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Abstract In this paper, we propose a novel tetrahedral mesimeasured in terms of minimal dihedral angle. Indeed, the ac-
generation algorithm, which takes volumic data (voxels) aguracy and convergence speed of a FEM-based simulation
an input. Our algorithm performs a clustering of the origi-depends on the mesh objective quality. As a consequence, a
nal voxels within a variational framework. A vertex replace lot of research was carried out on the topic of mesh gener-
each cluster and the set of created vertices is trianguiated ation. The majority of the published algorithms build tetra
order to obtain a tetrahedral mesh, taking into account bothedral meshes starting from a previously constructed sur-
the accuracy of the representation and the elements qudhkce mesh (triangles) which represents the surface of the ob
ity. The resulting meshes exhibit good elements qualithwit ject to be meshed [21]. The triangular mesh can come from
respect to minimal dihedral angle and tetrahedra form facdifferent contexts : Computer Aided Design, 3D laser scan-
tor. Experimental results show that the generated meshkes aring, and is sometimes modified prior the tetrahedral mesh-
well suited for Finite Element Simulations. ing step, in order to meet certain criteria (triangles gyali

as an example).

1 Introduction In this paper, we aim at generating 3D meshes start-
ing from volumic data (voxels). Our motivation stands from

Tetrahedral meshes are widely used in nowadays 3D apne ever-increasing spread of 3D medical imaging faciiitie
plications. This is especially true for simulations, where  \yhich deliver a volumic representation of the human body
can evaluate a wide range of different physical phenomenggy just a part of it). 3D images can be obtained from Mag-
from electromagnetics to thermics [20] as the determinapetic Resonance Imaging (MRI) tomographic scanners or
tion of temperature distribution in human body submitted,itrasound imaging. Our algorithm creates a tetrahedrahme
to radio-frequency fields is currently impractical usingite by distributing a user-defined number of vertices in the mesh
perature sensors. These simulations are performed oaVirtling domain (see figure 1), possibly according to a density
objects. A very commonly used simulation framework is themap, The vertices distribution is driven by a variationalkel
Finite Elements Method (FEM) which applies to triangulartering scheme. The vertices laying on the boundary of the
meshes for the 2D setting, or tetrahedral meshes for the 3phject are subject to location constraints in order to keep a
setting. One caveat of such framework is its need for tetrahgyood accuracy on the object surface, and stress is put on the
dral meshes with good quality, where the quality is gengrall qajity of the generated triangulation.
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Fig. 1 Meshing the full body in the visible-human-male data-set

2 Previous works on mesh generation 2.2 Greedy approaches

Tetrahedral mesh generation has been extensively stud- Gréedy approaches generally start from a surface mesh
ied in the last years. We can basically classify existing apwhich is filled with tetrahedra by inserting Steiner poimts i
proaches in three different categories : Delaunay-based apide the mesh and adding new tetrahedra [10, 6]. Local cri-

proaches’ greedy approaches and a|gorithms re|ying ona Hﬁria drive the pOintS insertion, in order to improve thelqua
erarchical decomposition of the space. ity of the generated tetrahedra. Local mesh density near the

initial front (i.e. initial boundaries) can be controlleds
ily. These approaches are fast but the quality of the gener-
ated meshes is not the best achievable. Combination of the
advantages of the Delaunay and the greedy approaches has
2.1 Delaunay-based methods been widely used [14]. This approach starts with a Delau-
nay triangulation of a set of boundary vertices. This is used
These methods usually try to distribute a set of verticesis a background mesh. New vertices are then added by the
in the domain to process, and the triangulation is created bydvancing front approach. Although the initial Delaundy tr
constructing the Delaunay triangulation of the vertice=-V angulation is not difficult in 2D, the surface recovery isoft
tices can be iteratively inserted into the triangulatiotilun troublesome in 3D.
the desired density is reached. The main criterion for De-
launay mesh generation is the empty sphere (resp. circle
in 2D) criterion : no vertex is located inside the circum- 2.3 Hierarchical decomposition approaches
scribed spheres (resp. circles) of the mesh tetrahedna. (res
triangles). Unfortunately, when dealing with three dimen-  These algorithms are based on the decomposition of the
sions, this criterion is not sufficient to guarantee the ipal domain to be meshed using cubical elements [15]. The el-
of the constructed mesh and is very sensitive to truncatioements are recursively subdivided in order to improve the
errors in practical 3D computations. Sometimes, more thaapproximation quality of the boundaries or to satisfy a user
five points are almost located on the same sphere. Degedefined precision. Elements that lie outside the meshing do-
erated elements calledlivers can append, thus penalizing main, and the elements inside the domain are split into-tetra
FEM simulations [5]. To solve this problem, [16] proposedhedra. In [13], a new hierarchical decomposition approach
an efficient algorithm for arbitrary precision floating-pbi has been proposed, this method fills an isosurface with a
but inserting new vertices inside the triangulation is somemesh and offers theoretical guarantees on dihedral angles
times not trivial [18]. between 10.7and 164.8. The drawback of these methods



2.4 Discussion

Most of the previously cited approaches share a com-
mon point : they take an input surface and enrich it with
new vertices to generate the tetrahedra. This can be prob-
lematic around the objects boundaries, as the verticesof th
input surface can be an important constraint for the regulti
mesh, and induce tetrahedra with bad aspect ratio tetrahe-
dra. It has been shown in [19] that the quality of the mesh
elements can increase computation time with the Finite El-
ements Method. A classical approach to increase the mesh
elements quality is a post-processing where the slivers are
removed [11]. A lot of objective quality criteria exist ingh
literature [4]. In this paper, we use four quality criterihe
criterion Q; is the minimal dihedral angle,,,;,, of a tetra-
hedron, which has a maximal valueaatcos(1/3) = 70, 5°
for a regular tetrahedrom), is the maximal dihedral angle
Qmae Of @ tetrahedron. The third criteria@s is the radius
ratio. The fourth [19]Q, is defined as:

Q== (3. M
wherel is the average edge length of the tetrahedron and

(d) V its volume. The criterion€s, Q4 are normalized between

0 and 1, where 0 denotes a sliver and 1 a regular tetrahedron.

3 Definitions

Here we give some definitions used in this paper. We
define the entire domain made with voxelsfas{? is the
union of different objectg);:

2 =U; O; (2)

The outside boundary a? will be noted ag),. We also
define the set of boundaries between the objectsas

Jdo = Op U [inj aom.] )
wheredp, ; is the boundary between the objeCtsand
0;.
(e) For clarity reasons, we will explain our approach in two

_ S _ ~dimensions. For a given image (resp. volunig)we asso-
Fig. 2 2D example : (a) Original image. We compute the medial axisgjgte g grapl@z so that each pixel (resp. voxel) is associated

of the shape (b). The medial axis is used to generate a densitydianc t t d it iahb ixel |
(c). Using the density function and the object boundaries, wetcact 0 a vertex and its neighbour pixels (resp. voxels) are con-

an approximated Centroidal Voronoi Diagram (d) which is findu- ~ nected with an edge [12]. This graph, the primal graph is
alized into the resulting mesh (e). denotedG = (V, E). WhereV is the set of vertices and

E is the set of edges. The dual of the gra@hrepresents
the inter-pixels (resp. inter-voxels) and edges, as shown b
figure 3.

4 Our approach

is that they tend to generate bad form factor tetrahedrayalon ~ We propose a novel tetrahedral mesh generation approach
the objects boundaries. with adapted sampling. Our algorithm works directly on the



maximizing the cells compacity, as done in [23]. The energy

term can be simplified to:

F = Z Z ijiT(Zi — 2’}/]‘) (6)
i=1 [p;eC;

where
pi= [ plalds @
Fig. 3 The primal graplG (left) and its duali (right) 1p]

vi=— | x.p(a)de (8)

Pj Jp;

voxels: of the input volume§ coming from_ segmented Tomo- wherep; is an element o, p; is the weight associated
graphic Scanners or MRI (illustrated by figure 1). No polyg—tP p;,~; is the barycenter of; .

ona! input surfage is needed. Tr_le first stepis a clu§tering of “\we define the seB; for each regiorC; as :
the input data (pixels or voxels) intocells C;, approximat-

ing a Centroidal Voronoi Diagram. Each cé€l} is given a Bi=Cindo ©)
site z;. Such a clustering takes into account a density func-  Finally, the position of each sitg depends on one con-
tion p(x) and a set of constraints to preserve the boundariedition :

between the objects inside the domain by constraining the_ if ¢; does not cross any boundadg;(= 0)), the sitez;

sitesz; nearby the objects boundaries. is not constrained. It is set to the cell barycenter=
The second step consists in triangulating the sitess- G;.
ing the dual of the generated clustering. Finally, each con-
D_Pi

structed tetrahedron is associated to an olipecand we ap-

ply a cleaning step to increase the quality of the tetrahedro  z; = G; = ————

and to enhance the interface between the different objects. Z Pj
Figure 2 shows the main steps in our algorithm on a 2D <

example : the input image is shown in (a). We compute the— |f the cell C; crosses the boundat,:  (B; # ), zi

medial axis of the shape using [7]. With this medial axis, IS constrained to the barycenter of the boundary:

< (10)

we generate a density magr) [3] which denotes the local Z 0i i

desired vertices density:). We then construct an approxi- B,

mation of a Centroidal Voronoi Diagram of the inputimage ~ “ — ? (11)
(d). Finally, the sites of the diagram are triangulated to form B !

the final mesh (e). This condition is illustrated by figure 4. Certain models

(like mechanical models) often have boundaries with many
distinctive features such as corners and edges that need to
4.1 Domain partition be well represented by the mesh. To preserve these features,
the sitez; is constrained respectively to a point or to the
The first step of our approach is a partitioning of the in-parycenter of the boundary subset. With this approach, we
put spacd? by means of clustering, in spirit with Centroidal ¢4 gistribute cells in the domairn? while preserving the
Voronoi Diagrams (CVD) approaches, where eachsiis 1,5 ndary between the different objedts and satisfying the

also the barycenter of its associated cell: desired sampling densigy(z).
[, zpla)de It is often preferable to have variable vertices density in
;= Jo, TP (4) complex and narrow regions. This density is mandatory to
Je, p(@)de have a good local representation of the inter-objects geom-

etry. We proposed in [7], a calculation method for the me-
dial axis from a constrained DVC. The medial axis allows
to define the density map [3] in order to mesh more densely
" certain complex regions of the domain (figure 2.c). Note that
Ey = Z Z p(z)||z — 2||2dx (5) this density map can also easily be modified (painted) by the
end-user when arbitrary density criteria are needed. For ex
ample, we use a density map which in one part possesses
wherex is a point insidef? and p(z) a given density uniform weights whereas in the other part respects certain
function. In this paper, we minimizé, i.e. we aim at complex regions of the shape (see figure 11).

It is known that CVDs minimize the following energy
term [9]:

i=1 \p;eC; " Pi
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Py Fig. 6 Topological ambiguities : (a) four cells form a cycle without
inner edge between opposite cells. (b) four cells form a cyde two

Fig. 4 The clusterC; is constrained, as it crosses the boundasy ,, many inner edges

(equation 11). The location af is computed from)o% ) which is the
intersection ofC; anddo, ,. The clusterCs is not constrained, as it

does not cross any boundary (equation 10). — when at least four cells form a cycle with too many inner

edges.

The first ambiguity produces a lack of edges and the sec-
ond, a surplus (see figure 6). It results a lack or a surplus of
tetrahedra in the zones of ambiguities. The relations of ad-
jacency between the Voronoi cells allow to build a set of the
acceptable tetrahedia

LT
& m'a‘n'a‘n'a‘n"‘.

4.2.1 Propagation

We use a Greedy algorithm to build the mesh using the
tetrahedra off". Two neighbour tetrahedra are chosen in a
region of " without ambiguity. The front is created with the
Fig. 5 Left : the input domain2. Middle : a set ofn points and its €Xternal faces of both constructed tetrahedra. Then we add
Voronoi diagram. Right : the dual triangulation. The top rovowk  nNew tetrahedra to the front until the front reacligs To
the smooth case (empty box). The bottom row shows the discrete caggsolve the ambiguous cases, we use locally a Constrained
(circle embedded in a box) Delaunay Triangulation[17].

4.2 Tetrahedral Meshing 4.2.2 Topological Optimization

d We use a set of topological transformations for improv-

from a point cloud. It forms a set of cells for which the ge- N9 the mesh quality, in spirit with [11]. We do not proceed
ometrical dual is the Delaunay triangulation (figure 5). Thelo insertions or deletions of vertices but we modify the con-

Voronoi vertices are the center of the triangles circurheati  Nectivity of these vertices (edge flip in 2D). In three dimen-
circle. The Voronoi edges (resp. polygons in 3D) are the meSioNs: these operations can add or delete edges or faces and

diators of the Delaunay triangulation edges. This definitio €@ modify the number of tetrahedra. The couple- n
is in the continuous space case. denotes thatr tetrahedra are removed andre created, re-

In [8], Du and Wang propose to generate meshes that ai ectively. Figure 1 illustrates several examples, caled

dual to optimal Voronoi diagrams. In [23], a discrete approx fips, 3-2 flips and 5-4 flips.
imation of the Centroidal Voronoi Diagram was proposed, _ The 3-2 transformation is performed on a configuration
where the triangulation is built from the dual of this dia-  \yhere three tetrahedra share the same edge. This trans-
gram. We use this approach for aggregating together voxels  formation can be generalized to more complex configu-
and form afterward the meshing. In analogy with Voronoi  rations, wheren tetrahedra share the same edge. In this
diagrams in the smooth case where co-cyclic sites cause am- case the cycle of tetrahedra around this edge forms a
biguous cases for Delaunay triangulation, cur clustering a polygon which is triangulated. The faces of this trian-
gorithm generates two kinds of ambiguities: gulation are associated with the vertices of the initial
common edge, to form the new configuration of tetra-
— when at least four cells form a cycle without inner edge  hedra. This topological transformation deletes one edge
between opposite cells. and adds one or several faces.

In the general case, a Voronoi Diagram is constructe
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Fig. 7 Examples of topological transformation. Top : 5-4. Bottom : 2-3 =5~
and 3-2.

— The 2-3 transformation is the inverse of the transforma-\
tion 3-2. this transformation can also be widened to its

sists in the fact that the faces are joined by edges of desio- 8 (a)_ Voer"s b_elo”nging to two distinct objects. The triang_miati

four? to identify a group of suitable faces. ======= (b) contains a "spike” : triangles; and ¢, belong to two regions.
gree t 4 g P " T T 7T TRestoration of the boundary (c) is performed via an edge flipin(d
The extension consists in the fact that the faces are joinegh, tetrahedra belong to two regions. the restoration of thendary

by edges of degree four? to identify a group of suitablee) is performed by a 4-4 transformation (similar to the 3-2 tramsée

mation deletes one or several faces and builds one edge.

— The 5-4 transformation allows to remove slivers. It deleteg
. . : Results
one sliver and four of its neighbours and creates four new
tetrahedra. For a given set of tetrahedra, this transforma-

. . ' In this section, we present a comparative study of our
tion can have two different results (see figure 7).

method with those obtained with the AMIRA mesh genera-
Our optimization algorithm works as follows: A priority tion software. This program allows to generate meshes from
queueq ;4 quary is filled with the set of elementa (tetra- isosurfaces, surfaces or discrete data [1]. Our approach is
hedra) which quality indicatogual does not meet the de- used for the ElectroMagnetic (EM) field and thermic 3D
sired quality criterion. For each operation, wee pick the elnumerical simulations [20]. EM field computation is car-
ementid having the worst quality and apply the transfor- ried out by solving the Maxwell equations with incomplete
mation with the best tetrahedra quality improvement. Thdirstorder edge elements discretization. Thermal simutati
topological operations are performed until fulfillmentbét are based on the resolution of the Pennes bio heat equa-
desired quality criterion or when no new transformation cartion with nodal finite element. We performed a comparative

be performed. study with a sphere of diameter 200 mm for which we know
the analytical formulation for the for the calculation offrte
4.2.3 Boundary Enhancement perature rise caused by heat convection [22]. With AMIRA,

we generated two mesh&s and Ss, the first mesh is built

It is necessary to remind that we do not know, a priori,from an isosurface and the second from the input voxels.
the border of the domain after the clustering. Our knowl-The third mesh denotefl; is generated with our method
edge relies only on a set of vertices which belong or not tdrom the same set of voxels.
an object boundary. this can result in spikes on the surface Figure 9 shows quality histogramg§){ - Q,) for the
of the objects. To solve this, every tetrahedron is assigmed meshesS;, Ss, Ss. For both criteria, the quality of tetra-
an object by counting the number if voxels it contains, anchedra obtained with our method is very superior to what we
to which object they belong. If some voxels belong to twoobtained with AMIRA. We measured the discretization error
different objects, the tetrahedron is assigned to the dantin as the Haussdorf distance f85 and S usingS; as the ref-
class. In such a case, we apply the transformation which bestence mesh. We choosg because it was generated from
decreases the number of voxels in non-dominant classean isosurface. The distance(is31% of the bounding box
This greatly improves the accuracy of the objects bounddiagonal forS; and0.17% for S3. The error for our method
aries. An example is illustrated in figure 8 : the 2D principleis approximately twice smaller. Table 1 shows the average
if shown on the top, and a real 3D case is shown at the bo&and the minimum value of the quality criteiig,, Q4 for all
tom. the tetrahedra of, S andSs. Linese,,., ande,.,s give
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Fig. 9 Quality histograms for the meshés, S2 (generated with AMIRA) andbs constructed with our approach, for both crite@a - Q4. Q1
andQ- are the minimal and the maximal dihedral angpg.is the radius ratioQ, is cited in [19]. The criteriong)s, Q4 are normalized between
0 and 1, where 0 denotes a sliver and 1 a regular tetrahedron.

the maximal error and the average quadratic error betwedltustrates the effect of applying topological optimization

the result of the simulation and the exact analytical sofuti the tetrahedra quality. Table 2 shows the timings and qualit
These values show that our meshbrings an smaller error measures for some results displayed in this paper. The re-
thanS, does. However, this error is still greater thein We  sults were obtained with a laptop computer running at 2.2GHz
interpret this result by the dominating role of the surfate owith 2GB of RAM, except for the VHP model, which were
the sphere for thermal simulation. F8y, this surface iswell processed on a SGI workstation due to memory require-
defined by a surface mesh. The last two lines of the tablenents (The VHP model itself fits in more than 2GB with
show the number of iterations for the preconditioned conjuour data structure). We use our method to create a tetrahe-
gate gradient solver to compute the electromagnetic (1) andral mesh from the Visible Human Project [2].

thermal (2) results.

For both simulations, the good quality of the tetrahedra
provided by our method results in a significant reduction of6 Conclusi
the computation time. onciusion

The proposed algorithm has been tested with several dis- |, this paper we have presented a very efficient and au-

crete data. These algorithms were implemented in C++ U§ymatic method to construct the tetrahedral mesh from dis-
ing the VTK library. crete data. Our approach produces a high quality tetrahedra
Figure 10 shows the results obtained on three differentnesh directly from discrete data using Centroidal Voronoi
models. Armadillo (a), Stanford Bunny (b) and Venus bodyDiagrams. Our approach provides a robust mesh design tool
(c) are given as triangular meshes. For our approach, wier discrete datas that can accommodate requirements on the
voxelized these surface models. Histograms show the didinal budget of vertices and on the mesh gradation, for arbi-
tributions of tetrahedra quality), for each mesh. Table 3 trary domain complexity. Future work may include tetrahe-



T A LA e
R
e SR )
y éu" BN w::’f

W,

S : <
LN
AT e

[4 \ji’ )
Ao

r T
0.0 02

(b)

T T T |
04 06 08 1.0

T T T !
04 06 08 1.0

Fig. 10 This figure shows the results obtained on three different modeisadillo (a), bunny (b) and venusbody (c) are given as trigargu
meshes. For our approach, we voxelized the input surface modstegFams show the distributions @f; for each tetrahedron in each meshes.

Model # initial mesh after optimization minimum
tetrahedra| < 6° | <12° | <18° | <6° | <12° | <18° | dihedral angle)
armadillo 55329 40 138 364 0 1 5 10.8F
bunny 113409 99 358 654 0 1 8 11.5#
venusbody| 55103 33 113 226 0 5 13 10.17

Table 3 Evaluation of our optimization step for the quality of the gexted meshes

Table 1 Quality of meshes and precision for FEM resolutions of ther-
mic (1) and electromagnetic (2) simulations. MesBgesand S were 3.
obtained with AMIRA. S5 was created with our approach.

4
#input | # output time (s)
Voxels | Vertices | clustering | meshing| optimization 5
503 500 2.42 0.44 0.72
1003 4000 34.13 4.3 6.02
200° 36000 271.96 36.11 42.26 6
Table 2 Computation times with our approach
7.

dral meshing on the human body and an octree approach to
speed up the clustering step. 8.
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Fig. 11 (a), a volume representing human lungs. (b) is obtained with
a density map which in one part possesses uniform weights (lefy lung
whereas in the other part respects certain complex regiqfs (ung).



