as n goes to infinity,

N In (W n ) -2 3π n(2 -a n ) 3/2 1 2π 2 log [n(2 -a n ) 3/2 ]
→ N (0, 1), [START_REF] Gustavsson | Gaussian Fluctuations of Eigenvalues in the GUE[END_REF] in distribution.

CLT for Wigner matrices

On the basis of the preceding results for GUE matrices, we now deduce the corresponding statements for Hermitian Wigner matrices using the Four Moment Theorem (Theorem 2).

Theorem 7. Let M n be a Wigner Hermitian matrix satisfying the hypotheses of Theorem 2 with a GUE matrix

M ′ n . Set W n = 1 √ n M n as usual. Set I n = [a n , +∞)
where a n → a ∈ (-2, 2). Then, as n goes to infinity,

N In (W n ) -nρ sc ([a n , +∞)) 1 2π 2 log n → N (0, 1) (12) 
in distribution.

Proof. Let x ∈ R. We have

È N In (W n ) -nρ sc ([a n , +∞)) 1 2π 2 log n x = È(N In (W n ) n -k n )
where

k n = nρ sc ((-∞, a n ]) -x 1 2π 2 log n . Hence, by (2), È N In (W n ) -nρ sc ([a n , +∞)) 1 2π 2 log n x = È(λ kn (M n ) a n √ n) = È(λ kn (A n ) a n n)
where

A n = √ nM n . Set A ′ n = √ nM ′ n .
By Theorem 2, more precisely ( 6),

È λ kn (A ′ n ) a n n -n -c 0 /10 -n -c 0 È (λ kn (A n ) a n n) ,
and

È (λ kn (A n ) a n n) È λ kn (A ′ n ) a n n + n -c 0 /10 + n -c 0 .
Start with the probability on the right of the preceding inequalities (the term n -c 0 going to 0 as n → ∞). We have,

È λ kn (A ′ n ) a n n + n -c 0 /10 = È λ kn (M ′ n ) (a n + n -1-c 0 /10 ) √ n = È N [an+n -1-c 0 /10 ,+∞) (W ′ n ) n -k n = È N [a ′ n ,+∞) (W ′ n ) nρ sc ([a n , +∞)) + x 1 2π 2 log n
where a ′ n = a n + n -1-c 0 /10 . Therefore,

È λ kn (A ′ n ) a n n + n -c 0 /10 = È N [a ′ n ,+∞[ (W ′ n ) -nρ sc ([a ′ n , +∞)) 1 2π 2 log n nρ sc ([a n , a ′ n ]) 1 2π 2 log n + x .
Recall from Theorem 5 that

X n = N [a ′ n ,+∞[ (W ′ n ) -nρ sc ([a ′ n , +∞[) 1 2π 2 log n → N (0, 1),
in distribution as n goes to infinity. Set now

x n = nρsc([an,a ′ n ]) 1 2π 2 log n + x.
In order to describe the asymptotic behavior of x n , observe that

ρ sc ([a n , a ′ n ]) = G(a ′ n ) -G(a n ) = G ′ (a n )(a ′ n -a n ) + o(a ′ n -a n ) = 1 2π 4 -a 2 n n -1-c 0 /10 + o(n -1-c 0 /10 ).
It immediately follows that x n → x. We are thus left to show that È(X

n x n ) → È(X x)
where X ∼ N (0, 1). To this task, let ε > 0. There exists n 0 such that, for all n n 0 ,

x -ε x n x + ε. Then, for all n n 0 , È(X n x -ε) È(X n x n ) È(X n x + ε). Hence lim sup n→+∞ È(X n x n ) lim sup n→+∞ È(X n x + ε) = È(X x + ε). and lim inf n→+∞ È(X n x n ) lim inf n→+∞ È(X n x -ε) = È(X x -ε).
Since the distribution of X is continuous, the conclusion follows.

The same argument works for the lower bound in equation (2.1.2). The proof of the theorem is then easily completed.

It should be mentioned that, for arbitrary Wigner matrices, since [N In (W n )] does not obviously behave like nρ sc ([a n , +∞)), it is not clear thus whether the statement holds similarly with [N In (W n )] instead of nρ sc ([a n , +∞)).

We next state and prove the corresponding result for intervals close to the edge.

Theorem 8. Let M n be a Wigner Hermitian matrix satisfying the hypotheses of Theorem 2 with a GUE matrix

M ′ n . Set W n = 1 √ n M n . Set I n = [a n , +∞)
, where a n → 2 -when n goes to infinity. Then, as n → ∞,

N In (W n ) -2 3π n(2 -a n ) 3/2 1 2π 2 log[n(2 -a n ) 3/2 ]
→ N (0, 1). ( 13)

Proof. Let x ∈ R. È N In (W n ) -2 3π n(2 -a n ) 3/2 1 2π 2 log[n(2 -a n ) 3/2 ] x = È(N In (W n ) k n ),
where

k n = 2 3π n(2 -a n ) 3/2 + x 1 2π 2 log[n(2 -a n ) 3/2 ] . Then, by (2) 
,

È N In (W n ) -2 3π n(2 -a n ) 3/2 1 2π 2 log[n(2 -a n ) 3/2 ] x = È(λ n-kn (M n ) a n √ n) = È(λ n-kn (A n ) a n n),
where

A n = √ nM n . Set A ′ n = √ nM ′ n . Using Theorem 2, more precisely (6), È λ n-kn (A ′ n ) a n n -n -c 0 /10 -n -c 0 È λ n-kn (A n ) a n n ,
and

È λ n-kn (A n ) a n n È λ n-kn (A ′ n ) a n n + n -c 0 /10 + n -c 0 .
Start with the probability on the right of the preceding inequality (the term n -c 0 going to 0 as n → ∞).

È λ n-kn (A ′ n ) a n n + n -c 0 /10 = È λ n-kn (M ′ n ) (a n + n -1-c 0 /10 ) √ n = È N [a ′ n ,+∞) (W ′ n ) k n , Then È λ n-kn (A ′ n ) a n n+n -c 0 /10 = È N [a ′ n ,+∞) (W ′ n ) 2 3π n(2-a n ) 3/2 +x 1 2π 2 log[n(2 -a n ) 3/2 ] ,
where a ′ n = a n + n -1-c 0 /10 . Set

X n = N [a ′ n ,+∞) (W ′ n ) -2 3π n(2 -a ′ n ) 3/2 1 2π 2 log[n(2 -a ′ n ) 3/2 ] . Then È λ n-kn (A ′ n ) a n n + n -c 0 /10 = È (X n x n ) ,
where

x n = 2 3π n (2 -a n ) 3/2 -(2 -a ′ n ) 3/2 1 2π 2 log[n(2 -a ′ n ) 3/2 ] + x log[n(2 -a n ) 3/2 ] log[n(2 -a ′ n ) 3/2 ]
.

We need to know if Theorem 6 apply. We must have a ′ n → 2 -and n(2a ′ n ) 3/2 → +∞ when n goes to infinity. First, we can see that a n → 2. Suppose now that n is such that a

′ n -2 > 0. Then a n -2 + n -1-c 0 /10 > 0. Then 2 -a n < n -1-c 0 /10 . As 2 -a n > 0 for n large enough, n(2 -a n ) 3/2 < nn -3c 0 20 -3 2 . And we get n(2 -a n ) 3/2 < n -3c 0 20 -1 2 . But n(2 -a n ) 3/2
goes to infinity and n -3c 0 20 -1 2 goes to 0, which means that this situation is impossible if n is large enough. Then, for n large enough, 2a ′ n > 0 and a ′ n → 2 -. Now, turn to the second condition. Namely,

(2 -a ′ n ) 3/2 = (2 -a n -n -1-c 0 /10 ) 3/2 = (2 -a n ) 3/2 1 - n -1-c 0 /10 2 -a n 3/2 = (2 -a n ) 3/2 1 - 3 2 n -1-c 0 /10 2 -a n + o n -1-c 0 /10 2 -a n , as, when n → ∞, n -1-c 0 /10 2 -a n = n -c 0 10 -1 3 [n(2 -a n ) 3/2 ] 2/3 → 0. Then n(2 -a ′ n ) 3/2 = n(2 -a n ) 3/2 1 - 3 2 n -1-c 0 /10 2 -a n + o n -1-c 0 /10 2 -a n . But n(2 -a n ) 3/2 goes to +∞ when n → ∞ and n -1-c 0 /10 2-an → 0. Then n(2 -a ′ n ) 3/2
→ ∞, and Theorem 6 apply. Consequently, when n goes to infinity,

N [a ′ n ,+∞) (W ′ n ) -2 3π n(2 -a ′ n ) 3/2 1 2π 2 log[n(2 -a ′ n ) 3/2 ] → N (0, 1), in distribution.
The argument will be completed provided x n → x. Using the preceding,

n (2 -a n ) 3/2 -(2 -a ′ n ) 3/2 = 3 2 n -c 0 /10 (2 -a n ) 1/2 + o n -c 0 /10 → 0.
Furthermore,

1 2π 2 log[n(2 -a ′ n ) 3/2 ] → ∞. Therefore, 2 3π n (2 -a n ) 3/2 -(2 -a ′ n ) 3/2 1 2π 2 log[n(2 -a ′ n ) 3/2 ] → 0. Moreover, log[n(2 -a n ) 3/2 ] log[n(2 -a ′ n ) 3/2 ] = log[n(2 -a n ) 3/2 ] log n(2 -a n ) 3/2 [1 -n -1-c 0 /10 2-an ] 3/2 = log[n(2 -a n ) 3/2 ] log[n(2 -a n ) 3/2 ] + 3 2 log[1 -n -1-c 0 /10 2-an ] → 1.
Hence x n = x + o(1). The proof of the theorem may then be concluded as the one of Theorem 7.

Finite intervals

In this section, we investigate the corresponding results for finite intervals in the bulk. Namely, we would like to study N [a,b] (W n ) (for -2 < a, b < 2). To this task, write

N [a,b] (W n ) = N [a,+∞) (W n ) -N [b,+∞) (W n ) so that we are led to study the couple (N [a,+∞) (W n ), N [b,+∞) (W n )).
For more complicated sets, such as [a, b] ∪ [c, +∞) with a, b, c in the bulk, we need to study the relations between three or more such quantities. In this subsection, we thus investigate the m-tuple (N [a 1 ,+∞) (W n ), . . . , N [a m ,+∞) (W n )) for which we establish a multidimensional central limit theorem.

CLT for GUE matrices

As for infinite intervals, we start with GUE matrices. Theorem 9. Let M n be a GUE matrix and set

W n = 1 √ n M n . Let m be a fixed integer. Let a i n → a i for all i ∈ {1, . . . , m}, with -2 < a 1 < a 2 < • • • < a m < 2.
Set, for all i ∈ {1, . . . , m},

X a i (W n ) = N [a i n ,+∞) (W n ) -nρ sc ([a i n , +∞)) 1 2π 2 log n .
Then, as n goes to infinity,

(X a 1 (W n ), . . . , X a m (W n ) → N (0, I m ),
in distribution, where I m is the identity matrix of size m.

Proof. In order to simplify notations, we will denote N I = N I (W n ) throughout the proof, for all interval I in R.

By means of the multidimensional version of the Costin-Lebowitz -Soshnikov theorem, Gustavsson [START_REF] Gustavsson | Gaussian Fluctuations of Eigenvalues in the GUE[END_REF] showed that, for all (β 1 , . . . ,

β m ) ∈ R m , m j=1 β j N [a j n ,a j+1 n ) - m j=1 β j N [a j n ,a j+1 n ) Var m j=1 β j N [a j n ,a j+1 n ) → n→∞ N (0, 1), in distribution, with a m+1 n = ∞. But, for all (α 1 , . . . , α m ) ∈ R m , m k=1 α k N [a k n ,+∞) - m k=1 α k N [a k n ,∞) Var m k=1 α k N [a k n ,∞) = m j=1 β j N [a j n ,a j+1 n ) - m j=1 β j N [a j n ,a j+1 n ) Var m j=1 β j N [a j n ,a j+1 n ) , with β j = j k=1 α k . Therefore, m k=1 α k N [a k n ,+∞) - m k=1 α k N [a k n ,+∞) Var m k=1 α k N [a k n ,+∞) → n→∞ N (0, 1), in distribution. Set now Y k = N [a k n ,+∞) . To see whether Y k -[Y k ] √ Var Y k 1 k m converges in distribution, we proceed as follows. Gustavsson showed that the covariance matrix of Y k -[Y k ] √ Var Y k 1 k m has limit Σ = I m as n goes to infinity. Let then (β 1 , . . . , β m ) be in R m . Set α k = β k √ Var(Y k ) . In distribution, m k=1 α k Y k - m k=1 α k Y k Var m k=1 α k Y k → n→∞ N (0, 1). But Var m k=1 α k Y k = m k,l=1 β k β l √ Var Y k Var Y l Cov(Y k , Y l ) → n→∞ m k,l=1 β k β l Σ kl ,
Then, using Slutsky's lemma,

m k=1 β k Y k √ Var Y k - [Y k ] √ Var Y k → N (0, t βΣβ).
Since this is true for every β ∈ R m and as Σ = I m ,

Y k -[Y k ] √ Var Y k 1 k m → n→∞ N (0, I m )
in distribution. Using the asymptotics for the mean and the variance that Gustavsson calculated in the one-dimensional case (cf. Theorem 4), we easily conclude to the announced convergence

(X a 1 (W n ), . . . , X a m (W n )) → n→∞ N (0, I m ),
in distribution. The proof is thus complete.

CLT for Wigner matrices

We use the same techniques as in the one-dimensional case in order to extend the preceding theorem to Wigner Hermitian matrices.

Theorem 10. Let M n be a Wigner Hermitian matrix satisfying the hypotheses of Theorem 2 with a GUE matrix M ′ n . Using the same notations as before, as n → ∞,

(X a 1 (W n ), . . . , X a m (W n )) → N (0, I m )
in distribution, where I m is the identity matrix of size m.

Proof. Let x 1 , . . . , x m be in R.

È (X a 1 (W n ) x 1 , . . . , X a m (W n ) x m ) = È N [a i n ,+∞) (W n ) nρ sc ([a i n , +∞)) + x i 1 2π 2 log n, 1 i m = È N [a i n ,+∞) (W n ) n -k i , 1 i m ,
where

k i = nρ sc ((-∞, a i n ]) -x i 1 2π 2 log n . Then È (X a 1 (W n ) x 1 , . . . , X a m (W n ) x m ) = È λ k i (M n ) a i n √ n, 1 i m = È λ k i (A n ) a i n n, 1 i m , where A n = √ nM n . Set A ′ n = √ nM ′ n . Now, use Theorem 2 with m eigenvalues.
What is important to note here is that the inequalities do not depend on which eigenvalues are chosen. They only depend on the number m of eigenvalues. Applying thus the same arguments as for one eigenvalue, we get

È λ k i (A ′ n ) ∈ I - i , 1 i m -o m (n -c 0 ) È (λ k i (A n ) ∈ I i , 1 i m) , (14) 
and

È (λ k i (A n ) ∈ I i , 1 i m) È λ k i (A ′ n ) ∈ I + i , 1 i m + o m (n -c 0 ), (15) 
where I i are intervals, I + i and I - i are intervals deduced from I i by adding ±n -c 0 /10 . Thus,

È λ k i (A ′ n ) a i n n -n -c 0 /10 , 1 i m -o m (n -c 0 ) È λ k i (A n ) a i n n, 1 i m ,
and

È λ k i (A n ) a i n n, 1 i m È λ k i (A ′ n ) a i n n + n -c 0 /10 , 1 i m + o m (n -c 0 ).
Consider the probability on the right in the preceding inequality (the term o m (n -c 0 ) going to 0 when n → ∞). We have,

È λ k i (A ′ n ) a i n n + n -c 0 /10 , 1 i m = È λ k i (M ′ n ) (a i n + n -1-c 0 /10 ) √ n, 1 i m = È N [(a i n ) ′ ,+∞) (W ′ n ) n -k i , 1 i m
where (a i n ) ′ = a i n + n -1-c 0 /10 . Then 

È λ k i (A ′ n ) a i n n + n -c 0 /10 , 1 i m = È X (a i ) ′ (W ′ n ) (x i n ) ′ , 1 i m But N [an,bn] (W n ) = N [an,+∞) (W n ) -N [bn,+∞) (W n ) = 1 -1 N [an,+∞) (W n ) N [bn,+∞) (W n ) .

Real matrices

In this section, we briefly indicate how the preceding results for Hermitian random matrices may be stated similarly for real Wigner symmetric matrices. To this task, we follow the same scheme of proof, relying in particular on the Tao and Vu Four Moment Theorem (Theorem 2) which also holds in the real case (cf. [START_REF] O'rourke | Gaussian Fluctuations of Eigenvalues in Wigner Random Matrices[END_REF]). The main issue is actually to establish first the conclusions for the GOE. This has been suitably developed by O'Rourke in [START_REF] O'rourke | Gaussian Fluctuations of Eigenvalues in Wigner Random Matrices[END_REF] by means of interlacing formulas (cf. [START_REF] Forrester | Inter-Relationships between Orthogonal, Unitary and Symplectic Matrix Ensembles[END_REF]).

√ 4 -

 4 j on the eigenvalues of W n converges weakly almost surely to the semi-circle law dρ sc (x) = 1 2π x 2 ½ [-2,2] (x)dx. Consequently, for any bounded continuous function ϕ, 1 n N n [ϕ] → n→+∞ ϕdρ sc almost surely.

Corollary 3 .

 3 Let M n be a Wigner Hermitian matrix such that ξ satisfies [ξ 3 ] = 0 and [ξ 4 ] =3 4 . Let M ′ n be a matrix from the GUE. Then, with G, A n , A ′ n as in the previous theorem, and n large enough,

N 1 2π 2 1 2π 2 -1 1 - 1 T = 2 , 1 2π 2 1 2π 2 1 2π 2 1 2π 2

 12121212121212 [an,+∞) (W n )nρ sc ([a n , +∞)) log n -N [bn,+∞) (W n )nρ sc ([b n , +∞)) log nbehaves asymptotically like a Gaussian random variable with mean 0 and variance 1 as n → ∞.ThenN [an,bn] (W n )nρ sc ([a n , b n ]) log n → N (0, 2),which concludes the proof.Remark:The result on the m-tupleN [a 1 n ,+∞) (W n )nρ sc ([a 1 n , +∞)) log n , . . . , N [a m n ,+∞) (W n )nρ sc ([a m n , +∞)) log n , with a i n → a i and -2 < a 1 < • • • < a m <2, yields further central limit theorems. For example, we can deduce a central limit theorem forN [an,bn]∪[cn,+∞) (W n ) where a n → a, b n → b, c n → c and -2 < a < b < c < 2. Indeed, N [an,bn]∪[cn,+∞) (W n ) = N [an,+∞) (W n ) -N [bn,+∞) (W n ) + N [cn,+∞) (W n ).And then, when n goes to infinity,N [an,bn]∪[cn,+∞) (W n )nρ sc ([a n , b n ])nρ sc ([c n , +∞)) log n → N (0, 3), in distribution.
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with

We know that (a i n ) ′ → a i . Then, Theorem 10 apply and we have

We are left with the asymptotics of (x i n ) ′ . To this task, note that

Then

when n goes to infinity. Therefore x i n → x i . Since X (a 1 ) ′ (W ′ n ), . . . , X (a m ) ′ (W ′ n ) → (Y 1 , . . . , Y m ) where Y = (Y 1 , . . . , Y m ) ∼ N (0, I m ), as in the one-dimensional case, it easily follows that

Together with the same considerations for the lower bounds, the conclusion follows. The theorem is thus established.

On the basis of the preceding result, we conclude to the announced central limit theorem for the number of eigenvalues in a finite interval [a n , b n ].

Theorem 11. Let M n be a Wigner Hermitian matrix satisfying the hypotheses of Theorem 2 with a GUE matrix

Then, as n goes to infinity,

in distribution.

Proof. From the preceding theorem, we know that

Links between the GOE and the GUE

We first recall O'Rourke's [START_REF] O'rourke | Gaussian Fluctuations of Eigenvalues in Wigner Random Matrices[END_REF] conclusions for the GOE relying on the following interlacing formula of Forrester and Rains [START_REF] Forrester | Inter-Relationships between Orthogonal, Unitary and Symplectic Matrix Ensembles[END_REF].

Theorem 12 (Forrester-Rains). The following relation holds between matrix ensembles:

This statement can be interpreted in the following way. Take two independent matrices from the GOE, one of size n and the other of size n + 1. If we surimperpose the 2n + 1 eigenvalues on the real line and then take the n even ones, they have the same distribution as the eigenvalues of a n × n matrix from the GUE. Now, if I n is an interval of R,

where M C n is a n×n GUE matrix, M R n a n×n GOE matrix and ξ n (I n ) takes values in {-1, 0, 1}. The following interlacing property will then lead to the expected conclusions.

Theorem 13 (Cauchy's interlacing theorem). If A is a Hermitian matrix and B is a principle submatrix of A, then the eigenvalues of B interlace with the eigenvalues of A. In other words, if

This theorem enables us to make a link between the eigenvalues of a (n + 1) × (n + 1) GOE matrix and a n×n one:

where

Infinite intervals

CLT for GOE matrices

On the basis of the preceding tools, O'Rourke extends in [START_REF] O'rourke | Gaussian Fluctuations of Eigenvalues in Wigner Random Matrices[END_REF] Gustavsson's results from the GUE to the GOE. The first statement is the analogue of the Costin-Lebowitz -Soshnikov Theorem (Theorem 1).

In a second step, using the interlacing principle, O'Rourke develops estimates for the mean of the number of eigenvalues in an interval for GOE matrices.

Lemma 15. Let M R

n be a GOE matrix.

Following the same line of arguments as in the complex case, we may thus formulate the corresponding central limit theorems for the eigenvalue counting function of the GOE.

, where a n → a ∈ (-2, 2) when n → +∞. Then, as n goes to infinity,

Similar results hold for intervals close to the edge, as in the complex case. The corresponding statement is presented for general Wigner matrices in the next sub-section.

CLT for real Wigner matrices

In this section, we state the central limit theorems for real symmetric Wigner matrices, as a consequence of the preceding statements and the Four Moment Theorem (Theorem 2), which is completely similar in the real case. The proofs are exactly the same as in the complex case.

Theorem 17. Let M R n be a Wigner symmetric matrix satisfying the hypotheses of Theorem 2 with a GOE matrix

Theorem 18. Let M R n be a Wigner symmetric matrix satisfying the hypotheses of Theorem 2 with a GOE matrix

Finite intervals

As in the complex case, we turn now to finite intervals. Following exactly the same scheme, we get similar results.

CLT for GOE matrices

The next statement may be found in [START_REF] O'rourke | Gaussian Fluctuations of Eigenvalues in Wigner Random Matrices[END_REF].

Let m be a fixed integer. and let a i n → a i for all i ∈ {1, . . . , m}, with -2 < a 1 < a

for all i ∈ {1, . . . , m}. Then, as n goes to infinity,

in distribution, where I m is the identity matrix of size m.

CLT for finite intervals

Using the same techniques as in the complex case, this theorem can be extended to real Wigner symmetric matrices.

Covariance matrices

In this section, we briefly present the analogous results for covariance matrices. We rely here on Su's work [START_REF] Su | Gaussian Fluctuations in Complex Sample Covariance Matrices[END_REF] who developed for the LUE the results corresponding to those of Gustavsson in case of the GUE. We then make use of the Tao and Vu Four Moment Theorem for general covariance matrices [START_REF] Tao | Random Covariance Matrices: Universality of Local Statistics of Eigenvalues[END_REF]. We first recall below precise definitions of the covariance matrices under investigation and Su's contributions.

Complex covariance matrices

As for Wigner matrices, we add to the usual definition of a covariance matrix an assumption on moments, in order to apply Tao and Vu's Four Moment Theorem.

Definition 3. Let n and m be integers such that m n and lim n→∞ m n = γ ∈ [1, +∞). Let X be a random m × n matrix with entries ζ ij such that:

• Re(ζ ij ) and Im(ζ ij ) have mean 0 and variance 1 2 . • ζ ij are independent and identically distributed.

• there exists C 0 2 and C 0 (independent of n and m) such that

n X * X is called a covariance matrix. S m,n is Hermitian and positive semidefinite with rank at most n. Hence it has at most n non zero eigenvalues, which are real and nonnegative. Denote them by 0

An important example of covariance matrices is the case where the entries are Gaussian. These matrices form the so-called Laguerre Unitary Ensemble (LUE). In this case, the distribution of the eigenvalues of S m,n can be explicitely computed. Similarly to the GUE case, it is then possible to compute various local statistics (see for example [START_REF] Bai | Exact Separation of Eigenvalue of Large Dimensional Sample Covariance Matrices[END_REF], [START_REF] Bai | Limit of the Smallest Eigenvalue of a Large Dimensional Sample Covariance Matrix[END_REF], [START_REF] Jonsson | Some Limit Theorems for the Eigenvalues of a Sample Covariance Matrix[END_REF]). In particular, Su [START_REF] Su | Gaussian Fluctuations in Complex Sample Covariance Matrices[END_REF] was able to estimate the mean and the variance of the number of eigenvalues of S m,n in a given interval. We recall below some of his main conclusions.

Set

dx. Theorem 20. Let S m,n be a LUE matrix.

. The number of eigenvalues of S m,n in the interval I n = [t, +∞) has the following asymptotics:

• The expected number of eigenvalues of S m,n in the interval

C for some C > 0, is given by:

• Let δ > 0. Assume that t n β m,nδ for some δ > 0. Then the variance of the number of eigenvalues of S m,n in

• Assume that t n is such that β m,nt n → 0 + and n(β m,nt n ) 3/2 C for some C > 0. Then the variance of the number of eigenvalues of S m,n in I n = [t n , +∞) satisfies

Arguing as in the preceding sections, together with these asymptotics and the Costin-Lebowitz -Soshnikov Theorem 1, the following central limit theorems may be achieved.

Theorem 21. Let S m,n be a LUE matrix. Set

in distribution when n goes to ∞.

Theorem 22. Let S m,n be a LUE matrix. Let I n = [t n , +∞) where β m,nt n → 0 + when n goes to infinity. Assume actually that t n satisfies n(β m,nt n ) 3/2 → ∞ when n → ∞. Then, as n goes to infinity,

in distribution.

As was done for Wigner matrices, one can extend these theorems to more general covariance matrices, following exactly the same scheme. Namely, Tao and Vu extended their Four Moment Theorem to the case of covariance matrices in [START_REF] Tao | Random Covariance Matrices: Universality of Local Statistics of Eigenvalues[END_REF]. Using it in the same way as for Wigner matrices, similar comparison properties may be obtained in the form for example of 

Real covariance matrices

Real covariance matrices are defined similarly to complex ones. The special case where the entries are Gaussian random variables is called the Laguerre Orthogonal Ensemble (LOE). As in the case of Wigner matrices, there is a link between the eigenvalues of real covariance matrices and those of complex covariance matrices expressed by LUE m,n = even(LOE m,n ∪ LOE m+1,n+1 ) (32) (cf. [START_REF] Forrester | Inter-Relationships between Orthogonal, Unitary and Symplectic Matrix Ensembles[END_REF]). The Cauchy interlacing Theorem 13 (used twice in this case) then indicates that

where ξ m,n (I n ) takes values in {-2, -1, 0, 1, 2}, S C m,n and S R m+1,n+1 are independent. Slightly modifying then the proof by O'Rourke in the Wigner case yields the following statement. m,n ), we then conclude to similar central limit theorems for intervals in the bulk and near the edge.

On the basis of the Tao and Vu Four Moment Theorem in the real case, the conclusions may be extended to large families of non-Gaussian real covariance matrices.