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Abstract In this paper, we propose a novel tetrahedral mesh
generation algorithm, which takes volumic data (voxels) as
an input. Our algorithm performs a clustering of the origi-
nal voxels within a variational framework. A vertex replaces
each cluster and the set of created vertices is triangulatedin
order to obtain a tetrahedral mesh, taking into account both
the accuracy of the representation and the elements qual-
ity. The resulting meshes exhibit good elements quality with
respect to minimal dihedral angle and tetrahedra form fac-
tor. Experimental results show that the generated meshes are
well suited for Finite Element Simulations.

1 Introduction

Tetrahedral meshes are widely used in nowadays 3D ap-
plications. This is especially true for simulations, whereone
can evaluate a wide range of different physical phenomena,
from electromagnetics to thermics [20] as the determina-
tion of temperature distribution in human body submitted
to radio-frequency fields is currently impractical using tem-
perature sensors. These simulations are performed on virtual
objects. A very commonly used simulation framework is the
Finite Elements Method (FEM) which applies to triangular
meshes for the 2D setting, or tetrahedral meshes for the 3D
setting. One caveat of such framework is its need for tetrahe-
dral meshes with good quality, where the quality is generally

J. Dardenne and S. Valette and R. Prost are with:
University of Lyon,
CREATIS-LRMN; CNRS UMR5220; Inserm U630;INSA-Lyon; Uni-
versity of Lyon 1, France.
‘ E-mail: name@creatis.insa-lyon.fr

J. Dardenne and N. Siauve and N. Burais are with:
University of Lyon,
AMPERE ; CNRS UMR5005; University of Lyon 1, France.
E-mail: name@univ-lyon1.fr

measured in terms of minimal dihedral angle. Indeed, the ac-
curacy and convergence speed of a FEM-based simulation
depends on the mesh objective quality. As a consequence, a
lot of research was carried out on the topic of mesh gener-
ation. The majority of the published algorithms build tetra-
hedral meshes starting from a previously constructed sur-
face mesh (triangles) which represents the surface of the ob-
ject to be meshed [21]. The triangular mesh can come from
different contexts : Computer Aided Design, 3D laser scan-
ning, and is sometimes modified prior the tetrahedral mesh-
ing step, in order to meet certain criteria (triangles quality,
as an example).

In this paper, we aim at generating 3D meshes start-
ing from volumic data (voxels). Our motivation stands from
the ever-increasing spread of 3D medical imaging facilities
which deliver a volumic representation of the human body
(or just a part of it). 3D images can be obtained from Mag-
netic Resonance Imaging (MRI) tomographic scanners or
ultrasound imaging. Our algorithm creates a tetrahedral mesh
by distributing a user-defined number of vertices in the mesh-
ing domain (see figure 1), possibly according to a density
map. The vertices distribution is driven by a variational clus-
tering scheme. The vertices laying on the boundary of the
object are subject to location constraints in order to keep a
good accuracy on the object surface, and stress is put on the
quality of the generated triangulation.

Our paper is organized as follows : section 2 is a brief
overview of previous tetrahedral meshing algorithms. Sec-
tion 3 gives some definitions and principles used by our ap-
proach (section 4). In section 5, we show some experimental
results, where we compare our algorithm with a commercial
mesher, both in terms of elements quality and simulation re-
sults, and a conclusion follows.
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Fig. 1 Meshing the full body in the visible-human-male data-set

2 Previous works on mesh generation

Tetrahedral mesh generation has been extensively stud-
ied in the last years. We can basically classify existing ap-
proaches in three different categories : Delaunay-based ap-
proaches, greedy approaches and algorithms relying on a hi-
erarchical decomposition of the space.

2.1 Delaunay-based methods

These methods usually try to distribute a set of vertices
in the domain to process, and the triangulation is created by
constructing the Delaunay triangulation of the vertices. Ver-
tices can be iteratively inserted into the triangulation until
the desired density is reached. The main criterion for De-
launay mesh generation is the empty sphere (resp. circle
in 2D) criterion : no vertex is located inside the circum-
scribed spheres (resp. circles) of the mesh tetrahedra (resp.
triangles). Unfortunately, when dealing with three dimen-
sions, this criterion is not sufficient to guarantee the quality
of the constructed mesh and is very sensitive to truncation
errors in practical 3D computations. Sometimes, more than
five points are almost located on the same sphere. Degen-
erated elements calledslivers can append, thus penalizing
FEM simulations [5]. To solve this problem, [16] proposed
an efficient algorithm for arbitrary precision floating-point
but inserting new vertices inside the triangulation is some-
times not trivial [18].

2.2 Greedy approaches

Greedy approaches generally start from a surface mesh
which is filled with tetrahedra by inserting Steiner points in-
side the mesh and adding new tetrahedra [10,6]. Local cri-
teria drive the points insertion, in order to improve the qual-
ity of the generated tetrahedra. Local mesh density near the
initial front (i.e. initial boundaries) can be controlled eas-
ily. These approaches are fast but the quality of the gener-
ated meshes is not the best achievable. Combination of the
advantages of the Delaunay and the greedy approaches has
been widely used [14]. This approach starts with a Delau-
nay triangulation of a set of boundary vertices. This is used
as a background mesh. New vertices are then added by the
advancing front approach. Although the initial Delaunay tri-
angulation is not difficult in 2D, the surface recovery is often
troublesome in 3D.

2.3 Hierarchical decomposition approaches

These algorithms are based on the decomposition of the
domain to be meshed using cubical elements [15]. The el-
ements are recursively subdivided in order to improve the
approximation quality of the boundaries or to satisfy a user
defined precision. Elements that lie outside the meshing do-
main, and the elements inside the domain are split into tetra-
hedra. In [13], a new hierarchical decomposition approach
has been proposed, this method fills an isosurface with a
mesh and offers theoretical guarantees on dihedral angles
between 10.7◦ and 164.8◦. The drawback of these methods
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Fig. 2 2D example : (a) Original image. We compute the medial axis
of the shape (b). The medial axis is used to generate a density function
(c). Using the density function and the object boundaries, we construct
an approximated Centroidal Voronoi Diagram (d) which is finally du-
alized into the resulting mesh (e).

is that they tend to generate bad form factor tetrahedra along
the objects boundaries.

2.4 Discussion

Most of the previously cited approaches share a com-
mon point : they take an input surface and enrich it with
new vertices to generate the tetrahedra. This can be prob-
lematic around the objects boundaries, as the vertices of the
input surface can be an important constraint for the resulting
mesh, and induce tetrahedra with bad aspect ratio tetrahe-
dra. It has been shown in [19] that the quality of the mesh
elements can increase computation time with the Finite El-
ements Method. A classical approach to increase the mesh
elements quality is a post-processing where the slivers are
removed [11]. A lot of objective quality criteria exist in the
literature [4]. In this paper, we use four quality criteria :The
criterionQ1 is the minimal dihedral angleαmin of a tetra-
hedron, which has a maximal value ofarccos(1/3) = 70, 5◦

for a regular tetrahedron.Q2 is the maximal dihedral angle
αmax of a tetrahedron. The third criterionQ3 is the radius
ratio. The fourth [19]Q4 is defined as:

Q4 =
12

l
. (3 . V )2/3 (1)

wherel is the average edge length of the tetrahedron and
V its volume. The criterionsQ3, Q4 are normalized between
0 and 1, where 0 denotes a sliver and 1 a regular tetrahedron.

3 Definitions

Here we give some definitions used in this paper. We
define the entire domain made with voxels asΩ. Ω is the
union of different objectsOi:

Ω = ∪i Oi (2)

The outside boundary ofΩ will be noted as∂Ω. We also
define the set of boundaries between the objects as∂O:

∂O = ∂Ω ∪
[

∪i,j ∂Oi,j

]

(3)

where∂Oi,j
is the boundary between the objectsOi and

Oj .
For clarity reasons, we will explain our approach in two

dimensions. For a given image (resp. volume)Ω, we asso-
ciate a graphG so that each pixel (resp. voxel) is associated
to a vertex and its neighbour pixels (resp. voxels) are con-
nected with an edge [12]. This graph, the primal graph is
denotedG = (V,E). WhereV is the set of vertices and
E is the set of edges. The dual of the graphG represents
the inter-pixels (resp. inter-voxels) and edges, as shown by
figure 3.

4 Our approach

We propose a novel tetrahedral mesh generation approach
with adapted sampling. Our algorithm works directly on the



4

Fig. 3 The primal graphG (left) and its dualG (right)

voxels of the input volumes coming from segmented Tomo-
graphic Scanners or MRI (illustrated by figure 1). No polyg-
onal input surface is needed. The first step is a clustering of
the input data (pixels or voxels) inton cellsCi, approximat-
ing a Centroidal Voronoi Diagram. Each cellCi is given a
sitezi. Such a clustering takes into account a density func-
tion ρ(x) and a set of constraints to preserve the boundaries
between the objects inside the domain by constraining the
siteszi nearby the objects boundaries.

The second step consists in triangulating the siteszi, us-
ing the dual of the generated clustering. Finally, each con-
structed tetrahedron is associated to an objectOi, and we ap-
ply a cleaning step to increase the quality of the tetrahedron
and to enhance the interface between the different objects.

Figure 2 shows the main steps in our algorithm on a 2D
example : the input image is shown in (a). We compute the
medial axis of the shape using [7]. With this medial axis,
we generate a density mapρ(x) [3] which denotes the local
desired vertices density(c). We then construct an approxi-
mation of a Centroidal Voronoi Diagram of the input image
(d). Finally, the sites of the diagram are triangulated to form
the final mesh (e).

4.1 Domain partition

The first step of our approach is a partitioning of the in-
put spaceΩ by means of clustering, in spirit with Centroidal
Voronoi Diagrams (CVD) approaches, where each sitezi is
also the barycenter of its associated cell:

zi =

∫

Ci
x.ρ(x)dx

∫

Ci
ρ(x)dx

(4)

It is known that CVDs minimize the following energy
term [9]:

EV =

n
∑

i=1





∑

pj∈Ci

∫

pj

ρ(x)‖x − zi‖
2dx



 (5)

wherex is a point insideΩ and ρ(x) a given density
function. In this paper, we minimizeEV , i.e. we aim at

maximizing the cells compacity, as done in [23]. The energy
term can be simplified to:

F =

n
∑

i=1





∑

pj∈Ci

ρjzi
T (zi − 2 γj)



 (6)

where

ρj =

∫

pj

ρ(x)dx (7)

γj =
1

ρj

∫

pj

x . ρ(x)dx (8)

wherepj is an element ofG, ρj is the weight associated
to pj , γj is the barycenter ofpj .

We define the setBi for each regionCi as :

Bi = Ci ∩ ∂O (9)

Finally, the position of each sitezi depends on one con-
dition :

– if Ci does not cross any boundary (Bi = Ø)), the sitezi

is not constrained. It is set to the cell barycenter:zi =

Gi.

zi = Gi =

∑

Ci

ρj . γj

∑

Ci

ρj

(10)

– If the cell Ci crosses the boundary∂Oi
m,n

(Bi 6= Ø), zi

is constrained to the barycenter of the boundary:

zi =

∑

Bi

ρj . γj

∑

Bi

ρj

(11)

This condition is illustrated by figure 4. Certain models
(like mechanical models) often have boundaries with many
distinctive features such as corners and edges that need to
be well represented by the mesh. To preserve these features,
the sitezi is constrained respectively to a point or to the
barycenter of the boundary subset. With this approach, we
can distributeN cells in the domainΩ while preserving the
boundary between the different objects∂O and satisfying the
desired sampling densityρ(x).

It is often preferable to have variable vertices density in
complex and narrow regions. This density is mandatory to
have a good local representation of the inter-objects geom-
etry. We proposed in [7], a calculation method for the me-
dial axis from a constrained DVC. The medial axis allows
to define the density map [3] in order to mesh more densely
certain complex regions of the domain (figure 2.c). Note that
this density map can also easily be modified (painted) by the
end-user when arbitrary density criteria are needed. For ex-
ample, we use a density map which in one part possesses
uniform weights whereas in the other part respects certain
complex regions of the shape (see figure 11).
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Fig. 4 The clusterC1 is constrained, as it crosses the boundary∂O1,2

(equation 11). The location ofz1 is computed from∂
O1

1,2
which is the

intersection ofC1 and∂O1,2
. The clusterC2 is not constrained, as it

does not cross any boundary (equation 10).

Fig. 5 Left : the input domainΩ. Middle : a set ofn points and its
Voronoi diagram. Right : the dual triangulation. The top row shows
the smooth case (empty box). The bottom row shows the discrete case
(circle embedded in a box)

4.2 Tetrahedral Meshing

In the general case, a Voronoi Diagram is constructed
from a point cloud. It forms a set of cells for which the ge-
ometrical dual is the Delaunay triangulation (figure 5). The
Voronoi vertices are the center of the triangles circumscribed
circle. The Voronoi edges (resp. polygons in 3D) are the me-
diators of the Delaunay triangulation edges. This definition
is in the continuous space case.

In [8], Du and Wang propose to generate meshes that are
dual to optimal Voronoi diagrams. In [23], a discrete approx-
imation of the Centroidal Voronoi Diagram was proposed,
where the triangulation is built from the dual of this dia-
gram. We use this approach for aggregating together voxels
and form afterward the meshing. In analogy with Voronoi
diagrams in the smooth case where co-cyclic sites cause am-
biguous cases for Delaunay triangulation, cur clustering al-
gorithm generates two kinds of ambiguities:

– when at least four cells form a cycle without inner edge
between opposite cells.

(a) (b)

Fig. 6 Topological ambiguities : (a) four cells form a cycle without
inner edge between opposite cells. (b) four cells form a cycle with too
many inner edges.

– when at least four cells form a cycle with too many inner
edges.

The first ambiguity produces a lack of edges and the sec-
ond, a surplus (see figure 6). It results a lack or a surplus of
tetrahedra in the zones of ambiguities. The relations of ad-
jacency between the Voronoi cells allow to build a set of the
acceptable tetrahedraΓ .

4.2.1 Propagation

We use a Greedy algorithm to build the mesh using the
tetrahedra ofΓ . Two neighbour tetrahedra are chosen in a
region ofΓ without ambiguity. The front is created with the
external faces of both constructed tetrahedra. Then we add
new tetrahedra to the front until the front reaches∂Ω . To
resolve the ambiguous cases, we use locally a Constrained
Delaunay Triangulation[17].

4.2.2 Topological Optimization

We use a set of topological transformations for improv-
ing the mesh quality, in spirit with [11]. We do not proceed
to insertions or deletions of vertices but we modify the con-
nectivity of these vertices (edge flip in 2D). In three dimen-
sions, these operations can add or delete edges or faces and
can modify the number of tetrahedra. The couplem − n
denotes thatm tetrahedra are removed andn are created, re-
spectively. Figure 1 illustrates several examples, called2-3
flips, 3-2 flips and 5-4 flips.

– The 3-2 transformation is performed on a configuration
where three tetrahedra share the same edge. This trans-
formation can be generalized to more complex configu-
rations, wherem tetrahedra share the same edge. In this
case, the cycle of tetrahedra around this edge forms a
polygon which is triangulated. The faces of this trian-
gulation are associated with the vertices of the initial
common edge, to form the new configuration of tetra-
hedra. This topological transformation deletes one edge
and adds one or several faces.
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Fig. 7 Examples of topological transformation. Top : 5-4. Bottom : 2-3
and 3-2.

– The 2-3 transformation is the inverse of the transforma-
tion 3-2. this transformation can also be widened to its
neighborhood. ¡¡¡¡¡¡¡ dardenne09.tex The extension con-
sists in the fact that the faces are joined by edges of de-
gree four? to identify a group of suitable faces. =======
The extension consists in the fact that the faces are joined
by edges of degree four? to identify a group of suitable
faces. ¿¿¿¿¿¿¿ 1.27 Note that this topological transfor-
mation deletes one or several faces and builds one edge.

– The 5-4 transformation allows to remove slivers. It deletes
one sliver and four of its neighbours and creates four new
tetrahedra. For a given set of tetrahedra, this transforma-
tion can have two different results (see figure 7).

Our optimization algorithm works as follows: A priority
queueQ(id,qual) is filled with the set of elementsid (tetra-
hedra) which quality indicatorqual does not meet the de-
sired quality criterion. For each operation, wee pick the el-
ementid having the worst quality and apply the transfor-
mation with the best tetrahedra quality improvement. The
topological operations are performed until fulfillment of the
desired quality criterion or when no new transformation can
be performed.

4.2.3 Boundary Enhancement

It is necessary to remind that we do not know, a priori,
the border of the domain after the clustering. Our knowl-
edge relies only on a set of vertices which belong or not to
an object boundary. this can result in spikes on the surface
of the objects. To solve this, every tetrahedron is assignedto
an object by counting the number if voxels it contains, and
to which object they belong. If some voxels belong to two
different objects, the tetrahedron is assigned to the dominant
class. In such a case, we apply the transformation which best
decreases the number of voxels in non-dominant classes.
This greatly improves the accuracy of the objects bound-
aries. An example is illustrated in figure 8 : the 2D principle
if shown on the top, and a real 3D case is shown at the bot-
tom.

(a) (b) (c)

(d) (e)

Fig. 8 (a) Voxels belonging to two distinct objects. The triangulation
(b) contains a ”spike” : trianglest1 and t2 belong to two regions.
Restoration of the boundary (c) is performed via an edge flip. (d) In
3D, tetrahedra belong to two regions. the restoration of the boundary
(e) is performed by a 4-4 transformation (similar to the 3-2 transforma-
tion, with one more input tetrahedra).

5 Results

In this section, we present a comparative study of our
method with those obtained with the AMIRA mesh genera-
tion software. This program allows to generate meshes from
isosurfaces, surfaces or discrete data [1]. Our approach is
used for the ElectroMagnetic (EM) field and thermic 3D
numerical simulations [20]. EM field computation is car-
ried out by solving the Maxwell equations with incomplete
first order edge elements discretization. Thermal simulations
are based on the resolution of the Pennes bio heat equa-
tion with nodal finite element. We performed a comparative
study with a sphere of diameter 200 mm for which we know
the analytical formulation for the for the calculation of tem-
perature rise caused by heat convection [22]. With AMIRA,
we generated two meshesS1 andS2, the first mesh is built
from an isosurface and the second from the input voxels.
The third mesh denotedS3 is generated with our method
from the same set of voxels.

Figure 9 shows quality histograms (Q1 - Q4) for the
meshesS1, S2, S3. For both criteria, the quality of tetra-
hedra obtained with our method is very superior to what we
obtained with AMIRA. We measured the discretization error
as the Haussdorf distance forS2 and S3 usingS1 as the ref-
erence mesh. We chooseS1 because it was generated from
an isosurface. The distance is0.31% of the bounding box
diagonal forS2 and0.17% for S3. The error for our method
is approximately twice smaller. Table 1 shows the average
and the minimum value of the quality criteriaQ1, Q4 for all
the tetrahedra ofS1, S2 andS3. Linesǫmax andǫrms give
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Fig. 9 Quality histograms for the meshesS1, S2 (generated with AMIRA) andS3 constructed with our approach, for both criteriaQ1 - Q4. Q1

andQ2 are the minimal and the maximal dihedral angle.Q3 is the radius ratio.Q4 is cited in [19]. The criterionsQ3, Q4 are normalized between
0 and 1, where 0 denotes a sliver and 1 a regular tetrahedron.

the maximal error and the average quadratic error between
the result of the simulation and the exact analytical solution.
These values show that our meshS3 brings an smaller error
thanS2 does. However, this error is still greater thanS1. We
interpret this result by the dominating role of the surface of
the sphere for thermal simulation. ForS1, this surface is well
defined by a surface mesh. The last two lines of the table
show the number of iterations for the preconditioned conju-
gate gradient solver to compute the electromagnetic (1) and
thermal (2) results.

For both simulations, the good quality of the tetrahedra
provided by our method results in a significant reduction of
the computation time.

The proposed algorithm has been tested with several dis-
crete data. These algorithms were implemented in C++ us-
ing the VTK library.

Figure 10 shows the results obtained on three different
models. Armadillo (a), Stanford Bunny (b) and Venus body
(c) are given as triangular meshes. For our approach, we
voxelized these surface models. Histograms show the dis-
tributions of tetrahedra qualityQ2 for each mesh. Table 3

illustrates the effect of applying topological optimization on
the tetrahedra quality. Table 2 shows the timings and quality
measures for some results displayed in this paper. The re-
sults were obtained with a laptop computer running at 2.2GHz,
with 2GB of RAM, except for the VHP model, which were
processed on a SGI workstation due to memory require-
ments (The VHP model itself fits in more than 2GB with
our data structure). We use our method to create a tetrahe-
dral mesh from the Visible Human Project [2].

6 Conclusion

In this paper we have presented a very efficient and au-
tomatic method to construct the tetrahedral mesh from dis-
crete data. Our approach produces a high quality tetrahedral
mesh directly from discrete data using Centroidal Voronoi
Diagrams. Our approach provides a robust mesh design tool
for discrete datas that can accommodate requirements on the
final budget of vertices and on the mesh gradation, for arbi-
trary domain complexity. Future work may include tetrahe-
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(a) (b) (c)

Fig. 10 This figure shows the results obtained on three different models.Armadillo (a), bunny (b) and venusbody (c) are given as triangular
meshes. For our approach, we voxelized the input surface models. Histograms show the distributions ofQ4 for each tetrahedron in each meshes.

Model # initial mesh after optimization minimum
tetrahedra < 6◦ < 12◦ < 18◦ < 6◦ < 12◦ < 18◦ dihedral angle (◦)

armadillo 55329 40 138 364 0 1 5 10.81◦

bunny 113409 99 358 654 0 1 8 11.54◦

venusbody 55103 33 113 226 0 5 13 10.17◦

Table 3 Evaluation of our optimization step for the quality of the generated meshes

S1 S2 S3

Q1 51.97◦ 50.88◦ 56.32◦

Q4 0.843 0.824 0.911
min(Q1) 13.41◦ 10.12◦ 16.31◦

min(Q4) 0.362 0.282 0.376
ǫmax (1) 0.035◦C 0.094◦C 0.047◦C

ǫrms (1) 0.010 0.061 0.025
# edges 100875 102274 101027

# iterations (1) 171 205 121
# iterations (2) 5002 5004 4004

Table 1 Quality of meshes and precision for FEM resolutions of ther-
mic (1) and electromagnetic (2) simulations. MeshesS1 andS2 were
obtained with AMIRA.S3 was created with our approach.

# input # output time (s)
Voxels Vertices clustering meshing optimization
503 500 2.42 0.44 0.72
1003 4000 34.13 4.3 6.02
2003 36000 271.96 36.11 42.26

Table 2 Computation times with our approach

dral meshing on the human body and an octree approach to
speed up the clustering step.
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(a)

(b)

Fig. 11 (a), a volume representing human lungs. (b) is obtained with
a density map which in one part possesses uniform weights (left lung)
whereas in the other part respects certain complex regions (right lung).


